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Abstract

We propose a framework for automatic colorization that
allows for iterative editing and modifications. The core of
our framework lies in an imagination module: by under-
standing the content within a grayscale image, we utilize
a pre-trained image generation model to generate multi-
ple images that contain the same content. These images
serve as references for coloring, mimicking the process of
human experts. As the synthesized images can be imperfect
or different from the original grayscale image, we propose a
Reference Refinement Module to select the optimal reference
composition. Unlike most previous end-to-end automatic col-
orization algorithms, our framework allows for iterative and
localized modifications of the colorization results because
we explicitly model the coloring samples. Extensive exper-
iments demonstrate the superiority of our framework over
existing automatic colorization algorithms in editability and
flexibility. Project page: https://xy-cong.github.io/imagine-
colorization/.

1. Introduction

Countless black-and-white photographs, relics of bygone
eras, exist today, often requiring the deft touch of skilled
artists to breathe color into them. However, such a man-
ual process is labor-intensive and time-consuming. Given a
grayscale image, colorization methods aim to estimate the
corresponding color automatically or with other guidance.
Achieving expert-level colorization is challenging due to
the multi-modality nature of the task: there exist multiple
plausible colorization results for one grayscale image.

Automatic colorization algorithms [27, 35, 64, 72, 74,
75, 85, 86] have made significant progress in recent years
and have demonstrated impressive results in many common
scenarios. However, they are still hard to match the col-
orization proficiency of human experts. Many data-driven
methods struggle with issues such as grayish and desatu-
ration because of the color ambiguity that one object may
present multiple plausible colors in datasets. GAN-based ap-
proaches tend to produce unpleasant artifacts due to the lim-
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Figure 1. Our colorization results. By leveraging our designed
Imagination Module, our framework can achieve photorealistic and
vivid colorization results.

ited representation capacity in GAN’s prior. DDColor [32]
alleviates these shortcomings to some extent but is unable
to achieve controllable and diverse colorization. Human ex-
perts excel in colorizing black-and-white photos due to their
rich and imaginative priors, enabling them to transform
grayscale images into visually pleasant renditions. They
possess instance-aware and semantic-aware understanding
both locally and globally, imagining diverse plausible colors
and assigning the most appropriate ones based on context.
Exemplar-based colorization methods [3, 11, 47, 80] achieve
pleasing results through emulating the human experts’ priors,
wherein a highly-corresponding reference is manually pro-
vided. However, identifying a perfect reference can be both
labor-intensive and detract from an optimal user experience.

Another challenge with most automatic algorithms is
that the obtained results are often difficult to modify and
improve. For example, Su et al. [64] and Zhang et al. [85] can
only produce one deterministic result. While UniColor [27]
offers an interactive colorization, it demands users to provide
additional information, such as text or strokes.

In this paper, we propose a novel automatic colorization
framework that allows iterative editing and modifications
from users. Our framework is designed to mimic the process
of human expert imagination colorization, as shown in Fig-
ure 2. We introduce an imagination module designed to pro-
vide semantically similar, structurally aligned, and instance-
aware references, mirroring human imagination. Our frame-
work begins by composing a refined reference from multiple
candidates generated by pretrained cross-modality image
generation models, such as ControlNet [82]. The rich color
priors embedded in large pretrained Diffusion models can
be harnessed to synthesize references with diverse and col-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2609

https://xy-cong.github.io/imagine-colorization/
https://xy-cong.github.io/imagine-colorization/


Figure 2. Framework Overview. Given a black-and-white input,
our framework first synthesizes a semantically similar, spatially
aligned, and instance-aware reference by emulating the imagination
process of human experts. Then the colorization module colorizes
the black-and-white image with the guidance of reference. On the
right, we present an additional example.

orful colors. Then, our colorization module colorizes the
black-and-white input under the guidance of the reference.

