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Abstract

Existing research based on deep learning has extensively
explored the problem of daytime image dehazing. However,
few studies have considered the characteristics of nighttime
hazy scenes. There are two distinctions between nighttime
and daytime haze. First, there may be multiple active col-
ored light sources with lower illumination intensity in night-
time scenes, which may cause haze, glow and noise with
localized, coupled and frequency inconsistent characteris-
tics. Second, due to the domain discrepancy between simu-
lated and real-world data, unrealistic brightness may occur
when applying a dehazing model trained on simulated data
to real-world data. To address the above two issues, we
propose a semi-supervised model for real-world nighttime
dehazing. First, the spatial attention and frequency spec-
trum filtering are implemented as a spatial-frequency do-
main information interaction module to handle the first is-
sue. Second, a pseudo-label-based retraining strategy and
a local window-based brightness loss for semi-supervised
training process is designed to suppress haze and glow
while achieving realistic brightness. Experiments on pub-
lic benchmarks validate the effectiveness of the proposed
method and its superiority over state-of-the-art methods.
The source code and Supplementary Materials are placed
in the https://github.com/Xiaofeng-life/SFSNiD.

1. Introduction
Nighttime and daytime images may contain hazy effects,
which may cause their quality to be degraded [7, 15, 39,
50]. Therefore, two valuable research fields are proposed,
which are daytime single image dehazing (DaSID) [2, 38,
54] and nighttime single image dehazing (NiSID) [14, 19,
31], respectively. Compared with the daytime hazy image,
the imaging of the nighttime hazy image is more complex
[28, 49]. Currently, NiSID is still a challenging problem.

Existing research on DaSID [20, 25, 27, 34, 43, 48, 52,
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(a) Hazy (b) IM-YellowHaze [26] (c) IM-NightHaze [26]

(d) IM-NHR [51] (e) GE-UNREAL-NH [31] (f) Ours

Figure 1. Visualization of real-world dehazed images, where the
“IM-” and “GE-” denote the dehazed results obtained by training
on imaging model (IM) and game engine (GE) simulated datasets,
respectively. The curve figure represents the pixel histogram,
where the x and y coordinates represent the pixel values and cor-
responding numbers, respectively. The x and y coordinates of the
bar figure represent the color channel and the corresponding aver-
age pixel value, respectively.

53] have achieved impressive performance. Various effec-
tive DaSID algorithms have been proposed and verified on
benchmark daytime datasets [21]. However, these DaSID
algorithms are designed for the properties of daytime hazy
and haze-free images, without taking into account the char-
acteristics of nighttime hazy and haze-free images.

Currently, NiSID research is divided into two types,
namely non-deep learning-based NiSID and deep learning-
based NiSID. On the one hand, the prior hypotheses and
statistical laws are explored [50, 51]. The maximum re-
flectance prior to estimate the varying ambient illumina-
tion is proposed by [50]. The illumination estimation, color
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correction and image prior are integrated by [49]. On the
other hand, the deep learning-based architectures are de-
signed for the NiSID task [14, 31]. Liu et al. [31] combine
the dark channel and bright channel prior with the Trans-
former mechanism [32] into an end-to-end training flow.
The gradient-adaptive convolution and glow pair synthesis
are designed by Jin et al. [14]. Existing learning-based
algorithms have achieved remarkable performance on syn-
thetic datasets. However, these methods still lack consider-
ation of the characteristics of nighttime hazy images.

During the day, the main source of imaging light is sun-
light [7]. The formation of the daytime hazy image can be
described by the atmospheric scattering model [7] as

I(a) = J(a)t(a) +A(a)(1− t(a)), (1)

where I(a), J(a), t(a) and A(a) denote the hazy image,
clear image, transmission map and global atmospheric light,
respectively. The a means the pixel location. Meanwhile, a
widely used physical model [16, 18] in the NiSID task is

