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Abstract

Recent advances in instruction tuning have led to the
development of State-of-the-Art Large Multimodal Models
(LMMs). Given the novelty of these models, the impact
of visual adversarial attacks on LMMs has not been thor-
oughly examined. We conduct a comprehensive study of the
robustness of various LMMs against different adversarial
attacks, evaluated across tasks including image classifica-
tion, image captioning, and Visual Question Answer (VQA).
We find that in general LMMs are not robust to visual ad-
versarial inputs. However, our findings suggest that context
provided to the model via prompts—such as questions in a
QA pair—helps to mitigate the effects of visual adversarial
inputs. Notably, the LMMs evaluated demonstrated remark-
able resilience to such attacks on the ScienceQA task with
only an 8.10% drop in performance compared to their vi-
sual counterparts which dropped 99.73%. We also propose
a new approach to real-world image classification which
we term query decomposition. By incorporating existence
queries into our input prompt we observe diminished at-
tack effectiveness and improvements in image classification
accuracy. This research highlights a previously under ex-
plored facet of LMM robustness and sets the stage for future
work aimed at strengthening the resilience of multimodal
systems in adversarial environments.

1. Introduction

Large Multi-modal Models (LMMs) have demonstrated re-
markable abilities in a range of applications, from image
classification and Visual Question Answering (VQA) to im-
age captioning and semantic segmentation [1, 13, 22, 23,
28]. These models excel in generalizing to new domains
with data-efficient solution, a feat attributed to advance-
ments in Instruction Tuning [42]. Such techniques, tra-
ditionally applied to text-only models, have now been ex-
tended to multi-modal models, opening new avenues for ef-
ficient fine-tuning with significantly less data [13, 28].
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LLaVA(adv): A group of people are sitting in a tub, with
one person holding a toothbrush. ✗

Query: Is the photo taken indoor or outdoor?
LLaVA(adv): Outdoor. ✓

Query: What is this image about?

Query: Is there a tree in the image?
LLaVA(adv): Yes. ✓

Query: Sheep have a head with two large, curved horns, with a
woolly coat that can vary in color..

Question: What animal is in the image?
LLaVA(adv): Sheep. ✓

Query: What is in the background of the image?
LLaVA(adv): Trees. ✓

Query: What animal is in the image?

LLaVA(adv): None. ✗

LLaVA: Two sheep are standing on a ledge, looking
over a wall.. ✓

LLaVA: Sheep. ✓

Figure 1. QA pairs for LLaVA [28] given an adversarial image.
“LLaVA” and “LLaVA(adv)” refer to LLaVA’s response to the
user query with clean and adversarial image, respectively. For the
readers, there are two sheep in the scene, and the adversarial attack
was based on maximizing the distance between the image and the
text “a photo of a sheep”. In the first two QA pairs, we can see
that LLaVA(adv)’s answer is completely wrong. However, it can
still answer the following questions correctly, because they are not
pertinent to the object being attacked (sheep). Also note the con-
trast between the second and last QA pairs. LLaVA(adv) answers
the question correctly after additional context has been provided.
These observations help drove some of the findings in this paper.
Source: COCO 2014 [26]

Despite the recent advancements in LMMs, the impact
of adversarial examples still remains under explored. Typi-
cally adversarial examples are generated end-to-end, target-
ing the final loss of the whole model, and focusing on a sin-
gle modality. However, in the era of combining different
pre-trained models with additional projectors or adaptors
[8, 28, 44], it is imperative to reevaluate the effectiveness
of these adversarial approaches. For example, let’s consider
LLaVA [28] which uses CLIP as its visual component and
LLAMA as text component (with some additional projector
to bridge the gap), will an attack on one of the two compo-
nents compromise its overall performance?

From a practical perspective, given the substantial size
of LMMs, attacking the entire model is often prohibitively
expensive [7], making the above question an increasingly
important one to answer since traditional adversarial attacks
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are better developed and computationally cheaper. Specif-
ically, in this paper, we question the efficacy of adversarial
attacks against visual encoders when they serve as input to
subsequent LLMs. This gap in understanding raises criti-
cal questions about the susceptibility of LMMs to adversar-
ial attacks, especially when only the visual encoder is tar-
geted. Given their sophisticated dual-model composition,
the question arises: Can an attack on the visual encoder
effectively compromise the entire LMM?

Recent works [7, 35] on visual adversarial attacks against
LMMs typically focus on the safety and alignment aspects
of the model. For example, Qi et al [35] and Carlini et al [7]
both show that it is possible to generate a visual adversarial
example that “jailbreak” the LMM. Nonetheless, a system-
atic study on the impact of visual adversaries on LMMs is
still missing.

We conduct a comprehensive analysis on the robustness
of current LMMs under various adversarial attacks, tasks
and datasets. Our investigation reveals that LMMs are not
robust to adversarial visual perturbations in contexts where
no additional textual information is provided, such as in
COCO[26] classification (without context) or COCO cap-
tioning tasks. Conversely, the presence of context seems to
bolster LMM robustness, as seen in tasks like COCO clas-
sification (with context). In cases where the attack does not
directly target the core aspects of the task, such as in VQA,
LMMs display a degree of inherent robustness. This paper
reveals the following findings:
• LMMs are generally vulnerable to adversarial visual per-

turbations, even if such perturbations are generated only
w.r.t. the visual model.