Our composition strategy involves two steps: First, we
carry out the semantic segmentation of the input. Second,
we compose the refined reference by selecting the segment
most similar to all potential reference candidates. The com-
position strategy enables our framework to exhibit diverse
colorization results, as well as provides the flexibility for
controllable and editable colorization tailored to the unique
desires and preferences of the user. Specifically, if users
find certain segments unsatisfactory, they can effortlessly
substitute those segments with alternatives from the pool of
reference candidates or use an image of their choosing. Con-
sequently, the colorization results are accordingly modified
to reflect these changes.

Our contributions can be summarized as follows:
• We propose a novel automatic colorization framework that

leverages the pre-trained diffusion models. We introduce
an imagination module that emulates human experts to
synthesize semantically similar, structurally aligned, and
instance-aware colorful references, with potential applica-
tions beyond colorization.

• We demonstrate our novel automatic colorization frame-
work exhibits remarkable controllable and user-interactive
capabilities. We can also present diverse colorization re-
sults.

• Compared to previous automatic colorization methods,
our framework achieves state-of-the-art performance and
generalization.

2. Related Work

Automatic Colorization. Deep learning based methods [1,
18, 27, 28, 32, 39–41, 64, 69, 72, 74, 75, 81, 85, 89] achieve
automatic colorization by learning the relationship between
semantic and color on large datasets. Additional seman-
tic information is incorporated to improve colorfulness,
such as classification [28, 40, 85, 86], semantic segmenta-
tion [18, 89] and instance awareness [64]. The performance
of the above methods is usually good when the color of the

object (e.g., a green tree) is closely related to the seman-
tic, while they tend to produce muted or grayish results for
objects with a wide spectrum of potential colors (e.g., T-
shirt). In contrast, our framework can alleviate the limitation
and generate more diverse and colorful results thanks to our
innovative imagination module.
User-guided Colorization. Most classical approaches rely
on user guidance for colorization, including scribble-based
colorization, text-based colorization, and example-based col-
orization. Scribble-based methods [42, 50, 55, 60, 83, 84]
usually formulate colorization as an optimization problem
with some assumptions. For example, Levin et al. [42] as-
sume pixels with similar intensity share similar colors. Some
follow-up methods work on achieving more efficient color
propagation by leveraging texture similarity [50, 55] and in-
trinsic distance [79]. These approaches often require highly
labor-intensive manual processes. Text-based methods [2, 7–
9, 52, 73, 77] offer a reprieve from this obstacle by leverag-
ing user-friendly language descriptions delineating objects
and their corresponding colors to guild colorization. Some
recent approaches aim to enhance the robustness and consis-
tency of colorization by the grouping mechanism [9] aggre-
gating similar image patches and assigning vivid colors for
unmentioned instances [8].