I(a) = J(a)t(a) +A(a)(1− t(a)) + Ls(a) ∗ κ(a), (2)

where Ls(a) and κ(a) denote the light sources and atmo-
spheric point spread function. As shown in Eq. 1 and Eq.
2, the main distinction between daytime and nighttime haze
imaging is light sources [1, 4, 24, 29, 30, 41, 46], which we
consider to be the main source of the difficulty. Specifically,
two outstanding issues are considered as follows.
• Localized, Coupled and Frequency Inconsistent: As

shown in Figure 1, multiple active light sources may ex-
ist simultaneously. Therefore, the distortion of nighttime
images, namely the haze that is mainly generated by sus-
pended particles and liquid water droplets, the glow that
is mainly produced by active light sources and the noise
that is mainly caused by low intensity, is usually local-
ized. Meanwhile, these types of distortions are mixed
throughout the image, which is coupled. Furthermore,
the haze and glow will cause the loss of high-frequency
signals, while the noise belongs to high-frequency dis-
turbance signals [22] that needs to be eliminated. This
means that these distortions have inconsistent frequency
characteristics. In a word, a challenging issue is how to
simultaneously handle distortions with localized, coupled
and frequency inconsistent characteristics.

• Unrealistic Brightness Intensity: Nighttime hazy
datasets based on real-world images synthesized by imag-
ing model (IM) are difficult to simulate multiple active
light sources, while nighttime hazy datasets based on
game engine (GE) cannot perfectly reproduce the harmo-
nious brightness of real-world nighttime scenes. As we
observed in Figure 1, the dehazed images obtained un-
der IM datasets still suffer from the glow and haze that
caused by multiple light sources, but the overall bright-
ness is realistic. The dehazed images obtained under GE

dataset show less haze and glow, but the scene brightness
is unrealistic. In a word, an unsolved problem faced by
data-driven algorithms is how to suppress haze and glow
while achieving realistic brightness.
Therefore, we propose a semi-supervised dehazing

framework that can be used for the real-world NiSID task.
Firstly, the local attention [32] is adopted to learn the induc-
tive bias in the spatial domain to suppress local distortions.
A frequency spectrum dynamic filtering strategy is designed
to handle distortions with inconsistent frequency character-
istics. Considering the coupled of these distortions, the spa-
tial and frequency information are integrated as a bidomain
interaction module for feature extraction and image recon-
struction. Secondly, aiming at suppressing distortions while
achieving realistic brightness. The simulation data provided
by the game engine is utilized to generate pseudo labels that
can suppress haze and glow for retraining process. Then,
real-world hazy images are adopted as brightness-realistic
signals for the realistic brightness constraint. Overall, the
main contributions of this paper are as follows.
• We propose a spatial and frequency domain aware semi-

supervised nighttime dehazing network (SFSNiD). SFS-
NiD can remove nighttime haze that is accompanied by
glow and noise. The experimental results on synthetic
and real-world datasets show that the proposed method
can achieve impressive performance.

• We design a spatial and frequency domain information
interaction (SFII) module to simultaneously handle the
haze, glow and noise with localized, coupled and fre-
quency inconsistent characteristics. The multi-channel
amplitude and phase spectrums are dynamically filtered
and aggregated. The spatial and frequency domain fea-
tures are integrated by local attention.

• A retraining strategy and a local window-based brightness
loss for semi-supervised training process are designed to
suppress haze and glow while achieving realistic bright-
ness. The retraining strategy is based on pseudo labels.
The hazy image is divided into non-overlapping windows
for the calculation of local brightness map to provide re-
alistic brightness supervision.

2. Related Work

2.1. Daytime Dehazing

A variety of effective dehazing algorithms for DaSID have
been proposed. An ultra-high resolution dehazing method
based on bilateral gird is proposed by 4KDehazing [54].
AECRNet [43] introduces the contrastive learning to the de-
hazing process. The prior information and visual attention
mechanism are utilized in DeHamer [9]. DF [38] designs an
encoder-decoder architecture which totally based on multi-
head self-attention [32]. MITNet [37] combines the mutual
information-driven constraint and adaptive triple interaction
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Figure 2. The overall pipeline of the proposed SFSNiD.

strategy into a supervised training process. Although these
DaSID algorithms have achieve impressive performance,
they are not designed for the characteristics of nighttime
hazy images, which may cause them to have certain limita-
tions on the NiSID task [31].