• Compared to classification and caption, LMMs demon-
strate better robustness in VQA tasks. Particularly, we
find that visual attacks are less effective when the VQA
question query involves different visual contents from
what is being attacked.

• Adding additional textual context notably improves
LMMs’ robustness against visual adversarial input.

• Based on the above findings, we devise a context-
augmented image classification scheme that shows non-
trivial increase in robustness.

2. Related Work

Large Multimodal Models (LMMs). Large Multimodal
Models (LMMs)[4, 8, 23, 28, 44] typically comprise a vi-
sual model, a pre-trained Large Language Model (LLM),
and a projector model designed to bridge the modality gap
between images and text. Prominent among these mod-
els are LLaVA[28] and InstructBLIP [13], which represent
the current state-of-the-art in LMMs. LLaVA integrates
the CLIP visual encoder with the Vicuna LLM [10], em-
ploying a simple linear projector subsequent to the visual
model for transforming visual representations into the lan-

guage embedding space. Conversely, BLIP2-based mod-
els [13, 23, 44] utilize the EVA-CLIP visual encoder, along-
side a Q-former equipped with learnable query vectors to
bridge the visual and textual modalities. Both LLaVA and
BLIP2-based models, among others, have demonstrated re-
markable capabilities in a variety of vision-language tasks,
underscoring their versatility and effectiveness.
Adversarial attacks. Adversarial attacks are designed to
subtly manipulate inputs in a way that is typically imper-
ceptible to humans, yet can lead neural networks to pro-
duce erroneous outputs [3, 5, 6, 12, 32, 39]. These at-
tacks are broadly classified into two categories: white-
box attacks [3, 6, 18, 39], where the adversary has com-
plete access to the model parameters, and black-box at-
tacks [34, 38], where the adversary possesses limited infor-
mation such as output logits or labels. In particular, transfer-
based attacks leverage gradients from a surrogate model un-
der white-box condition, which are likely transferable to the
target black-box model [15, 29, 33, 34]. Such transferability
thus remain as an critical model vulnerability.

While the primary focus of adversarial attack research
has historically been on image classification, recent studies
have demonstrated the feasibility of constructing adversar-
ial examples in textual domains. These examples can be
generated either heuristically [2, 21, 24] or through discrete
optimization techniques [16, 40].
LMMs and Adversarial Examples. While extensive re-
search has been conducted on adversarial attacks in both vi-
sual and textual domains, the impact of these attacks on cur-
rent LMMs remains relatively unexplored. Recent studies
[7, 30, 35, 36, 41, 45] demonstrate the feasibility of creat-
ing adversarial examples that effectively ”jailbreak” LMMs
from both visual [7, 35] and textual [30, 36, 41, 45] inputs,
using either gradient-based approaches [7, 35] or prompt
engineering [30, 36, 41]. These examples are capable of in-
ducing LMMs to produce harmful content, thereby bypass-
ing the safety measures implemented during model align-
ment, such as instruction tuning or Reinforcement Learn-
ing from Human Feedback (RLHF). However, while these
studies predominantly address the safety concerns, poten-
tial harmfulness, and the associated dangers of LMMs, our
research shifts the focus towards systematically examining
the accuracy of LMMs in performing various tasks under
the influence of visual adversarial attacks.

3. Method
3.1. Threat Model

In this study, we focus on gradient-based white-box adver-
sarial attacks [6, 12, 32]. These methods hinge on the com-
putation of the gradient to ascertain the most effective di-
rection in which to modify the input so as to deceive the
model, while satisfying the Lp constraint. Formally, given
input-label pair x, y and the model denoted by f , we want to

24626



find the adversarial perturbation δ s.t. f(x+δ) ̸= y confined
to some Lp bounds. For PGD, we maximize L(f(x+ δ), y)
while satisfying ||δ||∞ < ϵ, where ϵ is the radius of the L∞
ball, and L is the Cross-Entropy loss in our case. For CW,
we maximize ||δ||p + c · g(x+ δ), subject to x+ δ ∈ [0, 1],
where g(x+ δ) = max(f(x+ δ)y −max{f(x+ δ)i : i ̸=
y},−κ), and κ is the confidence parameter.

3.2. Attacks

We choose PGD and CW as two representatives of strong
gradient-based attacks, along with APGD as a variant of
PGD. Additionally, we experiment with two parameter set-
tings of each attack: normal and strong, based on percep-
tibility of the perturbations. Under the normal setting, we
set the constraint for CW to 20, and epsilon for PGD/APGD
to 8/255, as used in prior works [3, 43]. Under the strong
setting, we set epsilon for PGD and APGD to 0.2, and con-
straint to 100 for CW. All the attacks are generated solely
w.r.t. the image encoder, leaving the LLM untouched. De-
tailed parameters can be found in Table 1.