Example-based methods [3, 4, 10–12, 12, 16, 19, 22, 26,
29, 44, 47–49, 68, 71, 78, 80, 81, 88] further reduce the
difficulty of colorization for normal users. Only one refer-
ence image is required for automatic colorization. Some
approaches [3, 26, 78, 88] focus on leveraging AdaIN [25]
to transfer the global color distribution of reference image,
while others [3, 4, 11, 12, 22, 29, 44, 68, 81] transfer color
according to pixel-level semantic correspondence. Although
these methods have improved colorization performance a lot,
it is still non-trivial, time-consuming, and not user-friendly
for users to find a perfect reference by searching on the In-
ternet or providing descriptions and segmentation cues to an
image retrieval system [12]. In our work, the imagination
module avoids such efforts by automatically synthesizing a
semantically similar and structurally aligned colorful refer-
ence image.
Generative Priors Colorization. Generative priors embed-
ded in pretrained GANs and Diffusions have been piv-
otal in achieving photorealistic colorization. GANs [17,
33, 34, 46, 54, 65–67, 70] are a huge family of genera-
tive models for conditional and unconditional image syn-
thesis. Some specific conditions are utilized to control bet-
ter image synthesis, such as layout [65, 66] and semantic
map [46, 54, 67, 70] et al. StyleGAN-family [33, 34] mod-
els have shown impressive performance in unconditional
high-resolution image synthesis. Diffusion probabilistic mod-
els [14, 24, 36, 38, 56, 57, 59, 62, 63, 82] have emerged as
another formidable family. Thanks to the Denoising Diffu-
sion Probabilistic Model (DDPM) [24] and the Denoising
Diffusion Implicit Model (DDIM) [63], Latent Diffusion
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Figure 3. Imagination Module and Reference Refinement Module. In Imagination Module 3.3, given a grayscale input, we generate N
reference candidates C, N1 of which are conditioned on the canny edge of X, and N2 of which are conditioned on the HED boundary of
X, N = N1 +N2. In Reference Refinement Module 3.4, we first extract the segmentation S of X. For each segment Sj , we look for the
best reference segment R ⊙ Sj for the optimal reference R by selecting the nearest neighbor for X ⊙ Sj among all reference candidates
Ci ⊙ Sj in terms of the difference in the robust and universe DINOv2 [53] feature space.
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Figure 4. ControlNet Issues. Directly applying ControlNet[82]
to colorization might cause issues like inconsistency, grayish, and
color bleeding. We use gray images as conditions of ControlNet
and corresponding color images as ground truth. A pretrained stabel
diffusion model is used as the initialization. We then train the model
on the commonly used colorization datasets.

Model (LDM) like Stable Diffusion [56] achieves state-of-
the-art performance in text-to-image generation tasks. Rec-
ognizing the vast potential of LDM, Controlnet [82] controls
pretrained diffusion models with task-specific conditions,
accommodating multi-modal inputs, and thereby expanding
a wider range of application scenarios. While these models
struggle to maintain the local spatial structures of grayscale
inputs, their inherent capability to harness the diverse color
priors from pretrained models offers a promising avenue for

synthesizing reference images.

3. Method
3.1. Overview

Given a grayscale image X ∈ RH×W×1 as input, our
framework automatically predicts its color channels Y ∈
RH×W×2. X and Y are the lightness and ab channel in the
CIE Lab color space. H and W are the height and width
of the grayscale image. The key difference between our ap-
proach and existing automatic colorization methods is that:
we leverage diverse color priors embedded in large pretrained
generative models, such as Stable Diffusion, to synthesize
colorful images based on the semantic context and spatial
structure of the input grayscale image as a reference for
colorization.

Figure 2 shows the architecture of our framework. We first
utilize ControlNet[82] to control a large diffusion model to
synthesize semantically similar and structurally aligned ref-
erence candidates C ∈ RN×H×W×3 based on the grayscale
input X from our imagination module I:

C = I(X, c(X)), (1)

where c(X) means various optional conditions based on X.
The reference R ∈ RH×W×3 is synthesized by a reference
refinement module P from multiple reference candidates C.
Then, our example-based colorization module C takes the
grayscale image X and synthesized reference R as input,
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Figure 5. Diverse Colorization. We can synthesize diverse colorful
references from Imagination Module 3.3, yielding diverse colorza-
tion results.

and outputs the corresponding photorealistic colorization
results:

(X,Y) = C(X,R), (2)
R = P(C). (3)

The details of the imagination module, reference refinement
module and colorization module are illustrated in Section 3.3,
Section 3.4 and Section 3.5.

3.2. Preliminary
Image Diffusion Models. Image Diffusion Models ad-
dress the image generation task by learning to perform pro-
gressive denoising [14, 24, 56, 58]. Given an image I0, noise
is progressively added to produce It, a noisy version of I0.
Along with t increasing, the image is gradually approaching
pure noise. Image diffusion models learn a neural network
ϵθ to predict the noise added to the noisy image It and the
objective function can be simplified as

L = EI0,t,c,ϵ∈N (0,1)[∥ϵ− ϵθ(It, t, c)∥22]. (4)

Successful image diffusion models like Stable Diffusion [56]
operate in the latent space of an autoencoder, making con-
vergency more stable and faster.

