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Abstract

StyleGAN has shown remarkable performance in uncon-
ditional image generation. However, its high computational
cost poses a significant challenge for practical applications.
Although recent efforts have been made to compress Style-
GAN while preserving its performance, existing compressed
models still lag behind the original model, particularly in
terms of sample diversity. To overcome this, we propose a
novel channel pruning method that leverages varying sensi-
tivities of channels to latent vectors, which is a key factor in
sample diversity. Specifically, by assessing channel impor-
tance based on their sensitivities to latent vector perturba-
tions, our method enhances the diversity of samples in the
compressed model. Since our method solely focuses on the
channel pruning stage, it has complementary benefits with
prior training schemes without additional training cost. Ex-
tensive experiments demonstrate that our method signifi-
cantly enhances sample diversity across various datasets.
Moreover, in terms of FID scores, our method not only sur-
passes state-of-the-art by a large margin but also achieves
comparable scores with only half training iterations. Codes
are available at github.com/jiwoogit/DCP-GAN.

1. Introduction

Thanks to recent progress in generative artificial intelli-
gence, there have been numerous techniques in the re-
search field of image generation [I, 3, 10, 15, 18, 26,
30, 31, 33, 36]. Especially for Generative Adversarial
Networks (GANs) [5], StyleGAN [12-14] is one of the
most successful approaches and leads to the development
of diverse applications of GANSs including image edit-
ing [7, 27, 39], super resolution [29], and even 3D gener-
ation [2, 6, 32]. However, due to their high computation
costs, the deployment of these applications on the edge de-
vices such as mobile phones and embedded systems is still
challenging and remains a significant research problem. To
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handle this challenge, the research area of StyleGAN com-
pression [24, 37] is recently introduced.

Most of prior StyleGAN compression techniques in-
cluding CAGAN [24] and StyleKD [37] have two stages:
(1) channel-pruning and (2) distillation stages. In de-
tail, the channel-pruning stage initializes the compressed
model (student) from the pre-trained network (teacher) by
selectively removing channels. Subsequently, in the distil-
lation stage, channel-pruned student model undergoes fur-
ther training by adversarial objectives and knowledge distil-
lation from the teacher model if needed.

The primary goal of the GAN compression is to main-
tain the diversity and fidelity of generated images from the
teacher model. However, we observe that the compressed
generator often struggles to preserve the diversity compared
to teacher generator (i.e. low recall as reported in Table. 1).
Specifically, in the case of StyleKD, although it retains the
latent space and mapping network of the teacher model
during the pruning stage, the synthesis network of student
model hardly preserves the diversity (recall) in the latent-to-
image rendering process. We hypothesize that such degra-
dation in diversity is caused by improper initialization of the
synthesis network (e.g. random initialization or inadequate
pruning method). Hence, in this paper we focus on devel-
opment of an appropriate channel pruning scheme for syn-
thesis network toward preserving the diversity of teacher.

The diversity of the synthesis network stems from the
variations observed in images generated from different la-
tent signals. Our hypothesis is that the channel-wise behav-
ior differs for different latent vectors, implying that each
channel contributes to the diversity of generated images dif-
ferently. For instance, channels associated with common
characteristics in the dataset (e.g., the number of eyes in
a facial dataset) may not be sensitive to the latent vector
and its impact on diversity, despite their significant contri-
bution to the generated images. On the other hand, chan-
nels related to semantic attributes exhibit distinct behavior
with respect to the latent vector. Furthermore, the common
characteristics within a dataset can be highly recoverable
during further training even if their relevant channels are
pruned. Therefore, to achieve a compressed student model
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(a) Intuitive illustration of our method

(b) Our overall framework

Figure 1. (a) Intuitive illustration of our method. We compare four channels (Ch. #1, 2, 3, 4) by evaluating their responses when we
pass the same latent vector w and its perturbed counterpart (w + ad). By investigating the contribution of each channel to resulting image
difference, we determine the sensitivity of channels to the latent perturbation. In this example, Ch. #4 is highly sensitive to the perturbation,
while Ch. #1, 2, 3 exhibit low sensitivity. Consequently, in terms of preserving sample diversity, Ch. #4 is suitable for retaining. (b) Our
overall framework. We aim to assess the contribution of each channel to the sample diversity by measuring its sensitivity to latent vector
perturbation. In detail, 1) we sample a directional vector for the perturbation, 2) we compute the image-level difference caused by the latent
vector perturbation, and 3) we calculate channel-wise gradient magnitudes induced by the difference image. The channel-wise sensitivity
to the sample diversity is determined by its gradient magnitudes. As a result, we can estimate the channel-wise sensitivity against diversity.

that maintains a highly similar generative distribution to the
teacher model with fewer channels, it is reasonable to pri-
oritize the preservation of channels that are sensitive to the
latent vector.