2.2. Nighttime Dehazing

Compared with DaSID, NiSID has received fewer attention.
On the one hand, the prior hypotheses and statistical laws
are utilized in the non-deep learning-based NiSID methods
[50, 51]. A maximum reflectance prior is proposed by MRP
[50], which providing a way to estimate the varying ambient
illumination. An optimal-scale fusion-based method is de-
signed by OSFD [51], which utilizes a parameter estimation
dehazing flow. On the other hand, the data-driven strate-
gies [23, 40] are adopted in the deep learning-based NiSID
methods [14, 31, 45]. NightHazeFormer [31] combines the
visual transformer and prior knowledge (dark channel and
bright channel) into an end-to-end enhancement process.
GAC [14] utilizes the angular point spread function to re-
duce the glow effect in nighttime scenes. Yan et al. [45]
propose a strategy which decomposes the image into scene
texture information and scene structure information. Ac-
cording to recent research, deep learning-based NiSID al-
gorithms can achieve relatively better quantitative perfor-
mance according to sufficient synthetic data. However, the
haze, glow, and noise with localized, coupled and frequency
inconsistent characteristics are not fully considered by these
deep learning-based NiSID algorithms.

3. Methods
The hazy domain and haze-free domain are marked as X
and Y , respectively. The synthesized hazy and haze-free
image datasets are denoted DX and DY , which contain N
images, respectively. The real-world hazy image and haze-

free datasets are denoted asRX andRY , which include M
images, respectively. The convolution operation is denoted
as Ckt (·), where the superscript k and subscript t denote the
kernel size and stride, respectively. The $(·), σ(·), δ(·) and
sf(·) denote the global average pooling, LeakyReLU, sig-
moid and softmax operations, respectively. The input hazy
images and predicted dehazed images at three scales are
marked xsi ∈ DX and psi respectively, where s ∈ {0, 1, 2}
and i denotes the i-th example. The size of x0i , x1i and x2i
areH×W ×C, H2 ×

W
2 ×C and H

4 ×
W
4 ×C, respectively.

The H , W and C denote the height, width and number of
channels, respectively. The size of psi remains the same as
xsi . The network at scale s is denoted as Ψs(·).

3.1. Network Structure

The multi-scale structure [3] of the SFSNiD is shown in Fig-
ure 2. Two kinds of modules are included in the proposed
network, namely (i) spatial and frequency information
interaction (SFII) model, (ii) convolution input (ConvI),
convolution output (ConvO), convolution downsampling
(ConvD), and convolution upsampling (ConvU). The ConvI
projects the image into the feature space, while ConvO does
the opposite. ConvD reduces the length and width of the
feature map by half, while ConvU does the opposite.

3.2. Spatial and Frequency Information Interaction

Preliminary. For a feature map z ∈ RH̃×W̃×C̃ , where H̃ ,
W̃ and C̃ denote the height, width and number of channels,
respectively. We first project each of its channel zc̃ to the
frequency domain by the Fourier [10] transformation F as

F(zc̃)(u, v) =

H̃−1∑
h=0

W̃−1∑
w=0

zc̃(h,w)e−j2π(
h

H̃
u+ w

W̃
v), (3)

where (h,w) and (u, v) represent the coordinates in the
spatial and frequency domain, respectively. The c̃ ∈
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Figure 4. The overall architecture of the proposed SFII.

{0, 1, ..., C̃} denotes the channel index. Correspondingly,
the F−1 is defined as the inverse Fourier transformation
[55]. Then, the real part R(zc̃)(u, v) and imaginary part
I(zc̃)(u, v) can be obtained by F(zc̃)(u, v). The amplitude
spectrum A(zc̃)(u, v) and phase spectrum P(zc̃)(u, v) of
F(zc̃)(u, v) on the single channel can be obtained by

A(zc̃)(u, v) =
√
R2(zc̃)(u, v) + I2(zc̃)(u, v), (4)

P(zc̃)(u, v) = arctan[
I(zc̃)(u, v)

R(zc̃)(u, v)
]. (5)

The full channel amplitude spectrum A(z)(u, v) ∈
RH̃×W̃×C̃ and phase spectrum P(z)(u, v) ∈ RH̃×W̃×C̃
can be obtained by applying the Eq. 3, Eq. 4 and Eq. 5
on each channel of z.
Frequency Spectrum Dynamic Aggregation (FSDA).
The haze, glow and noise with inconsistent frequency char-
acteristics can be processed in the frequency domain by dy-
namic spectrum filter. The amplitude spectrum and phase
spectrum of different channels are aggregated by the point-
wise convolution as