Figure 2 shows a sample adversary generated using dif-
ferent attack methods and under different degree of attack
strength. In the normal setting, the adversarial perturbation
is almost imperceptible, but become obvious under strong
setting for PGD and APGD. Perturbations generated by CW
remains imperceptible even under the strong setting. For
brevity, in the follow sections, we use N and S to repre-
sent normal and strong setting, respectively. For example,
APGD-S stands for APGD attack under strong setting.

Figure 2. A sample CLIP’s adversarial image, generated by PGD,
APGD and CW, under Normal and Strong attack parameter set-
tings. Image source: COCO 2014val. Note that under strong
attack, the adversarial perturbations become very obvious under
PGD and APGD, and are expected to cause a higher degree of per-
formance degradation.

Method steps step size ϵ Dist. c κ

Normal
PGD 20 2/255 8/255 L∞ - -
APGD 20 - 8/255 L∞ - -
CW 50 0.01 - L2 20 0

Strong
PGD 40 2/255 0.2 L∞ - -
APGD 40 - 0.2 L∞ - -
CW 75 0.05 - L2 100 0

Table 1. Parameters for the attacks under Normal (N) and Strong
(S) settings. Dist. refers to distance measure, c and κ refers to the
constraint and confidence parameter in [6].

3.3. Models

In our study, we selected three state-of-the-art LMM mod-
els for evaluation: LLaVA1.5[27] integrated with the Vi-
cuna13B language model, BLIP2 combined with the Flan
T5 XXL[11] language model, and InstructBLIP [13], also
utilizing Vicuna13b. These models exhibit distinct char-
acteristics in their configurations. LLaVA1.5 and Instruct-
BLIP both employ the Vicuna13B language model; how-
ever, they differ in their image encoders and methodologies
for merging image and text encodings, with LLaVA1.5 di-
rectly inserting the projected visual tokens into text tokens,
versus InstructBLIP’s Q-former architecture. BLIP2 and In-
structBLIP share similar image encoders and the Q-former
architecture but diverge in their language model choices and
training protocols: BLIP2 employs the Encoder-Decoder
based Flan T5 XXL, while InstructBLIP uses the Decoder-
only Vicuna13B. We believe that such a selection of models
allows for a diverse yet controlled set of experimental con-
ditions. In the rest of the paper, we use LLaVA, BLIP2-T5
and InstructBLIP to refer to LLaVA1.5 Vicuna13B, BLIP2
Flan T5XXL, and InstructBLIP Vicuna13B, respectively.

3.4. Tasks & Adversarial generation

We consider three popular visual tasks for evaluating visual
adversarial impact on LMMs: image classification, caption
retrieval and VQA. Since we are interested in LMMs’ ro-
bustness against visual adversaries, we generate adversarial
samples w.r.t. the image encoder of the LMM: CLIP image
encoder for LLaVA, EVA-CLIP image encoder for BLIP2
and InstructBLIP. We use CLIP text encoder and the text
encoder from BLIP’s Q-former to compute the text embed-
dings for their corresponding image encoder. For PGD and
APGD, we maximize the Cross-Entropy loss between the
model logits and the ground-truth label. For CW, we mini-
mize the sum of the l2 distance of the perturbation δ and the
f -function from the original paper [6]. Detailed procedures
for task-specific adversarial generation are given below.
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Figure 3. Overview of our procedure for attack generation and
evaluation over image classification, caption retrieval, and VGA.
Top: overview of attack generation for the three tasks; bottom:
evaluation procedure for LMM on the three tasks.

3.4.1 Image Classification

We use COCO [26] 2014 validation split (2014val), with
class annotations from [20], to evaluate robustness on clas-
sification. We first use the text encoder to encode the text
class labels in the format of “a photo of <class>”. Then, we
compute the class-wise cosine-similarity between the image
encodings and encoded class labels and use the result as the
class logits for adversarial generation and evaluation. To
evaluate LMMs on classification, we first prompt LMMs to
generate a one-word response of the main object in the im-
age. For LLaVA we use the prompt: “What is the main
object in this image?\nAnswer in a single word or phrase.”
For BLIP2-T5 and InstructBLIP we use “Question: what is
the main object in this image? Short answer: ”. We then for-
mat the answer with “a photo of <answer>”, encode with
the text encoder and compute cosine similarity against the
class label encodings to perform classification.

3.4.2 Caption retrieval

We use COCO captioning dataset [9] 2014val for evaluating
caption retrieval robustness. To generate visual adversarial
samples for caption retrieval, we first use the text encoder
to encode 5 captions per image, and then use their mean as
the text encodings for each image. Then, we compute co-
sine similarity between image and text encodings and use
the result as the image-wise logits for adversarial genera-
tion. To evaluate the caption retrieval for CLIP and EVA-
CLIP encoders, we compute cosine similarity between the
image encodings and all captions’ text encodings to per-
form retrieval. To evaluate caption retrieval for LMMs, we

first prompt LMMs to generate a caption for the image.
For LLaVA we use the prompt: “Describe this image in a
short sentence.” For BLIP2-T5 and InstructBLIP we use the
prompt: “Question: what is this image about? Short an-
swer: ” Then we encode the generated caption and compute
cosine similarity against all captions’ text encodings to per-
form retrieval.