In this paper, we present a channel-pruning method that
considers the sensitivity of each channel to latent vector per-
turbations. Specifically, we investigate gradients induced
by the image-level difference between two generated sam-
ples: one from the original latent vector and the other from
its perturbated counterpart, as shown in Fig. 1. The intu-
ition behind this is that a larger gradient magnitude for a
generator’s parameter indicates a higher sensitivity to the
latent vector perturbation. Building on this primitive idea,
we define a channel-wise importance score by aggregating
the gradient magnitudes of parameters within the channel
for diverse latent vectors and their perturbations. This score
serves as a measure of each channel’s contribution to the
sample diversity. Based on these importance scores, we
prune channels accordingly.

We conduct extensive evaluations in various datasets in-
cluding FFHQ, LSUN-Church, and LSUN-Horse. The ex-
perimental results demonstrate that our compressed model
not only achieves state-of-the-art performance but also pre-
serves significantly higher sample diversity. Moreover, our
method reaches the previous state-of-the-art FID score with
only half the number of training iterations.

2. Related Work

One of the network compression techniques, channel prun-
ing [19,22, 23,25, 34, 38, 40] proves highly effective in sig-
nificantly reducing both memory usage and computational

expenses. For example, MeanGrad [22] aims to preserve
model performance despite pruning in network parameters
and evaluates the importance of convolution weights using
the mean gradient criterion in classification tasks.

In generation tasks, various methods [9, 11, 20, 21, 28]
have been also proposed to compress the generator network
in both conditional and unconditional GANs to leverage
its generative capabilities on devices with limited compu-
tational resources. One of the recent works, CAGAN [24]
proposed a two-stage compression method for uncondi-
tional GANs. They first pruned the network parameters and
then fine-tuned the pruned student model using knowledge
distillation from the teacher model. Additionally, they pro-
posed a content-aware pruning technique to preserve chan-
nels that are highly activated in salient regions of images.
More recently, StyleKD [37] addressed the issue of output
discrepancy between teacher and student models by main-
taining the mapping network while randomly initializing the
synthesis network with a reduced number of parameters.

Our approach revisits the pruning stage in compressing
the generator of StyleGAN. Specifically, we introduce a
novel algorithm for selecting channels to be pruned based
on their contributions to the sample diversity measured by
the sensitivity to latent vector perturbations. Additionally,
our method requires no extra training costs during the prun-
ing stage, as it operates without the need for additional
supervision, such as a pre-trained semantic segmentation
model, while CAGAN requires it. In StyleKD, despite dis-
carding all parameters in the synthesis network and utiliz-
ing latent directions to mimic the teacher model in the dis-
tillation stage, we observe that they still face challenges
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Figure 2. Overall compression framework. Overall compres-
sion framework consists of two stages: channel pruning and distil-
lation. Channel-pruning stage initializes a compact student model
by pruning channels of a larger teacher model. Specifically for
the StyleGAN?2 architecture, pruning process usually focuses on
reducing channels in the synthesis network, while retraining the
mapping network. Distillation stage further trains student model
with several training objectives such as adversarial and distillation
losses. In this paper, we focus on the channel-pruning stage.

in maintaining sample diversity. In contrast, our proposed
method directly retains diversity-aware parameters in the
synthesis network while discarding diversity-unrelated pa-
rameters in the pruning stage. Thus, our approach effec-
tively inherits the generative capabilities of the teacher net-
work and is twice as fast as the baselines thanks to our en-
hanced initialization.