S∗(z)(u, v) = σ(C1
1 (S(z)(u, v))), (6)

where S(z)(u, v) ∈ {A(z)(u, v),P(z)(u, v)}. To perform
channel aggregation of spectral information, the channel
weight [12] mapW are calculated as

W(z)(u, v) = δ(C1
1 (σ(C1

1 ($(S∗(z)(u, v)))))), (7)

where W(z)(u, v) ∈ R1×1×C̃ . Then the channel weight
map is applied to the frequency spectrum as

Ṡ(z)(u, v) = C1
1 (W(z)(u, v) · S∗(z)(u, v)), (8)

where the spectrum filter (SF) of Ṡ(z)(u, v) is shown in
Figure 3-(a). The filtering operation is performed by the
residual connection, the filtered component is obtained by

S̃(z)(u, v) = Ṡ(z)(u, v) + S(z)(u, v). (9)

The filtered Ã(z)(u, v) and P̃(z)(u, v) can be obtained
based on the processing flow from S(z)(u, v) to S̃(z)(u, v).
Then, the real and imaginary parts are obtained by

R̃(z)(u, v) = Ã(z)(u, v) · cos P̃(z)(u, v), (10)

Ĩ(z)(u, v) = Ã(z)(u, v) · sin P̃(z)(u, v). (11)

After dynamic parameter learning in the frequency do-
main, we remap the feature map to the spatial domain as

zf = F−1(R̃(z)(u, v), Ĩ(z)(u, v)), (12)

where zf ∈ RH̃×W̃×C̃ . The Fourier transformation and
inverse Fourier transformation can be implemented using
DFT and IDFT algorithms [6, 11, 56]. Here, we define the
calculation from Eq. 3 to Eq. 12 as frequency spectrum
dynamic aggregation (FSDA), which represent the process-
ing flow from z to zf that is shown in Figure 3-(b). For
convenience, the FSDA is denoted as FS(·).
Frequency Domain Projection (FDP). To deal with distor-
tions in the frequency domain, we first introduce frequency
domain interactions before computing local inductive bias.
For the input feature map z ∈ RH̃×W̃×C̃ , it is processed
by the layer normalization operation (LN(·)) [32] to obtain
the normalized feature zl = LN(z). Then, the normalized
feature zl is projected into Qf (query), Kf (key) and Vf
(value) by the projection in the frequency domain as

Qf = FSQ(zl),Kf = FSK(zl), Vf = FSV (zl), (13)

where the FSQ(·), FSK(·) and FSV (·) denote three in-
dependent projection operation with learnable parameters,
respectively. The generation process of the Qf , Kf and Vf
is denoted as the frequency domain projection (FDP).
Bidomain Local Perception (BLP). After obtaining the
features Qf , Kf and Vf which consider the information in
frequency domain, we perform spatial domain learning on
the features from a local perspective. The self-attention [32]
with local perception (LP) that is shown in Figure 3-(c) is
computed within 8× 8 non-overlapping windows as

AT (Qf ,Kf , Vf ) = sf(
Qf ⊗KT

f√
d

+B)⊗ Vf , (14)
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where d and B denote the dimensionality and position bias,
respectively. The⊗ denotes the matrix multiplication (Mat-
Mul). Information is transferred by the residual connection

z∗ = AT (Qf ,Kf , Vf ) + z, (15)

where the calculation from z to z∗ is marked as bidomain
local perception (BLP), which is shown in Figure 4-(a).
Bidomain Nonlinear Mapping (BNM). The computation
of window attention does not provide nonlinear represen-
tation capabilities. Therefore, we use the frequency and
spatial domain interaction module to learn nonlinear map-
ping. The FSDA is used to provide the frequency domain
information. Besides, a residual block which consists of
C3