3.4.3 VQA

We evaluate LMM robustness on five popular VQA
datasets: VQA V2 [19], ScienceQA-Image [31],
TextVQA [37], POPE [25] and MME [17]. For VQA
V2, we follow the same adversarial generation procedure
as in classification task. For all other datasets, since no
ground-truth label is present, we first prompt LLaVA with
“What is this image about?\nAnswer in one sentence.”
to generate synthetic caption for each image, and follow
the same procedure in caption retrieval task for generating
adversaries. We follow the official evaluation procedures
for each VQA datasets.

4. Experimental Results and Analysis
We show our experimental results and analysis in the fol-
lowing sections. We report both LMMs’ accuracy as well
as the image encoder’s accuracy on the task that was used to
generate adversaries. We adopt the notations Pre, PostN and
PostS to refer to accuracy for pre-attack, post-attack under
normal setting, and post-attack under strong setting, respec-
tively.

4.1. Are LMMs Robust Against Adversarial Visual
Input?

To investigate the impact of adversarial visual inputs on
LMMs, our initial analysis focuses on the caption retrieval
task. This task serves as a measure of the LMMs’ overall
comprehension of visual inputs. The results of this anal-
ysis, conducted on COCO 2014val, are presented in Ta-
ble 2 – please refer to the caption to comprehend the sig-
nificance of each metric. Under the third section, the data
distinctly illustrates a significant decrease in post-attack
accuracy across all three LMMs when subjected to both
PGD and APGD attacks, under both normal and strong set-
tings. For instance, under PGD-N, the Top-1 recall rate for
InstructBLIP declines to 1.9%, and further diminishes to
0.18% under PGD-S. Since these accuracies are roughly on
the same level as the CLIP/EVA-CLIP accuracy post attack,
as shown under the second section of the table, the addi-
tional LLM appended to the image encoder did not bring
notable robustness, indicating that LMMs lack robustness
against visual adversarial perturbations. In other words, the
visual perturbations are capable of substantially undermin-
ing the LMMs’ effectiveness, even though they are not gen-
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Model Attack Pre PostN PostS

Visual Encoder Acc @1 (%)
CLIP PGD 63.32 11.78(-81) 0.48(-99)

CLIP APGD 63.32 4.2(-93) 0.02(-100)

CLIP CW 63.32 13.86 (-78) 0.94(-99)

EVA-CLIP PGD 73.18 1.02(-99) 0.0(-100)

EVA-CLIP APGD 73.18 0.46(-99) 0.0(-100)

EVA-CLIP CW 73.18 19.43 (-73) 3.74(-95)

Image-to-Text Recall @1 (%)
CLIP PGD 57.72 10.4(-82) 0.4(-99)

CLIP APGD 57.72 12.92(-78) 7.44(-87)

CLIP CW 57.72 34.94(-39) 24.94(-57)

EVA-CLIP PGD 64.06 1.06(-98) 0.06(-100)

EVA-CLIP APGD 64.06 9.14(-86) 8.32(-87)

EVA-CLIP CW 64.06 42.06(-34) 31.72(-50)

LLM Answer-to-Text Recall @1 (%)
LLaVA PGD 36.58 13.1(-64) 3.76(-90)

LLaVA APGD 36.58 15.7(-57) 7.88(-78)

LLaVA CW 36.58 32.96(-10) 29.84(-18)

BLIP2-T5 PGD 32.34 1.4(-96) 0.1(-100)

BLIP2-T5 APGD 32.34 4.52(-86) 3.62(-89)

BLIP2-T5 CW 32.34 23.12(-29) 17.02(-47)

InstructBLIP PGD 37.82 1.9(-95) 0.18(-100)

InstructBLIP APGD 37.82 5.56(-85) 4.3(-89)

InstructBLIP CW 37.82 27.44(-27) 20.74(-45)

Table 2. Top-1 caption retrieval result for COCO caption 2014
validation dataset. Refer to Sec. 3.4.2. “Visual Encoder Accu-
racy” refers to CLIP/EVA-CLIP accuracy on successfully retriev-
ing captions that are closed to the mean caption encoding given
the image encoding. “Image-to-Text Recall @1” is recall@1 of
retrieving correctly one of the five captions for the given image.
LLM Answer-to-Text recall is the same except the query is the
LMMs’ answers. Numbers in parenthesis show % change w.r.t.
the Pre-attack accuracy.

erated through an end-to-end process on the LMMs’ text
generation loss.

4.2. Evaluating LMMs’ VQA Performance

In this section, we detail the experimental outcomes of the
LMMs in VQA tasks under adversarial visual attacks. The
primary results are summarized in Table 3. Our results in-
dicate a noteworthy deviation from what we have observed
about the caption retrieval task in Sec. 4.1, which did not
show that LMMs possess any robustness against visual ad-
versaries. Based on the results from Table 3, all three
LMMs being evaluated exhibit considerable resilience in
various VQA datasets, despite the significant decrease in
adversarial accuracy of their corresponding visual encoders,
as shown under the “Visual Encoder Accuracy” columns.
For instance, with the ScienceQA dataset, the PostN “Vi-
sual Encoder Accuracy” plummeted below 1% for all three
types of attacks, and for both the CLIP and BLIP visual en-

LLaVA: a group of cows laying down in a barn. ✓

Q1: Why is there a gap between the roof and wall?
LLaVA(adv): Ventilation. ✓

Query: What is this image about?