3.3. Imagination Module
Given a grayscale image X, our imagination module aims
to synthesize multiple semantically similar and structurally
aligned reference candidates C. The motivation is to imitate
human imagination: humans can achieve photorealistic col-
orization because they possess sufficient and realistic color
priors regarding our colorful world. For each part (e.g. in-
stance) within the grayscale image, we inherently harbor di-
verse and colorful examples, which empowers us to perform
a locally and globally consistent photorealistic composition
by selectively choosing from various examples for each part.
Similarly, the reference candidates synthesized by our imag-
ination module should encapsulate such color diversity and
generalization attributes. Thus, pre-trained large image dif-
fusion models such as Stable Diffusion are ideally suited as
our synthesis model, as they inherently contain diverse color
priors.

In this work, we utilize ControlNet [82] to control large
pretrained image diffusion models to synthesize a total of N

Figure 6. User Interactive. The top panel of (a) shows the black-
and-white input, the reference, the colorization result, and the area
marked by the user’s mouse click indicating dissatisfaction with the
colorization. The bottom panel of (a) displays multiple reference
candidates generated by our Imagination Module. (b) Users select
a preferred segment from the reference candidates to replace the
unsatisfactory part of the reference, consisting of a new reference.
(c) The colorization result after the adjustment.

reference candidates given colorization-task-specific input
conditions, with the help of captions generated by BLIP-
2 [45]. Numerous conditional inputs are available, including
canny edge [6], HED boundary [76], semantic segmenta-
tion map and so on. The overarching objective, irrespective
of the chosen conditional input methods, is to furnish a di-
verse, colorful, and photorealistic color space. We provide
an empirical approach: Given the grayscale input X, we
generate a total of N reference candidates C, N1 of which
are conditioned on the canny edge of X, and N2 of which
are conditioned on the HED boundary of X, N = N1 +N2.
Notably, the direct application of ControlNet to coloriza-
tion leads to issues like inconsistency, grayish, and color
bleeding, as shown in Figure 4. In our imagination module,
however, ControlNet shows extremely superior performance
on synthesizing diverse and colorful reference candidates,
providing quite strong priors for the following colorization
module.

3.4. Reference Refinement Module

Given N reference candidates C ∈ RN×H×W×3 generated
from our imagination module and the grayscale input X,
our reference refinement module P aims to synthesize the
most semantically similar and structurally aligned refined
reference R ∈ R×H×W×3 through aggregating information
across the diverse and colorful reference candidates space.
Our motivation is that although a single reference candidate
R = Ci is enough to provide required priors and guidance in
many cases, it is still worth performance improvement fur-
ther by aggregating diverse information in multiple reference
candidates to solve the problem: while Ci is semantically sim-
ilar and structurally aligned with X, there might be some
incompatible mismatched segmentations in terms of lumi-
nance. For example, a desk with high luminance tends to be
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a bright color, but the generative model may offer a dark one.
Both of them share the same grayscale input and ControlNet
conditions like canny edge and HED boundary images.

We address this problem by composing a refined reference
R from all multiple reference candidates C. Specifically, we
first use an off-the-shelf segmentation model [20, 37, 43, 90]
to obtain the segmentation of X. In our implementation, we
employ the Semantic-SAM [43] to generate semantic-aware
and instance-aware segments S = Semantic-SAM(X) =
{Sj , j = 1, 2, . . . , NS}, where we denote each segment
as Sj . As NS decreases, the composed reference becomes
more inclined to capture the global information embedded
in the reference candidates. Conversely, as NS increases,
the composed reference tends to capture more subtle details
among the reference candidates. For each segment Sj , we
look for the best reference segment R ⊙ Sj by selecting the
nearest neighbor for X ⊙ Sj among all reference candidates
{Ci ⊙ Sj}Ni=0 in terms of the difference in the universe
feature space:

α(j) = argmin
i

M(D(X⊙ Sj),D(Ci ⊙ Sj)), (5)

where ⊙ denotes operation to select some regions of an
image, α(j) denotes the best reference candidate index
for segment Sj , M denotes distance measurement metrics
(L1,L2,Lcosine, etc.), and D(·) denotes the robust and uni-
verse image feature DINOv2 [53]. Then, our refined seman-
tically similar and structurally aligned reference R can be
composed as

R =

NS⋃
j=0

(Sj ⊙ Cα(j)). (6)

User-interactive refinement. So far, a semantically simi-
lar and structurally aligned reference can be synthesized auto-
matically. Although such a reference is capable of achieving
visually pleasing colorization, the color of each segment
may not be the color that users are most satisfied with. Here
we provide a user-interactive reference adjustment method:
When users are unsatisfied about some segments Sj , they
can effortlessly substitute those segments R ⊙ Sj with alter-
natives from the pool of reference candidates {Ci ⊙ Sj}Ni=0

or use an image of their choosing. For example, in Figure
6, we replace the bus with buses with different colors and
preserve the colors in other areas. The colorization results
are accordingly adjusted. In this case, we achieve control-
lable and editable colorization, which is non-trivial in the
automatic colorization field.

3.5. Colorization Module
Our colorization module draws inspiration from the uni-
fied colorization framework UniColor [27] to colorize the
grayscale input X ∈ RH×W by utilizing the reference im-
age R ∈ RH×W×3 synthesized by our imagination module.

Figure 7. Coarse-to-fine hint colors optimization can mitigate the
color ambiguity within semantic instances by identifying the most
representative hint colors, as highlighted by the boxed area in the
figure.

UniColor is a unified colorization framework based on multi-
modal conditions. Multi-modal conditions, such as strokes,
reference images, and text, are converted into hint colors
which are leveraged as a guidance for subsequent coloriza-
tion. Specifically, the colorization process is divided into two
steps: coarse-to-fine hint colors generation and hint colors
propagation.

Coarse-to-fine hint colors generation. Hint color points
are generated according to the semantic correspondence be-
tween X and R as an intermediate representation to instruct
the following colorization process. Initially, we employ the
correspondence network proposed in [81] to compute the
pairwise similarity between the features of X and the fea-
tures of R extracted by VGG19 [61], serving as the semantic
correspondence, through which the color of R can be warped
onto X, resulting in a warped image W. Similar to Uni-
Color [27], X is divided into cells with size d× d. If a cell’s
average semantic similarity surpasses the threshold value sϵ,
the mean color of that cell in the warped image is designated
as a hint color. This helps in preventing the mismatching
area as the hint colors. However, we observe that merely
employing the aforementioned method to generate hint col-
ors can lead to semantic color ambiguity, as illustrated in
Figure 7. This is due to a distinction from the conventional
reference-based colorization approach where a semantically
similar, high-quality reference is manually provided. In our
imagination module, the process of synthesizing R might
introduce color inconsistency within semantic masks. There-
fore, we treat the hint colors derived above as a coarse hint
colors set Hcoarse and obtain the fine hint colors set Hfine

through optimization. Utilizing the Semantic-SAM segments
S = {Sj , j = 1, 2, . . . , NS} from the Reference Refinement
Module, we associate each segment Sj with the correspond-
ing coarse hint colors in Hcoarse. If the number of hint colors
in Sj exceeds NH, we cluster the hint colors in Sj to identify
and eliminate any hint colors with anomalous color values
from the color distribution of most hint colors. In our imple-
mentation, we derive the fine hint colors set by leveraging
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Input Ground Truth Deoldify [1] ColorFormer [31] BigColor [35] GCP [74] Unicolor [27] DISCO [75] DDColor [32] Ours

Figure 8. Qualitative comparisons on the COCO validation set. Our method can generate more natural and photo-realistic colors than
state-of-the-art approaches. Zoom in for the best view.

the DBSCAN algorithm [15, 30] for clustering.