1 (σ(C3
1 (·))) is used to provide the spatial interaction. The

immediate feature z∗ is fed into the frequency nonlinear
mapping branch and spatial nonlinear mapping branch, as

zfn = FSA(z∗), (16)

zsn = C3
1 (σ(C3

1 (z∗))), (17)

where the subscript A in FSA(·) means the frequency in-
teraction performed after the attention operation. Then fre-
quency domain and spatial domain features are fused as the
final nonlinear mapping output by

z̃ = C3
1 ([zfn, zsn + z∗]) + z∗, (18)

where the [·, ·] denotes the channel concatenation. The cal-
culation from z∗ to z̃ is marked as the bidomain nonlinear
mapping (BNM), which is shown in Figure 4-(b).
Spatial and Frequency Information Interaction (SFII).
As shown in Figure 4, the calculation process from z to z̃ is
called spatial and frequency information interaction (SFII).
The proposed SFII aggregates spatial domain information
and frequency domain information from a local perspective.

3.3. Spatial and Frequency Loss

The supervised loss consists of two parts, namely the pixel-
by-pixel loss in geometric space and the frequency domain
loss obtained by Fourier transform [3]. By sampling xsi ∈
DX and ysi ∈ DY , the losses calculated at three scales are

LG =

2∑
s=0

λg ·
N−1∑
i=0

||Ψs(xsi )− ysi ||1, (19)

LF =

2∑
s=0

λf ·
N−1∑
i=0

||F(Ψs(xsi ))−F(ysi )||1, (20)

where λg and λf denote weight factors.

3.4. Retraining and Realistic Brightness Loss

Pseudo-label Fusion Retraining. There are inherent do-
main discrepancy between synthetic hazy images and real-
world hazy images. Therefore, we adopt a retraining strat-
egy which utilizes pesudo labels. Pseudo labels RPY are
obtained based on the model trained on synthetic datasets.
We put the original synthetic dataset {DX ,DY } and the
pseudo-labeled dataset {RX ,RPY } into the network simul-
taneously for retraining. Supervised losses Eq. 19 and Eq.
20 are used in the retraining process at three scales.
Prior Brightness Constraint. We conduct a quantitative
statistics on the brightness of nighttime hazy and clear im-
ages provided by [14]. The brightness intensity correspond-
ing to x0i ∈ RX and y0i ∈ RY are µ(x0i ) and µ(y0i ), re-
spectively, where µ(·) denote the average pixel value across
three channels. We randomly select M̂ = M

2 images from
the dataset multiple times, and we get

M̂−1∑
i=0

µ(y0i )<

M̂−1∑
i=0

µ(x0i ). (21)

Therefore, we assume the brightness of the dehazed im-
age psi should be lower than that of the xsi . This assumption
is consistent with the imaging model Eq. 2.
Local Brightness Map (LBM). We divide the image into
non-overlapping local windows. The width and height of
each square window is denoted as γs, where s ∈ {0, 1, 2}.
The value in local brightness map (LBM) ϕxs

i
that corre-

sponding to xsi is obtained by

ϕxs
i
(ĥ, ŵ) =

1

3(γs)2

2∑
c=0

(ĥ+1)·γs∑
h=ĥ·γs

(ŵ+1)·γs∑
w=ŵ·γs

xsi (h,w, c),

(22)
where (ĥ, ŵ) and (h,w) denote the pixel index of ϕxs

i
and

xsi , respectively. Meanwhile, the local brightness map ϕpsi
corresponding to psi is defined in the same way. As shown in
Figure 2-(c), the locations with high brightness may be ac-
tive light sources or objects close to the light source, while
the locations with low brightness may be objects and back-
grounds far away from the light source.
Realistic Brightness Loss. The brightness of hazy images
is approximately globally realistic, so it can be used to su-
pervise the brightness of dehazed images. As we observed
in Eq. 21, the brightness of the dehazed image should be
lower than that of the hazy image. Meanwhile, in order
to ensure the relative numerical relationship between areas
with high brightness and low brightness before and after
dehazing, we use a power function with monotonically in-
creasing properties to process the ϕxs

i
(ĥ, ŵ), as

ϕ̃xs
i
(ĥ, ŵ) = (ϕxs

i
(ĥ, ŵ))κ, (23)
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Figure 5. Visual results on synthetic dataset [31].

Table 1. Quantitative results on datasets that generated by imaging model.