Q2: Why is the cow laying down?
LLaVA(adv): Resting. ✓

Q3: Is it daylight in this picture?
LLaVA(adv): Trees. ✓

LLaVA(adv): A row of colorful wooden benches with
Asian writing on them. ✗

LLaVA: A large white airplane is flying through a clear blue
sky. ✓

Q1: Was this taken at sunset?

LLaVA(adv): No. ✓

Query: What is this image about?

Q2: Is there a seagull?
LLaVA(adv): No. ✓

Q3: What color is the plane?

LLaVA(adv): Blue. ✗

LLaVA(adv): A colorful, psychedelic patterned background
features a pair of Elmo figurines from Sesame Street ✗

LLaVA: White. ✓

Figure 4. Two sample adversarial images from COCO 2014val,
generated under APGD PostS. “LLaVA” and “LLaVA(adv)” refer
to LLaVA’s responses using the clean Pre-attack and post-attack
image, respectively. Above the dotted line in each cell, we query
LLaVA for the general description; below the dotted line are ques-
tions taken from VQA V2 dataset.

coders. However, the accuracy of all three LMMs decreased
by less than 7% compared to their pre-attack accuracy.

What could be the cause of such discrepancies in LMMs’
robustness between the VQA and caption retrieval tasks?
We make two conjectures:
1. The robustness of LMMs depends on whether the query

is about what is being attacked. Since the attack target
for generating visual adversarial samples is what is be-
ing described in the image description, then intuitively
those aspects not mentioned in the description shall be
less affected by the attack.

2. Additional contexts (e.g., contexts in ScienceQA’s ques-
tions) aid in LMMs’ robustness.

We will experimentally support the two claims in the fol-
lowing sections.

4.3. Visual Adversarial Attacks are not Universal to
LMMs

In this section, we present an empirical analysis demonstrat-
ing that while LMMs are not inherently resilient to visual
adversarial attacks, as evidenced by their performance in
caption retrieval tasks, they are capable of delivering correct
responses when the query’s focus differs from the target of
the attack. To illustrate this, we take the Visual Question
Answering (VQA) V2 dataset as a case study. Here, we
generate adversarial images using the text label “a photo of
<class>”, with the attack primarily aimed at the central ob-
ject of the image. We observe that the adversarial attack’s
effectiveness is heightened when the query, during evalua-
tion, pertains to the same target – the principal object in the
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VQA Acc (%) Visual Encoder Acc (%)
Model Dataset Attack Pre PostN PostS Pre PostN PostS

LLaVA ScienceQA(image) PGD 71.59 68.77 (-3) 64.75 (-9) 42.92 10.08 (-77) 0.92 (-98)

LLaVA ScienceQA(image) APGD 71.59 69.81 (-2) 68.22 (-4) 42.83 5.68 (-87) 0.06 (-99)

LLaVA ScienceQA(image) CW 71.59 71.69 (+0.1) 71.34 (-0.3) 42.95 12.76 (-70) 0.03 (-99)

BLIP2-T5 ScienceQA(image) PGD 74.71 69.71 (-6) 63.06 (-15) 46.40 1.05 (-98) 0.00 (-100)

BLIP2-T5 ScienceQA(image) APGD 74.71 73.62 (-1) 72.88 (-2) 46.40 1.02 (-98) 0.00 (-100)

BLIP2-T5 ScienceQA(image) CW 74.71 74.71 (-0) 74.37 (-0.4) 46.40 12.92 (-72) 0.03 (-99)

InstructBLIP ScienceQA(image) PGD 45.08 40.66 (-10) 39.67 (-12) 46.40 1.05 (-98) 0.00 (-100)

InstructBLIP ScienceQA(image) APGD 45.08 42.75 (-5) 42.34 (-3) 46.40 1.02 (-98) 0.00 (-100)

InstructBLIP ScienceQA(image) CW 45.08 44.88 (-0.4) 43.93 (-0.3) 46.40 12.92 (-72) 0.03 (-99)

LLaVA VQA V2 PGD 78.43 64.38 (-18) 51.22 (-35) 89.21 31.00 (-65) 6.56 (-93)

LLaVA VQA V2 APGD 78.43 67.41 (-14) 44.60 (-43) 89.21 30.01 (-66) 0.15 (-99)

LLaVA VQA V2 CW 78.43 76.79 (-2.1) 75.16 (-4.1) 89.21 44.92 (-50) 0.04 (-99)

BLIP2-T5 VQA V2 PGD 66.94 50.60 (-24) 42.43 (-37) 94.13 19.12 (-80) 0.23 (-99)

BLIP2-T5 VQA V2 APGD 66.94 52.51 (-22) 40.69 (-39) 94.13 14.71 (-84) 0.01 (-99)