3. Method

In this paper, we present a novel channel pruning strategy
for compressing StyleGAN. we focus on preserving sam-
ple diversity by considering the relationship between the la-
tent and image spaces of the GAN, which has been over-
looked by previous methods in the pruning process. Before
introducing details of our proposed method, we provide an
overview of the typical pipeline of GAN compression. Sub-
sequently, we describe our channel selection process.

3.1. Preliminaries

Unconditional GAN Compression. As in Fig 2, GAN
compression methods typically involve two networks: a
teacher model (large and pretrained) and a student model
(small). The goal is to train the student model with fewer
parameters by distilling the knowledge from the pretrained
teacher network, while maintaining performance as much
as possible. This approach generally consists of two stages:
(1) channel pruning and (2) distillation. In the channel prun-
ing stage, the less important channels of the teacher model
are pruned to initialize the student model. In the distilla-
tion stage, the student model is further trained using both
adversarial learning and distillation losses from the teacher.

Channel-Pruning Stage. The channel-pruning stage in-

volves the estimation of channel importance within the gen-
erator network, followed by pruning of less important chan-
nels based on the determined importance scores. In the con-
text of StyleGAN compression, since most of methods are
built on the StyleGAN2 framework [13], we provide a de-
tailed description of the pruning procedure. The generator
architecture of StyleGAN?2 consists of a mapping network,
denoted as f(-) : Z — W, and a synthesis network, de-
noted as g(-) : W +— Z. Here, Z € R5!2 represents the
input noise space following a standard normal distribution
N(0,1). W € R5'2 corresponds to the intermediate latent
space, and Z € R"*%X3 represents the image space. In
the case of StyleGAN?2, the focus of pruning is primarily on
reducing the channels within the synthesis network while
maintaining the mapping network. This strategy is guided
by two reasons. Firstly, the mapping network accounts for
only a small portion of the parameters and floating-point op-
erations (FLOPs) compared to the synthesis network, mak-
ing the benefits of pruning the mapping network negligi-
ble. Secondly, previous work [37] has observed that pruning
the mapping network results in a significant drop in perfor-
mance as it disrupts the consistency of output images be-
tween teacher and student models. Therefore, most of the
existing research in this field has concentrated on develop-
ing techniques to prune the synthesis network. In alignment
with this approach, our paper also focuses on pruning the
synthesis network.

3.2. Our Approach

As discussed earlier, we observed a notable degradation in
sample diversity in the compressed student model compared
to the teacher network, even though the mapping network
remains uncompressed. We hypothesize that a critical factor
in this decline is the lack of consideration for sample diver-
sity in previous network initialization (or channel pruning).
Consequently, our primary goal is to address this issue by
introducing a novel channel-pruning method aimed at en-
hancing the diversity of generated images.

To accomplish this, we introduce the concept of latent
perturbation-induced gradients. These gradients reflect the
sensitivity of each channel to perturbations in the latent
vector. Since latent perturbations produce the image-level
differences of generated samples, the gradients induced by
these perturbations enable us to measure the contribution of
each channel to the sample diversity. Based on these gra-
dients, we define diversity-sensitive importance scores for
each channel using various latent vectors and their pertur-
bations. Finally, we select channels to be pruned according
to their importance scores.

Note that, while we explain the method using a single
convolution weight W for simplicity, in practice, our prun-
ing method is applied to all weights in convolutional layers.
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3.2.1 Latent Perturbation-induced Gradients

In our context, sample diversity refers to the variations ob-
served among images generated from different latent vec-
tors. To assess the contribution of each channel to sample
diversity, we examine the gradients induced by the image-
level difference between two generated samples from the
latent vector and its perturbation. Specifically, we consider
the latent representations in the intermediate latent space VW
inherited from the teacher model.

To produce the perturbated latent vectors, we first estab-
lish a set of independent directional vectors D in W. The
perturbation is accomplished by shifting the latent vector w
along a directional vector d sampled from D as w + ad,
where « is a scalar constant. Among a variety of feasi-
ble strategies to define D, we specifically employ princi-
pal components inspired by GANSpace [7]. We also use
a probabilistic sampling for the selection of directional vec-
tors, with the selection probabilities proportional to the vari-
ance ratios corresponding principal components, since di-
rections represent different degrees of semantic variation in
this scheme. Note that, we experimentally found that our al-
gorithm also works effectively even with a set of randomly
drawn directional vectors (i.e. (drng ~ MN(0,1)), and the
performance gap between principal components and ran-
dom vectors is not significant.