Methods
NHR NHM NHCL NHCM NHCD NightHaze YellowHaze

SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑
MRP (CVPR 2017) 0.776 19.848 0.666 15.993 0.747 22.497 0.693 20.494 0.624 17.651 0.295 12.138 0.249 13.473
GD (ICCV 2019) 0.969 30.107 0.861 20.689 0.973 36.506 0.958 34.448 0.932 31.509 0.832 25.324 0.915 27.410

OSFD (ACMMM 2020) 0.808 21.028 0.722 18.491 0.786 22.329 0.739 20.929 0.672 18.501 0.304 13.387 0.259 14.775
MSBDN (CVPR2020) 0.970 31.335 0.818 20.514 0.965 35.963 0.938 32.848 0.903 30.475 0.950 33.156 0.921 29.834

4KDehazing (CVPR2021) 0.950 28.613 0.830 20.429 0.967 35.006 0.958 35.162 0.912 30.048 0.850 26.562 0.861 25.835
AECRNet (CVPR 2021) 0.915 24.864 0.817 19.420 0.951 33.183 0.943 33.498 0.890 28.742 0.946 32.344 0.937 29.417
DeHamer (CVPR 2022) 0.966 31.017 0.823 23.095 0.966 36.038 0.944 33.908 0.915 31.389 0.954 33.432 0.931 30.334
FSDGN (ECCV 2022) 0.975 32.072 0.874 21.415 0.972 36.432 0.952 33.723 0.922 31.559 0.948 33.521 0.955 33.062

DF (TIP 2023) 0.969 31.644 0.896 23.207 0.975 37.383 0.960 35.038 0.934 32.079 0.931 31.489 0.948 32.244
MITNet (ACMMM 2023) 0.974 31.969 0.859 20.884 0.969 35.794 0.945 32.849 0.916 30.628 0.946 34.114 0.932 31.186

Fourmer (ICML 2023) 0.969 31.660 0.862 21.423 0.963 35.714 0.943 33.201 0.928 32.103 0.949 33.419 0.958 31.978
Ours 0.978 33.180 0.905 23.705 0.979 38.146 0.968 36.146 0.951 34.001 0.968 35.527 0.965 32.981

where κ ≥ 1 is the brightness intensity coefficient. The
realistic brightness constraint within one single window is

Lp
s
i

B (ĥ, ŵ) = (ϕpsi (ĥ, ŵ)− ξ · ϕ̃xs
i
(ĥ, ŵ))2, (24)

where ξ is a hyperparameter. The realistic brightness loss
calculated over all windows is

LB =

2∑
s=0

λb

N̂Ŵ sĤs
·
N̂−1∑
i=0

Ĥs−1∑
ĥ=0

Ŵ s−1∑
ŵ=0

Lp
s
i

B (ĥ, ŵ), (25)

where Ŵ s = W s/γs, Ĥs = Hs/γs. And N̂ = N + M .
The λb denotes the weights of scale loss of LB .

3.5. Total Loss

The overall loss is a combination of supervised and semi-
supervised losses, which is

L = LG + αLF + βLB , (26)

where α and β are the weights of the frequency domain loss
and the realistic brightness loss, respectively.

4. Experiments
4.1. Experiment Setting

Datasets. To comprehensively compare the performance
of different algorithms, we conducted experiments on both

synthetic and real-world datasets. The synthetic datasets
include GTA5 [45], UNREAL-NH [31], {NHR, NHM,
HNCL, NHCM, NHCD} [51] and {NightHaze, Yellow-
Haze} [26]. The real-world nighttime haze (RWNH) is pro-
vided by [14]. Since the brightness level of the ground-truth
label in the UNREAL-NH is close to daytime, we adjust the
brightness of the hazy image and corresponding label to the
level of the nighttime low-light image by the Gamma cor-
rection [33] for the evaluation of the RWNH.

Comparison Methods and Evaluation Metrics. MRP
[50], GD [27], OSFD [51], MSBDN [5]. 4KDehazing [54],
AECRNet [43], DeHamer [9], FSDGN [47], DF [38], MIT-
Net [37] and Fourmer [55] are used as comparisons. PSNR
[22, 35, 36] and SSIM [8, 42] are used to evaluate the per-
formance on labeled datasets. BRISQUE [44] and MUSIQ
[13, 17] are computed to evaluate the performance on un-
labeled dataset. The ↑ represents a larger value, a higher
quality, while ↓ represents a larger value, a lower quality.