BLIP2-T5 VQA V2 CW 66.94 63.69 (-4.8) 58.75 (-12) 94.12 51.60 (-45) 0.06 (-99)

InstructBLIP VQA V2 PGD 76.07 56.33 (-26) 42.77 (-44) 94.13 19.12 (-80) 0.23 (-99)

InstructBLIP VQA V2 APGD 76.07 58.83 (-22) 39.60 (-48) 94.13 14.71 (-84) 0.01 (-99)

InstructBLIP VQA V2 CW 76.07 73.02 (-4.0) 66.10 (-13) 94.12 51.60 (-45) 0.06 (-99)

LLaVA TextVQA PGD 62.14 51.44 (-17) 40.27 (-35) 69.32 10.30 (-85) 0.41 (-99)

LLaVA TextVQA APGD 62.14 54.23 (-12) 42.88 (-31) 69.32 6.73 (-90) 0.00 (-100)

LLaVA TextVQA CW 62.14 60.88 (-2) 59.71 (-4) 69.38 18.00 (-74) 0.03 (-99)

BLIP2-T5 TextVQA PGD 45.14 38.46 (-14) 29.82 (-34) 68.97 0.44 (-99) 0.00 (-100)

BLIP2-T5 TextVQA APGD 45.14 39.94 (-11) 32.41 (-28) 68.97 0.63 (-99) 0.00 (-100)

BLIP2-T5 TextVQA CW 45.14 44.28 (-2) 38.58 (-14) 69.01 12.51 (-82) 0.03 (-99)

InstructBLIP TextVQA PGD 35.23 26.99 (-23) 18.11 (-48) 68.97 0.44 (-99) 0.00 (-100)

InstructBLIP TextVQA APGD 35.23 28.00 (-20) 20.10 (-43) 68.97 0.63 (-99) 0.00 (-100)

InstructBLIP TextVQA CW 35.23 33.95 (-3) 25.46 (-27) 69.01 12.51 (-82) 0.03 (-99)

LLaVA POPE PGD 85.55 73.13 (-14) 58.97 (-31) 80.00 7.20 (-91) 0.2 (-99)

LLaVA POPE APGD 85.55 73.80 (-13) 65.00 (-24) 80.00 4.40 (-94) 0.00 (-100)

LLaVA POPE CW 85.55 83.07 (-2) 83.27 (-2) 80.00 21.40 (-73) 0.80 (-99)

BLIP2-T5 POPE PGD 77.10 62.67 (-18) 55.50 (-28) 87.40 0.00 (-100) 0.00 (-100)

BLIP2-T5 POPE APGD 77.10 65.20 (-15) 55.30 (-28) 87.40 0.20 (-99) 0.00 (-100)

BLIP2-T5 POPE CW 77.10 75.87 (-1) 75.20 (-2) 87.40 15.80 (-81) 3.80 (-95)

InstructBLIP POPE PGD 82.83 64.57 (-22) 52.20 (-37) 87.40 0.00 (-100) 0.00 (-100)

InstructBLIP POPE APGD 82.83 66.93 (-19) 52.00 (-37) 87.40 0.20 (-99) 0.00 (-100)

InstructBLIP POPE CW 82.83 80.93 (-2) 80.27 (-3) 87.40 15.80 (-82) 3.80 (-95)

LLaVA MME PGD 1,536 1,187 (-22) 927 (-39) 65.79 12.25 (-81) 0.91 (-98)

LLaVA MME APGD 1,536 1,283 (-16) 818 (-46) 65.79 7.29 (-88) 0.10 (-99)

LLaVA MME CW 1,536 1,521 (-1) 1491 (-3) 65.79 17.51 (-73) 3.04 (-95)

BLIP2-T5 MME PGD 1,114 759 (-32) 591 (-47) 73.38 2.43 (-96) 0.00 (-100)

BLIP2-T5 MME APGD 1,114 777 (-30) 628 (-43) 73.38 2.02 (-97) 0.00 (-100)

BLIP2-T5 MME CW 1,114 1058 (-5) 1026 (-8) 73.38 18.62 (-74) 6.17 (-91)

InstructBLIP MME PGD 1,248 704 (-30) 703 (-43) 73.38 2.43 (-96) 0.00 (-100)

InstructBLIP MME APGD 1,248 1,002 (-19) 751 (-40) 73.38 2.02 (-97) 0.00 (-100)

InstructBLIP MME CW 1,248 1,205 (-3) 1,170 (-6) 73.38 18.62 (-74) 6.17 (-91)

Table 3. Results on VQA datasets. We attack CLIP and EVA-CLIP visual encoders to generate adversarial examples for LLaVA and
BLIP2-T5/InstructBLIP, respectively. Adversarial examples are used as input image along with question as input text. “VQA Accuracy”
refers to the performance of each LMM; “Visual Encoder Accuracy” refers to the accuracy of the visual encoder on image-to-text retrieval,
which is used for generating visual adversaries for VQA. Numbers in parenthesis show % change w.r.t. the Pre-attack accuracy.