Given a latent vector w and a sampled directional vector
d, we compute the difference between two images g(w) and
g(w + ad) generated by the teacher generator g(-) based on
L, distance as follows:

Lag = |g(w) — g(w + ad)|, g(-) € R"***3 (1)

where | - | denotes the absolute value, and h and w are the
height and width of the images, respectively.

To investigate the sensitivity of learnable parameters W
within a convolution layer of g to the latent vector perturba-
tion, we calculate gradients of weights by back-propagating
Laigr. These gradients are referred to as latent perturbation-
induced gradients G perur, and expressed as follows:

8£diff in out 3x3
Gperturb :| oW |7 Gperlurb € ROXCTXIE(2)

where ¢ and " represent the number of input channels
and output channels of W, respectively.

Intuitively, if a parameter has a larger gradient magni-
tude, the parameter is considered more sensitive to the dif-
ference between samples produced by latent perturbation,
thereby contributing more to the sample diversity.

3.2.2 Diversity-Sensitive Importance Score

Based on the latent perturbation-induced gradients G perturb,
we introduce channel-wise diversity-sensitive importance
score for pruning.

One straightforward approach is to average the gradient
magnitudes over the parameters associated with each chan-
nel for multiple latent vectors w ~ f(z) and directions
d. We refer this scheme as the average-based importance
score, expressed as follows:

Sli(c) = ||]EzEd[Gperlurb]c||17 S“(C) € Rl; 3)

where ¢ € [0, ¢") denotes the channel index, [-]. represents
™ channel of [-], and Gperturt denotes the gradient magni-
tude. In practice, we compute E,[-] using N directional
vectors sampled from D.

If a specific latent vector significantly influences
[Gpmurb]c regardless of its perturbations, the channel would
receive a high importance score even if it is not actually sen-
sitive to the perturbations. Consequently, the influence of
such channels can greatly disturb desired channel selection.

To address this problem, we revise the average-based
score by considering the individual effect of each latent vec-
tor. Specifically, for each latent vector, we compute the av-
erage gradient magnitudes over N perturbations and utilize
them to penalize the induced gradients for the learnable pa-
rameters. These average gradient magnitudes for a latent
vector are referred to as the gradient offset. As a result, our
diversity-sensitive importance score for ¢ channel, S (c),
is defined as follows:

57 (C> = ||EzEdHGperlurb —Eq [Gperturb]]Q]cHl, S (C) S Rl,

“)
where E [Gpenurb} represents the gradient offset of the orig-
inal latent vector w, and [-]? denotes element-wise squaring.
Once the diversity-sensitive importance scores are com-
puted, we prune channels with low scores according to the
pruning ratio p;..

Aside from the calibration by the gradient offset, S7(c)
is equivalent to the variance of Gperurp, OVeEr perturbations.
This approach further reduces the impact of small noisy
values and grants greater importance to channels that are
highly sensitive to a particular direction in the latent space.
Such directions can be highly related to specific semantic
attributes. Intuitively, it is crucial to retain channels that are
highly sensitive to directional vectors in the latent space rel-
evant to certain semantic attributes, such as glasses or age.

3.3. Objective Functions for Distillation Stage

After establishing the initial student model through a
channel-pruned teacher generator, we fine-tune the stu-
dent model using adversarial and knowledge distillation
objectives.  As our primary focus in this paper lies
on the pruning algorithm, we simply follow the train-
ing scheme of StyleKD [37] incorporating four objectives:
ﬁGANa Ergb; ‘Clpipsv and LLD~

Lgan denotes the minimax objective for adversarial
training. Meanwhile, Ly, and Lipips strive to replicate
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teacher-generated images in image and feature spaces, re-
spectively. £ p, a latent-direction-based relation distillation
loss, aims to align the student model’s feature similarity ma-
trix to the teachers. More details on these objectives can be
found in StyleKD [37]. As a result, our final training objec-
tive function, Lgya, s given as follows:

[/ﬁnal = )\GAN‘CGAN + Arg;t)ﬁrgb + Alpips‘clpips + )\LD£LD7 (5)

where AGAN, Argb, Alpips; and Arp balance loss terms.