Hint colors propagation. Similar to UniColor [27], given
a black-and-white input and fine hint colors, a Hybrid-
Transformer is harnessed to autoregressively predict chromi-
nance features, which are then concatenated with luminance
features extracted from the input. The concatenated features
are fed into a decoder to produce the final colorization result.
We refer readers to UniColor [27] for more details.

4. Experiments
4.1. Experimental setting

Dataset. Our experiments are mainly conducted on stan-
dard evaluation benchmark, i.e., COCO-stuff [5] and Ima-
geNet [13]. Both our framework and baselines are evaluated
in (i) COCO-stuff validation set (5k images) (ii) ImageNet
testing split ctest (10k images), (iii) In-the-wild photos
collected on the Internet (500 images), qualitatively and
quantitatively. Notably, evaluating the colorization perfor-
mance on arbitrary grayscale images from the Internet, often
referred to as In-the-wild, is incredibly crucial. This is
because they might have a completely different color distri-
bution compared to widely used datasets such as ImageNet
and COCO-stuff. Such differences pose a significant chal-
lenge to the generalization capability of colorization models.
In this regard, our framework significantly outperforms the
state-of-the-art baselines.
Evaluation Metrics. In experiments, we mainly care about
the framework’s performance on perceptual realism and
color vividness. For measuring perceptual realism, we adopt
Fréchet Inception Distance (FID) [23] to compare the dis-
tribution similarity between the colorization results and the
ground truth. For color vividness, we employ the Colorful-
ness (CF) metric [21] which is close to human vision per-
ception. In addition, following previous works [64, 72, 86],

we provide evaluations on PSNR, SSIM and LIPIS [87] for
reference.
Baselines. We adopt the most recent and related automatic
colorization methods as baselines, including Deoldify [1],
Su et al. [64], Coltran [39], GCP [74], CT2 [72], Color-
Former [31], BigColor [35], UniColor (Automatic) [27],
DISCO [75] and DDColor [32]. In our experiments, we
directly use the released evaluation results by Su et al [64]
and DISCO [75], and we use automatic colorization results
by Unicolor [27] without user hints. For the other baselines,
we compare using their official codes and weights.
Condition Setting. We provide an ablation study in Table 1
on the condition setup for ControlNet [82]. Various feature
maps can be used as conditions for ControlNet, with Canny
and HED maps demonstrating superior performance. No-
tably, the combination of Canny and HED map conditions
yields optimal results, prompting our choice of this configu-
ration.

Condition setting Canny HED Depth Semantic Canny&HED

CF ↑ 46.99 45.28 42.81 45.02 47.18

Table 1. Ablation study on the condition setup. We generate
N = 8 reference candidates for each condition setting. The test
images are from the COCO-stuff validation dataset.

Hyper-parameters Setup. We provide an ablation study
in Table 2 on the hyper-parameter choice: the number of
reference candidates N , the number of segments NS, and
the threshold of hint colors NH. We empirically select the
hyper-parameters as N = 8, NS = 10, and NH = 10 based
on the balance of performance and running efficiency.

4.2. Comparisons to Baselines
Qualitative Comparisons. We show the qualitative com-
parisons in Figure 8 and Figure 9. Note that the test images
are from COCO-stuff validation set and In-the-wild set
respectively. Our colorization results are more natural, pho-
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Input Deoldify [1] ColorFormer [31] BigColor [35] GCP [74] unicolor [27] DISCO [75] DDColor [32] Ours

Figure 9. Qualitative comparisons on in the wild validation set. Our method can generate significantly more natural and photo-realistic
colors than state-of-the-art approaches. Zoom in for the best view.