Implementation Details. The batch size is chosen as 4.
The image size is set to 256 × 256 × 3. The learning rate
is initialized to 0.0001 and linearly decays by a factor of
0.95 every 10 epochs. The Adam (β1 = 0.9, β2 = 0.999)
is used. The λg , λf and λb are all set to 1. The α and β
are set to 0.1 and 20, respectively. The window size γs are
set to 16, 8 and 4, where s ∈ {0, 1, 2}, respectively. The
coefficient ξ and κ is set to 1 and 1.3, respectively. The
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(a) Hazy (b) MRP (c) OSFD (d) GD (e) MSBDN (f) 4KDehazing

(g) AECRNet (h) DeHamer (i) DF (j) MITNet (k) Fourmer (l) Ours

Figure 6. Visual results on real-world hazy images [14].

(a) Hazy (b) κ = 1.0 (c) κ = 1.3 (d) κ = 1.5 (e) κ = 1.8 (f) κ = 2.0 (g) κ = 2.3 (h) κ = 2.5 (i) κ = 2.8 (j) κ = 3.0

Figure 7. Dehazed images obtained under different κ.

proposed model is implemented by PyTorch and trained on
the single NVIDIA RTX 4090 platform.

4.2. Comparison with State-of-the-art Algorithms

Evaluation on Synthetic Datasets. Table 1 and Table 2
show the quantitative dehazing results obtained by state-of-
the-art methods. Figure 5 shows the corresponding visual
results. The quantitative and visual results demonstrate that
the proposed methods achieve an overall better performance
than state-of-the-art algorithms.
Evaluation on Real-world Datasets. Table 2 shows the
evaluation results of real-world dehazed images. It is worth
pointing out that existing research [7] proposes that the reli-
ability of no-reference metrics in the dehazing task is lower
than that of full-reference metrics. Figure 6 shows that the
details of the dehazed results obtained by our method are
visually better. Meanwhile, the brightness of the dehazed
images obtained by most comparison algorithms is obvious
unrealistic, while the brightness of the dehazed images ob-
tained by our algorithm is approximately globally realistic.
Overall Evaluation. According to the quantitative and vi-
sual results on synthetic and real-world datasets, the pro-
posed SFSNiD achieves overall better performance. More

results are placed at Supplementary Materials.

4.3. Ablation Study and Discussions

Spatial and Frequency Information Interaction. The
spatial and frequency information interaction (SFII) mod-
ules and naive convolution module are used in the proposed
SFSNiD. In order to prove the usefulness of the FDP, LP
and BNM that contained in the SFII, ablation experiments
for different sub-blocks are performed. The ablation ex-
periment on the proposed SFII includes (i) removing the
FDP, (ii) removing the LP, (iii) removing the frequency
domain processing in BNM, and (iv) removing the spatial
domain process in BNM. These four settings are denoted
R1, R2, R3 and R4, respectively. Table 3 shows the ab-
lation results under different settings on the UNREAL-NH
[31]. The quantitative results demonstrate that the FDP, LP
and BNM all have a positive effect on the dehazing perfor-
mance. Since we must control the size of the paper, visual-
izations of the amplitude and phase spectrums are placed in
Supplementary Materials.
Hierarchical Training and Frequency Domain Loss. The
training process of the proposed SFSNiD takes a hierar-
chical strategy by using differ scales s ∈ {0, 1, 2}. Two
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Table 2. Quantitative results on datasets generated by game engine
(GTA5 and UNREAL-NH) and the real-world dataset (RWNH).