4. Experiment
4.1. Experimental Setup

Baselines. Our method is compared with recent StyleGAN
compression methods, CAGAN [24] and StyleKD [37]. For
a fair comparison, we further train CAGAN with the ad-
vanced objective function (Lrp) introduced in StyleKD,
which we denote as CAGAN*. Since our method em-
ploys StyleKD’s training scheme, comparing CAGAN®,
StyleKD, and our method is equitable. Since the pretrained
StyleKD models are not available, we retrain StyleKD using
the official repository for unreported metrics and datasets,
referring to this retrained model as StyleKD*. For train-
ing details of CAGAN, we apply a facial mask as a content
mask when training CAGAN™* on the FFHQ dataset. How-
ever, on other datasets where content definition is challeng-
ing, we use a uniform mask, assigning a value of one to all
pixels.

Evaluation Metrics. We validate our pruning method us-
ing various quantitative metrics. In addition to the most
popular Fréchet Inception Distance (FID) [8], we also mea-
sure Precision and Recall (P&R) [17] to assess the quality
and diversity of generated samples separately. For FID cal-
culation, we use 50K real and 50K fake samples for each
dataset. For P&R, we use all real samples in the dataset and
50K fake samples for FFHQ and LSUN Church. For the
LSUN Horse dataset, we use 200K real samples due to the
high computational cost associated with complete 1M real
samples.

To evaluate the projection capability of the compressed
model, we employ the projection method of StyleGAN2,
which projects real images into the VV space using noise
regularization and reconstruction losses such as MSE and
LPIPS, over 1,000 iterations. We use the Helen-Set55
dataset for this evaluation, following the practice of CA-
GAN. We report the averaged MSE and LPIPS for all pairs
of real and projected images in the dataset.

Implementation Details. We follow the implementation
details provided in StyleKD [37]. For instance, all ex-
periments are conducted with a pruning ratio of 0.7 (i.e.
pr = 0.7) and trained for 450K iterations. Also, in the
default setting, we set the hyperparameters N and « as
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Figure 3. (a) Precision-Recall Curve. By adjusting the truncation
trick parameter v within the range [0.5, 1.0] with step size 0.1, we
visualize the Precision-Recall curve of the proposed method and
baselines. We validate that ours surpasses baseline methods with
every range of precision and recall. (b) FID w.r.t Training Itera-
tions. We visualize FID curve during training and validate that the
proposed method achieves the previous state-of-the-art FIDs only
with 2x fewer iterations.

10 and 5, except for LSUN Horse dataset where we set a
as 10. We employ non-saturating loss [4] with R; gradi-
ent penalty [13] and update a model through Adam opti-
mizer [16] with §; = 0.0 and B2 = 0.99. The learning
rate is set to 2e-3 for both the generator and discriminator.
We use a batch size of 16 and consistently employ 4 GPUs
for training. Lastly, the loss balancing constants are set to
>\GAN = ]., )\rgb = 3, )\lpips = 3, and )\LD = 30.

4.2. Quantitative Results

Image Generation Performance. We validate the effec-
tiveness of the proposed method through various genera-
tion performance metrics including FID and P&R in diverse
datasets such as FFHQ, LSUN Church, and LSUN Horse.
In terms of FID, the proposed method consistently outper-
forms state-of-the-art baselines on all tested datasets, as re-
ported in Tab. 1. For example, our model achieves a FID
score of 5.80 in FFHQ-1024, improving 1.8 and 1.39 points
over CAGAN and StyleKD, respectively. These consistent
FID score improvements demonstrate the superiority of the
distribution-matching capability of the proposed method.

For the recall metric directly related to the sample diver-
sity, our method achieves the highest scores in all tested
datasets. For instance, our method significantly outper-
forms CAGAN in terms of recall score in FFHQ-1024
(0.277 vs 0.378), as well as obtains a value of 0.372 in
LSUN Church, which is almost comparable with the teacher
(0.016 points gap).