N 2 4 8 16 32 8 8

NS 10 10 10 10 10 40 10

NH 10 10 10 10 10 10 50

CF ↑ 38.81 43.13 47.18 47.82 48.69 42.09 45.53

Table 2. Ablation study on the hyper-parameters choice: N,
NS and NH. The test images are from the COCO-stuff validation
dataset.

torealistic, vivid, and visually pleasing than baselines in both
scenarios, especially on the In-the-wild set, significantly
alleviating artifacts and preserving color consistency. Since
there might be quite a lot of unseen color distributions in
In-the-wild set, state-of-the-art baselines suffer from color
bleeding, grayish colorization, color inconsistency, and vi-
sual artifacts. In contrast, our imagination module I can
provide a wide range of reference candidates, exhibiting
sufficient color diversity and strong colorization robustness.
Our framework has taken a significant leap forward, to some
extent, achieving a universal off-the-shelf colorization appli-
cation. More comparisons are available in the supplementary.
Quantitative Comparisons. We show quantitative compar-
isons in Table 3. Considering the color multimodality in the
colorization task, the ground truth based evaluation metrics
PSNR, SSIM, and LPIPS can not accurately reflect the actual
performance, for there might exist huge differences between
the colorful and plausible colorization results and the ground
truth. Our framework shows the best quantitative results in
CF, indicating that we can achieve the most colorful and
perceptually photorealistic colorization results.

User study. We conduct a user study to evaluate which
approach is more preferred by human observers. Specifi-
cally, we compare our approach with five strong baselines:
DDColor [32], DISCO [75], UniColor (Automatic) [27],
Bigcolor [35], CT2 [72]. 30 Users are presented with five
colorized images (our approach and one from each of the
four baselines) simultaneously in a single view, with the posi-
tions randomized for each comparison. They are then tasked
with selecting the most realistic and colorful one among
them. We randomly select 30 images from the COCO-stuff

Figure 10. User study. The dashed green lines are the mean prefer-
ence percentage.

validation set, 30 images from the ImageNet validation set,
and 20 images sourced from the internet. As shown in Figure
10, Our approach outperforms DDColor [32], DISCO [75],
UniColor (Automatic) [27], Bigcolor [35], CT2 [72] with a
preferred rate of 43.3%, 26.7%, 10.0%, 6.3%, 10.0%, 3.3%.

4.3. Ablation Study

Reference refinement module. Figure 11 illustrates the
effectiveness of our Reference Refinement Module (see Sec-
tion 3.4), which can significantly improve the colorfulness
and photorealism of colorization results. In the top row, ref-
erence candidates are composed to an optimal reference,
with ‘×N’ indicating there are N candidates in all. In the
bottom row, we showcase colorization results guided by
two randomly selected reference candidates and the opti-
mal reference. Upon comparison, Without our composition
strategy, the diversity and completeness of the color space
are compromised. ControlNet [82] struggles to generate a
comprehensive color space from a single reference. Conse-
quently, eliminating the composition strategy compromises
the completeness of this color space, leading to inconsis-
tencies, visual artifacts, and color bleeding. Quantitatively,
Table 4 further highlights a marked performance difference
when using our Reference Refinement Module 3.4 compared
to not using it.
Diverse Colorization. Thanks to our imagination module
3.3, we can synthesize multiple reasonable and colorful ref-
erences, yielding diverse colorization results, as shown in
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Method
COCO-Stuff ImageNet In-the-wild

FID ↓ SSIM ↑ PSNR ↑ LPIPS ↓ CF ↑ FID ↓ SSIM ↑ PSNR ↑ LPIPS ↓ CF ↑ CF ↑
Coltran [39] 13.1 0.359 13.3 0.513 38.5 15.5 0.264 8.65 0.723 55.9 38.0