24630



image. Conversely, the attack’s impact diminishes when the
query relates to different aspects of the image.

Figure 5. LLaVA’s VQA accuracy drop after APGD attack under
the normal attack setting. Y-axis represents question types, and
X-axis represents accuracy dropped (%).

In Figure 4, we show LLaVA’s responses to queries
on two adversarial images under APGD-S. When query-
ing about the general description of the image, it is clear
that LLaVA’s post-attack answers are completely deviated
from what the image is about; however, below the dotted
line, LLaVA can still answer most questions correctly. We
conjecture such phenomenon is either because LLaVA can
“guess” the answer directly from the context (e.g., Q2-top
“Why is the cow laying down?” – “Resting”). This is co-
herent with LMMs’ high “robustness” on the ScienceQA
dataset, in which the texts themselves are often sufficient to
find the answer. On the other hand, it is because these ques-
tions are not directly querying the object or its attributes, but
rather the peripheral aspects of the image (e.g., Q1-bottom
“Was this taken at sunset?”). The only incorrectly-answered
question is Q3-bottom “What color is the plane?”. LLaVA
answers it incorrectly as the query is asking about the object
attribute (color), which has been corrupted by the attack.

In Figure 5, we plot LLaVA’s per-question type accu-
racy drop under APGD-N. We can clearly see that accu-
racy drops the most on questions asking ‘What’ – what
room/animal/color – about the object and its direct at-
tributes. The accuracy drop quickly diminishes for ques-
tion asking ‘Is/Has/Can’ etc. These questions are typically
querying the peripheral aspects of the image instead of the
main object, and actually require more complex reasoning

Model Attack Pre@1 PostN@1 PostS@1

Visual Encoder Acc (%)
CLIP PGD 89.21 31.0(-65) 6.56(-93)

CLIP APGD 89.21 30.01(-66) 0.15(-100)

CLIP CW 89.21 44.92(-50) 0.04(-100)

EVA-CLIP PGD 94.13 19.12(-80) 0.23(-100)

EVA-CLIP APGD 94.13 14.71(-84) 0.01(-100)

EVA-CLIP CW 94.12 51.6(-45) 0.06(-100)

LMM Acc (%)
LLaVA PGD 87.51 48.25(-45) 22.58(-74)

LLaVA APGD 87.51 52.06(-41) 8.11(-91)

LLaVA CW 87.51 80.64(-8) 77.1(-12)

BLIP2-T5 PGD 86.47 28.64(-67) 2.98(-97)

BLIP2-T5 APGD 86.47 31.39(-67) 2.37(-97)

BLIP2-T5 CW 86.47 70.11(-19) 58.85(-32)

InstructBLIP PGD 89.89 21.09(-77) 3.66(-96)

InstructBLIP APGD 89.89 22.35(-75) 2.18(-98)

InstructBLIP CW 89.89 37.81(-58) 31.91(-64)

LMM with Context Acc (%)
LLaVA PGD 93.74 73.62(-21) 57.06(-39)

LLaVA APGD 93.74 72.61(-23) 37.65(-60)

LLaVA CW 93.74 91.76(-2) 90.2(-4)

BLIP2-T5 PGD 97.67 87.54(-10) 94.92(-3)

BLIP2-T5 APGD 97.67 87.29(-11) 98.43(+1)

BLIP2-T5 CW 97.67 94.97(-3) 92.76(-5)

InstructBLIP PGD 88.94 66.92(-25) 71.61(-19)

InstructBLIP APGD 88.94 68.74(-23) 89.22(-0)

InstructBLIP CW 88.94 84.92(-5) 82.51(-7)

Table 4. Top-1 image classification result on COCO 2014val.
The first table section shows visual encoder accuracy, referring
to CLIP/EVA-CLIP’s accuracy on classification; second section
shows LMMs’ accuracy; third section show LMMs’ accuracy, af-
ter the context is added to the query. Numbers in parenthesis show
% change w.r.t. the Pre-attack accuracy.

and understanding to answer correctly, yet they boast much
lower accuracy drop. This result reaffirms our conjecture
that LMMs are robust when the question is not querying
what is being attacked.

4.4. Adding Context Improves LMM Robustness
To examine the effect of context on LMMs’ robustness, we
reuse the image classification task. We first ask LLaVA to
generate a general one-sentence description for each class.
We then insert the generated description corresponding to
the correct object into the prompt for querying the LMMs
about the main object in the image. Besides the additional
context, everything else is kept the same.