For the precision metric, the proposed method shows a
slightly lower precision compared to the baseline, due to
the precision-recall trade-off. Since the recall can be lever-
aged to improve precision through a truncation trick, we
additionally conduct experiments by adjusting ‘o)’ to eval-
uate precision at the highest recall achieved by baselines.
In this setting, we observe that our method also surpasses
baselines in terms of precision at the comparable recall. For
example, by adopting a truncation parameter of 1) = 0.95 in
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Table 1. Quantitative results on StyleGAN2. Comparison with GAN compression baselines in FFHQ, LSUN Church, and LSUN Horse
datasets. ‘Param.’ refers to the number of parameters in a generator and ‘FLOPs’ denotes the number of floating-point operations. ‘P’
and ‘R’ represent precision and recall metrics, respectively. ‘MSE’ and ‘LPIPS’ indicate the distance between pairs of real and inverted
samples based on the StyleGAN2 projection method. ‘CAGAN™’ denotes CAGAN trained with the objective of StyleKD. ‘StyleKD*’
refers to a retrained model using the official code due to the unavailability of published pretrained models. ‘)" denotes the parameter for
the truncation trick, which adjusts the trade-off between sample diversity and fidelity. We adjust ‘@)’ to evaluate precision at the highest
recall achieved by baselines. We have omitted ‘Param.” and ‘FLOPs’ in the LSUN Church and LSUN Horse datasets, as they are the same
as FFHQ-256. Reported FIDs without ours, CAGAN™, and StyleKD™ are taken from StyleKD.

Dataset | Method | Param. FLOPs | FID| Pt Rt | MSE| LPIPS|
| Teacher | 30.0M 45.1B | 4.5 0.603 0.482 | 0.0292 0.2065
Scratch 56M  41B | 979 NA NA | NA  NA
GS [35] N/A  50B | 124 NA NA | NA  NA
FFHO.056 | CAGAN [24] 56M  41B | 79 0703 0295 | 0.0316 0.2141
Q CAGAN™ [24] 56M  41B | 741 0713 0309 | 0.0301 0.2113
StyleKD [37] 56M 41B | 725 NA NA | NA  NA
StyleKD* [37] 56M  41B | 747 0710 0.306 | 0.0307 0.2101
Ours 56M  41B | 635 0706 0.339 | 0.0293 0.2082
Ours (1) = 0.95) || 5.6M  4.1B | 6.86 0.732 0312 N/A  N/A
| Teacher | 49.IM  743B | 27 0.688 0492 ] 0.0275 0.1916
GS [35] N/A  239B | 101 N/A NA | NA  NA
FFHQ-1024 | CAGAN [24] 92M  70B | 7.6 0.721 0277 | 0.0358 0.2099
StyleKD [37] 92M  70B | 719 NA NA | NA  NA
| Ours | 92M  7.0B | 580 0.676 0.378 | 0.0328 0.2082
Dataset | Method |FID, Pt Rt |Dataset | Method |FID, Pt R
| Teacher | 3.97 0599 0.388| | Teacher | 450 0541 0.442
CAGAN* [24] |/ 5.09 0.598 0.352 CAGAN™ [24] || 5.73 0589 0.335
Church | StyleKD* [37] || 6.10 0.611 0.302| Horse | StyleKD* [37] || 5.69 0.589 0.325
Ours 4.87 0.584 0.372 Ours 511 0.581 0.356
Ours (1) = 0.97) || 5.07 0.610 0.349 Ours (1) = 0.95) || 522 0.610 0.337

FFHQ-256 and LSUN Horse datasets, our method provides
higher precision, recall, and even FID scores compared to
the baselines. In the case of LSUN Church, with a trunca-
tion parameter of ¢ = 0.97, we achieve comparable pre-
cision to StyleKD while providing 0.047 points higher re-
call score. Similarly, compared to CAGAN, ours has com-
parable scores in the aspect of recall but achieves higher
precision with a reasonable margin. Note that, without the
truncation trick, the proposed method substantially outper-
forms the baseline models in terms of diversity. For further
validation, we additionally report the precision-recall curve
in the FFHQ-256 dataset by adjusting the parameter ¢/ in
Fig. 3-(a) within a range of [0.5, 1.0]. As shown, ours pro-
vides higher precision and recall compared to the baselines
across the ranges.