GCP [74] 7.35 0.900 22.4 0.194 37.9 3.36 0.931 23.5 0.238 33.9 37.0

CT2 [72] 22.9 0.358 13.5 0.518 46.2 8.44 0.354 14.5 0.480 41.6 44.5

ColorFormer [31] 8.69 0.756 21.3 0.216 41.0 3.83 0.834 22.5 0.196 36.0 39.9

BigColor [35] 8.53 0.832 20.8 0.217 43.4 3.59 0.893 21.5 0.212 40.4 37.8

UniColor [27] 7.90 0.855 22.4 0.195 36.4 6.22 0.909 22.0 0.238 35.7 33.9

DISCO [75] 11.2 0.738 19.4 0.236 46.2 9.21 0.783 21.0 0.265 44.5 43.5

DDColor [32] 6.19 0.904 23.1 0.169 44.7 3.16 0.885 23.4 0.186 42.2 41.9

Ours 7.21 0.859 23.3 0.180 47.2 3.62 0.884 23.8 0.207 48.8 48.9

Table 3. Quantitative Comparison with baselines on three datasets. We provide evaluations on PSNR, SSIM, and LPIPS just for reference
because those metrics can not accurately reflect the actual performance. Our framework shows the best quantitative results in CF, indicating
we can generate the most colorful and perceptually photorealistic results.

Figure 11. Ablation Study: Reference Refinement Module 3.4.
Without our composition strategy, the diversity and completeness
of the color space are compromised. Consequently, the reference
exhibits inconsistency, visual artifacts, and color bleeding, leading
to unsatisfactory colorization results.

Figure 5.
Hint Colors Optimization. shows that the hint colors ambi-
guity issue can arise in the absence of a coarse-to-fine opti-
mization strategy. As depicted in Figure 7, the reference’s sky
exhibits a substantial variation in hint color values, resulting
in color bleeding and incorrect colorization. By employing a
clustering algorithm, our coarse-to-fine optimization identi-
fies the most representative set of hint colors, which reduces
color bleeding and ensures a pleasing colorization result.

4.4. Limitation

As depicted in Figure 12, our approach encounters chal-
lenges when dealing with images populated with numerous
identical instances. We attribute such cases to the inherent
limitations of existing generative models like ControlNet
which struggle with generating diverse and photo-realistic
images with numerous distinct humans. Thus, we believe
our method will address such cases with more advanced
generative models emerging. Besides, further enhancement
may require the colorization framework to achieve an equi-
librium: ensure a consistent color prior for a whole semantic
area, while still recognizing and respecting the unique color
cues of each instance within. Moreover, the inference cost is
another concern. After accelerating ControlNet with LCM-
LoRA [51], our model takes about eight seconds to colorize

Input Ours Ground truth

Figure 12. Failure Cases. Our approach might produce artifacts and
inconsistencies when colorizing images with too many identical
instances.

reference FID ↓ CF ↑ SSIM ↑ PSNR ↑ LPIPS ↓
composition 7.21 47.18 0.859 23.3 0.180
single 8.28 43.87 0.848 21.2 0.230

Table 4. Ablation on without and with composition strategy.
All the tested images are from COCO-Stuff validation set. Our
composition strategy in the Reference Refinement Module plays
a pivotal role in improving colorization results from quantitative
perspectives.

a 512× 512 image on a single Nvidia GeForce RTX 3090.

5. Conclusion
In this paper, we present a novel framework for automatic
image colorization that emulates the imagination process
of human experts. Our primary contribution is the Imagina-
tion Module and the Reference Refinement Module, which
together generate reference images that are semantically
similar, structurally aligned, and instance-aware. The Col-
orization Module then colorizes the black-and-white inputs
with the guidance of these reference images. Our framework
surpasses state-of-the-art baselines both qualitatively and
quantitatively, achieving controllable, editable, and diverse
colorization results, which is non-trivial in the automatic
colorization community. We posit that the concept of imag-
ination has the potential to enhance a variety of computer
vision tasks.
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