Results are shown in Table 4. We observe that after
adding a short sentence of context, the post-attack accuracy
for all three LMM models increase by a large margin. In
particular, the accuracy drop for BLIP2/InstructBLIP under
PGD/APGD reduce to only 20%, as opposed to an average
of 60% drop without context. Although the resulting accu-
racy is still not on par with the pre-attack accuracy, it still
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LMM Query Decomp. Acc(%) LMM Plain Acc (%) Visual Encoder Acc (%)
Dataset Attack Pre PostN PostS Pre PostN PostS Pre PostN PostS

COCO PGD 98.42 65.30 (-34) 35.88 (-64) 87.51 48.25 (-45) 22.58 (-74) 89.21 31.00 (-65) 6.56 (-93)

COCO APGD 98.42 66.98 (-32) 23.88 (-76) 87.51 52.06 (-41) 8.11 (-91) 89.21 30.01(-66) 0.15 (-99)

COCO CW 98.42 95.27 (-3) 93.68 (-5) 87.51 80.64 (-8) 77.10 (-12) 89.21 44.92 (-50) 0.04 (-99)

Imagenet PGD 90.62 58.52 (-35) 29.96 (-67) 28.10 10.34 (-63) 3.44 (-88) 71.47 15.94 (-78) 1.07 (-98)

Imagenet APGD 90.62 57.26 (-37) 27.16 (-70) 28.10 11.46 (-59) 4.72 (-83) 71.47 4.21 (-94) 0.01 (-99)

Imagenet CW 90.62 87.72 (-3) 86.94 (-4) 28.10 21.00 (-25) 19.44 (-31) 71.47 11.62 (-84) 0.80 (-99)

Table 5. LLaVA classification accuracy on COCO 2014val and Imagenet 2012val. “LMM Query Decomp.” refers to classification with
context and query decomposition, as discussed in Sec. 4.5. “LMM plain” refers to classification without context and query decomposition.
“Visual Encoder” refers to CLIP/EVA-CLIP’s classification accuracy. Numbers in parenthesis show % change w.r.t. the Pre-attack accuracy.

suggests the efficacy of providing additional context against
adversarial input, possibly by helping LLMs recover object
attributes from the corrupted visual inputs and match with
the correct object. This can be useful when the task is to
identify the existence of some target objects (e.g., illicit ob-
ject detection) from images that could be intentionally ma-
nipulated, and in the worst scenario, be adversarial.

Interestingly, we also observe that for BLIP2-T5 and In-
structBLIP under PGD and APGD attacks, the PostS accu-
racy are higher than the normal setting. For APGD, they
are even higher than the pre-attack accuracy. We conjec-
ture this is due to the fact that APGD-S is too effective
on EVA-CLIP (0.01% classification accuracy post-attack),
and that BLIP2-T5 and InstructBLIP are solely relying on
the object description to generate the answer while ignoring
the adversarial visual input. The two LLMs therefore hal-
lucinate the object description as the answer. However, al-
though the post-attack accuracy is also low for CLIP (0.15%
under APGD S.), we do not observe the same behavior for
LLaVA. Possibly the reason is due to different ways LLaVA
and BLIP combine the two modalities. While LLaVA takes
visual input as standalone tokens, separately from text to-
kens, BLIP utilizes a Q-former, which blends two modali-
ties together and therefore possibly outweighing the visual
input signal with text’s.

4.5. Towards Real-World Application: Context-
Augmented Image Classification

In the previous section, we show that adding the correct
object context enhances LMMs’ robustness against adver-
sarial images. In practice, the correct context is typically
unknown. However, in the case of closed-world image
classification, where the list of object classes are fixed, we
can decompose each question into multiple existence ques-
tions. Each question queries the presence of one object
class, along with the context corresponding to that object.
Afterwards, we choose the object with the highest confi-
dence from the LLM’s final projection head. We term our
approach query decomposition.

While this solution may appear to be brute-force, such a
scheme is inherently able to support making each query in

parallel, thereby improving the efficiency. Nevertheless, we
would like to demonstrate how we can apply our findings
towards real-world setting, and hope this approach presents
a viable starting point that opens the door to future work. To
see whether our proposed query decomposition may work,
we conduct experiments using COCO 2014val and Ima-
genet [14] 2012 val. For each image, we randomly select
20 object classes while ensuring the correct object class is
included. Results are shown in Table 5. We again observe
noticeable improvements on robustness, just like in Table 4.
For example, with the context and query decomposition un-
der “LMM Query Decomp”, the percent drops for COCO
are mostly 10% smaller, and 20% smaller for Imagenet,
comparing to post-attack accuracy drops without context as
shown under “LMM plain Acc” columns.

Notably, when query decomposition is utilized to insert
context, LMM’s performance on ImageNet classification is
greatly boosted. This can be seen by comparing the pre-
attack performance under “LMM Query Decomp” and un-
der “LMM Plain Acc”.

5. Conclusion

In this study, we systematically evaluate the susceptibility
of LMMs to visual adversarial inputs across a diverse ar-
ray of tasks and datasets. Our findings suggests LMMs are
highly vulnerable to visual adversarial attacks, even when
such adversaries are crafted with respect to the visual model
alone. On the other hand, we find that LMMs are “ro-
bust” when the query and attack target does not match.
Such characteristics indicates the traditional task-specific
adversarial generation techniques are not universally effec-
tive against current LMM, and points to the need for fur-
ther research into new adversarial attack strategies, particu-
larly in the context of zero-shot inference. Finally, we find
adding context about the querying object improves LMMs’
visual robustness. We therefore propose a strategy to de-
compose questions into multiple existence questions asso-
ciated with the corresponding context, which achieved no-
table improvements in robustness on COCO and Imagenet
classification.
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