To assess the applicability of our method with other
network architectures, we conduct evaluations with Style-
GAN3. Thus, we reproduce scores of baselines at the same
training settings as ours and focus on relative improvements
in this experiment. Specifically, we employ official codes of

StyleGAN3 and train the generator until the discriminator
see 10M of real images. As in Tab 2, our model achieves a
FID score of 8.40 and improves 5.85 and 1.17 points over
the CAGAN and StyleKD, respectively. In terms of the re-
call metric, our method also surpasses the baselines. A com-
parative analysis of metric scores between baselines and our
approach further highlights our model’s superiority.

Training Converged Speed Ability. Moreover, we visu-
alize the FID curve with respect to the training iteration of
our method in Fig. 3-(b). We observe that ours reach the
best FID scores of previous state-of-the-art models at much
fewer iterations. For instance, ours achieve comparable FID
scores only with 2.5x and 2x fewer iterations compared to
the CAGAN and StyleKD, respectively. We believe that our
enhanced initialization of the synthesis network through our
channel pruning strategy significantly improves the gener-
ation performance during the early stages of training, and
allows the model for further improvement throughout the
entire training process.
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Table 2. Quantitative results on StyleGAN3. Comparison with
recent baselines [24, 37] in FFHQ dataset.

Metric | FID| P? R1

Teacher ‘ 476  0.647 0.484

CAGAN [24] | 1425 0.636 0.272
StyleKD [37] | 9.57 0.647 0.376
Ours 840 0.653 0.397

Image Projection Ability. For evaluation of the image pro-
jection ability, we perform experiments on FFHQ dataset
using MSE and LPIPS metrics. For both FFHQ-256 and
FFHQ-1024 datasets, we validate that the proposed method
surpasses baselines in terms of both MSE and LPIPS met-
rics. Interestingly, we observe that ours reports MSE of
0.0293 which is a comparable score with the teacher model,
0.0292, in FFHQ-256 dataset. We believe that our pruning
method brings a significant improvement in the generator’s
ability to capture the diverse characteristics of real images,
and it allows precise projection of them.

4.3. Qualitative Results

Generated samples from same noise input. For quali-
tative comparison, we show the samples generated by dif-
ferent compressed models from the same noise vector z in
Fig. 4. As noted in StyleKD [37], it would be desirable
for a compressed network to reconstruct the sample gener-
ated by the teacher network. However, we observed that
the baseline methods struggle to produce a sample inherit-
ing the characteristics of images from the teacher network.
For instance, CAGAN* and StyleKD* generate face images
with different shapes of eyes in the third and fourth column
of Fig. 4. Similarly, in the first column of LSUN Horse,
horses generated by baselines hardly maintain the brown
and white color patterns available in the teacher’s image,
while the proposed method successfully synthesizes those
patterns. These results show that the channel pruning with
the consideration of the latent space and its effect on images
leads to better diversity preservation of generated images.

4.4. Ablation Studies and Analysis

We further discuss the influence of the proposed compo-
nents and other hyperparameters by comprehensive ablation
studies. For this purpose, we train the ablated models with
different configurations in FFHQ-256.

Number of directions and strength for perturbations.
We investigate the number of directions (N) and the
strength of perturbation (a)). Due to the computational
costs, we report the mean and standard deviations of the
best FID scores up to SOK iterations over 3 times trials. As
reported in Tab. 3-(a), our method achieves the lowest FID
score when N = 10. Additionally, we explore the impact
of the strength of perturbation (a)). While o = 5 yields the

Table 3. Ablation on the perturbation parameters. In this ta-
ble, we report mean and standard deviation of FIDc.1y measured
from the models training until 50K iterations 3 times. We denote
N and o as the number of perturbations for each original latent
vector and the strength parameter of perturbations, respectively.
Ablation on the direction sampling. For comparing semantic
and random directional vectors, we utilize the GANSpace (PCA)
method to obtain the semantic directional vector. The FID score
with semantic directional vectors is slightly better than that of the
randomly sampled vectors.

N FIDearly i ‘ «Q FIDearly »J/
N=5 1246+02 | a=1 13.50+£ 0.3
N=10 | 1208+03 | a=5 | 12.08+0.3
N=20 | 124702 | a=10 | 12.09£0.2

(a) Ablation on the perturbation parameters

Direction | FID| Pt R 1

Random | 650 0.692 0.342
PCA 6.35 0.706 0.339

(b) Ablation on the perturbation directions

Table 4. Ablation on the type of the importance scores.
Comparison of FID score between the average-based impor-
tance score (S*) and the proposed diversity-sensitive importance
score (S7) in FFHQ-256 and LSUN Horse datasets.