Methods
GTA5 UNREAL-NH RWNH

SSIM↑ PSNR↑ SSIM↑ PSNR↑ BRISQUE ↓ MUSIQ ↑
MRP 0.662 19.460 0.467 10.039 19.418 41.194
GD 0.900 30.090 0.767 21.202 31.359 33.433

OSFD 0.711 21.461 0.443 9.169 20.860 41.779
MSBDN 0.909 32.029 0.827 25.680 38.910 29.968

4KDehazing 0.903 30.314 0.774 23.087 34.965 33.536
AECRNet 0.888 26.846 0.731 21.566 27.084 37.034
DeHamer 0.928 32.597 0.740 22.441 42.269 26.788
FSDGN 0.923 32.642 0.702 21.736 32.216 35.200

DF 0.918 32.856 0.770 23.017 33.678 31.663
MITNet 0.899 31.118 0.766 21.860 35.404 31.768
Fourmer 0.917 31.926 0.772 22.799 35.850 31.367

Ours 0.935 33.708 0.862 25.907 30.975 32.120

(a) Hazy (b) Pseudo Label (c) Retraining (d) Retraining + LB

Figure 8. Visual results under different training strategies.

ablation studies are adopted, which are denoted as (i) S1:
s ∈ {0}, and (ii) S2: s ∈ {0, 1}. Meanwhile, in our experi-
mental setup, the spatial domain loss LG and the frequency
domain loss LF are applied simultaneously. To verify the
effectiveness of frequency domain loss, the setting when
LF is not used is denoted as S3 (s ∈ {0, 1, 2}). Table 4
shows the ablation results under the three different settings.
The quantitative results demonstrate two main conclusions.
First, the hierarchical training strategy can improve the de-
hazing performance. Second, the loss in the frequency do-
main is crucial as it improves the SSIM from 0.816 to 0.862.
Retraining Strategy and Realistic Brightness Loss. To
verify the effectiveness of the retraining strategy and the
realistic brightness loss LB , the visual effects are shown
in Figure 8. As shown in Figure 8-(b), the texture of the
pseudo-labels is blurred due to the domain discrepancy be-
tween the synthetic and real-world data. The dehazed im-
ages obtained after retraining has unrealistic brightness as
shown in Figure 8-(c). It can be seen that the best ef-
fect occurs when the retraining strategy and LB are used
simultaneously as shown in Figure 8-(d). The BRISQUE
(↓) and MUSIQ (↑) obtained for the three settings (b), (c)
and (d) in Figure 8 are {33.316, 30.432}, {34.210, 32.373}
and {30.975, 32.120}, respectively. Taking a comprehen-
sive look at the visual and quantitative evaluation results,
our proposed strategy is effective.
Brightness intensity coefficient κ in LB . In order to
demonstrate the effectiveness of κ on the real-world dehaz-

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Values of 

0.10

0.15

0.20

0.25

Av
er

ag
e 

Pi
xe

l V
al

ue

0.217

0.288

0.225

0.156
0.134

0.113 0.103 0.097 0.087

0.193

Figure 9. The average pixel value obtained under different κ. The
horizontal dashed line represents the average pixel value of real-
world nighttime clear images [14].

Table 3. Ablation study on the SFII.

Settings R1 R2 R3 R4 Ours
SSIM 0.848 0.858 0.851 0.845 0.862
PSNR 25.353 25.808 25.642 24.301 25.907

Table 4. Ablation study on the scale loss and frequency loss.

Settings S1 S2 S3 Ours
SSIM 0.854 0.851 0.816 0.862
PSNR 25.601 25.134 24.464 25.907

ing task, we manually set κ to different values. The de-
hazed images and average pixel value when κ takes differ-
ent values are shown in Figure 7 and Figure 9, respectively.
There are two conclusions that can be drawn. First, as κ
increases, the brightness of the dehazed image continues to
decrease, which proves that κ can control the brightness of
the dehazed image. Second, when κ equals 1.3, the average
pixel value (0.225) of dehazed images is close to the aver-
age pixel value real-world nighttime clear images (0.217)
[14]. Therefore, we set κ to 1.3 as the final setting.

5. Conclusion
In this paper, a semi-supervised nighttime image dehazing
baseline SFSNiD is proposed for real-world nighttime de-
hazing. A spatial and frequency domain information inter-
action module is proposed to handle the haze, glow, and
noise with localized, coupled and frequency inconsistent
characteristics. A retraining strategy and a local window-
based brightness loss for semi-supervised training process
are designed to suppress haze and glow while achieving re-
alistic brightness. Experiments on public benchmarks vali-
date the effectiveness of the proposed method and its supe-
riority over state-of-the-art methods.
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