Dataset ‘ StyleKD*  Ours (w/ S*) Ours (w/ S7)
FFHQ-256 7.47 6.71 6.35
LSUN Horse 5.69 5.36 5.11

best FID in this scenario, we consider both o = 5,10 as
viable options.

Latent perturbations by random vs. PCA-based di-
rections. We conduct the ablation study on directional
vectors for latent perturbations. Specifically, we com-
pare the performance of directional vectors derived from
GANSpace [7] and vectors sampled from a random normal
distribution (dyang ~ N(0,1)). Tab. 3-(b) shows a slight
degradation in performance when using random directional
vectors for the perturbation. However, this degradation is
negligible, and our pruned model still outperforms com-
pared to baselines [24, 37] in terms of FID metric.

Thus, this finding highlights the significance of pertur-
bation itself regardless of the type (either random or PCA)
of perturbation in capturing sample diversity. Nevertheless,
semantic directional vectors from GANSpace yield a lower
FID compared to randomly sampled vectors. This result
motivates us to select GANSpace-based directions as the
default configuration for the latent vector perturbations.

Type of the importance score measurement. We con-
duct the ablation study to validate the effectiveness of our
diversity-sensitive importance score. As shown in Tab. 4,
the proposed diversity-sensitive importance score (S?)
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Figure 4. Qualitative comparison with baselines on various datasets. For qualitative comparison, we visualize our generated samples
and baselines in FFHQ-256, LSUN Church-256, and LSUN Horse-256 datasets. Each column corresponds to samples generated from the
same noise vector z. Averaged L1 distances between 10K samples from teacher and student are reported below each method. The lowest
distortion of the proposed method validates that ours has enhanced capability to preserve the diversity in the image space.
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Figure 5. Specific examples for pruned channels (a) We provide
a scatter plot of S* and S° scores of all channels in 6™ layer of
teacher generator trained on FFHQ-256. Brown and green dots
represent channels that are always pruned and not pruned, respec-
tively. Blue and Red dots indicate channels that only survive in
S* and 57, respectively. (b) The 350" channel exhibits high sen-
sitivity to the 14" direction from PCA. (c) The 14" direction cor-
responds to an age-related perturbation. The S* score prunes the
350" channel, while the S score preserves this channel, which
demonstrates high sensitivity to age variation. This result shows
that S aims to retain semantic image changes compared to S*.

outperforms the average-based importance score (S*) in
terms of FID. Specifically, the proposed diversity-sensitive
method provides 6.35 FID, improving 0.36 points over the

average-based score. Similar trends can be found in LSUN
Horse dataset. These results confirm that suppressing the
importance score derived from latent code itself is crucial.

Specific examples for pruned channels In Fig 5, we exam-
ine the score of each channel in the teacher generator using a
scatter plot, with S* on the x-axis and S on the y-axis. As
visualized in Fig. 5 (a), S* and S of most channels are lin-
early correlated. However, upon closer examination of out-
liers, a significant portion of these outliers possess low S*
values but high S values. These outlier channels generally
contribute to a smaller number of directions but are highly
activated for particular directions. To illustrate this, we vi-
sualize the gradient norms for 350" and 471" channels in
Fig. 5 (b). The 350" channel exerts a significant influence
on the 14" direction. This particular direction corresponds
to notable image differences, such as age-related perturba-
tions, as shown in Fig. 5 (¢). Thus, our S can assign higher
importance scores for these outliers.

5. Conclusion

In this work, we address the issue of a compressed Style-
GAN generator struggling to preserve the sample diversity
of teacher, observed in previous GAN compression meth-
ods. To alleviate this problem, we propose a simple yet ef-
fective channel pruning method that calculates channel im-
portance scores based on their sensitivity in the image space
according to perturbations in latent space. Extensive exper-
iments demonstrate that our pruning method significantly
enhances sample diversity, validating its superior perfor-
mance in terms of FID.
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