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Abstract

Ensuring the legal usage of deep models is crucial to
promoting trustable, accountable, and responsible artifi-
cial intelligence innovation. Current passport-based meth-
ods that obfuscate model functionality for license-to-use
and ownership verifications suffer from capacity and quality
constraints, as they require retraining the owner model for
new users. They are also vulnerable to advanced Expanded
Residual Block ambiguity attacks. We propose Stegano-
graphic Passport, which uses an invertible steganographic
network to decouple license-to-use from ownership verifica-
tion by hiding the user’s identity images into the owner-side
passport and recovering them from their respective user-
side passports. An irreversible and collision-resistant hash
function is used to avoid exposing the owner-side pass-
port from the derived user-side passports and increase the
uniqueness of the model signature. To safeguard both the
passport and model’s weights against advanced ambiguity
attacks, an activation-level obfuscation is proposed for the
verification branch of the owner’s model. By jointly training
the verification and deployment branches, their weights be-
come tightly coupled. The proposed method supports agile
licensing of deep models by providing a strong ownership
proof and license accountability without requiring a sepa-
rate model retraining for the admission of every new user.
Experiment results show that our Steganographic Passport
outperforms other passport-based deep model protection
methods in robustness against various known attacks.

1. Introduction
To foster Artificial Intelligence (AI) diffusion and applica-
tion, AI as a Service (AIaaS) has emerged as a lucrative
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Figure 1. The conceptual overview. The owner holds the owner-
side passport and the steganographic key, which are used to verify
the licenses and reveal the user IDs, respectively. The verification
branch of the deep model is trained with the constraint of the sig-
nature. Upon licensing, the user receives the user-side passport
and the deployment branch of the deep model.

business model that offers across-the-broad access to high-
performance machine learning models with subscription-
or transaction-based payment schemes. The customers can
submit inputs to the remote server and receive the infer-
ence or classification results of machine learning processes
through application program interfaces (APIs). As com-
plex models of high capabilities in AIaaS are offered as
“turnkey” solutions to potentially anyone, they have huge
potential to be misused and abused. Ownership and user li-
cense verifications are the first step towards accountability
of responsible use of AI services.

Ownership verification has long been a primary tool to
protect deployed deep models against intellectual property
(IP) infringement and unauthorized model replication [13].
Numerous approaches have been proposed, such as water-
marking [8, 27], fingerprinting[10, 23, 24], and backdoor
embedding [11, 14, 26]. These approaches typically aim
to enable the trained deep model to exhibit distinguishable
characteristics under specific conditions without sacrific-
ing its utility. To resist ambiguity attacks, passport-based
ownership verification scheme [5, 6, 20, 30] embeds digi-
tal passports during model training to obfuscate the primary
functionality until the obfuscated parameters are restored by
a genuine passport. The passport scheme provides access
control [5, 6] at the expense of some accuracy degradation.
Each passport is tied to a user model, retraining is required
to derive a new user model from the owner model for ev-
ery new passport issued. The recent passport-aware normal-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

12302



ization [30] avoids making structural changes to the target
model by training it jointly with a passport-aware branch.
The secret passport and passport-aware branch after train-
ing are kept by the model owner for future ownership ver-
ification and only the original passport-free target model is
released to the end users. By forgoing the usage control,
this method allows one deployed model to be used by var-
ious users but it also loses the accountability of inappro-
priate and unlawful use of the deployed model by different
licensees. Besides, it has been demonstrated that the pass-
ports of existing methods can still be counterfeited by the
more advanced ambiguity attack [3].

In usage authorization, one major limitation of existing
passport-based methods is the need to retrain the network to
incorporate different parameter modulations for every new
passport issued, which may cause uneven service quality
for different end users. Besides, retraining to accommodate
new user models is inflexible, non-scalable and not cost-
effective for complex models. This pitfall motivates us to
explore anti-forgery passports that allow fidelity verification
of deployed model to hold authorized users accountable for
misuse of their licensed models without having to retrain
the owner model when admitting new users. To this end, we
propose a novel Steganographic Passport to decouple user
license verification from ownership verification, as illus-
trated in Fig. 1. For ownership verification, the uniqueness
of the model weights is maintained by aligning them with
the hashed output of the owner-side passport, which allows
the model owner to prove the ownership and authenticity of
the distributed model. For license verification, any licensed
user’s hidden identity (ID) image can be extracted using the
user-side passport. Both owner-side and user-side passports
will pass the fidelity assessment as their visual similarity
is preserved by using steganography to hide the ID image.
To increase the sensitivity of the deployed model against
malicious tampering of passports and weights, we propose
an activation-level obfuscation for the verification branch
of the owner model. The weights of the deployment and
verification branches are tightly coupled by training them
jointly with a balance loss function. Our contributions can
be summarized as follows.

• A novel Steganographic Passport is designed based on
key-based invertible steganographic network to allow
both original model ownership and right-of-use of its de-
ployed model by multiple licensees to be verified without
requiring retraining.

• An activation-level obfuscation architecture is designed
to thwart forgery by tampering with the user-side pass-
ports or model weights.

• Extensive experiments are conducted to demonstrate
the state-of-the-art security performance of our stegano-
graphic passports—the creditability of its owner-side and
user-side passport verifications and its robustness against

various attacks, including ownership ambiguity attacks,
license ambiguity attacks, and removal attacks.

2. Background
The need to safeguard the deep model against misappropria-
tion and IP theft arises from the enormous cost of designing
and training a high-performance model from scratch. Given
redundancy inherent in the numerous parameters of deep
models, it is possible to embed a watermark into a model
for ownership identification without significantly impairing
its performance. The model can be watermarked either ex-
plicitly or implicitly. Explicit watermarking embeds the wa-
termark by modifying the weights [7, 10, 23, 27] or feature
maps [8] through a weight regularizer without compromis-
ing the original model performance. Implicit watermarking
(a.k.a prediction watermarking) deliberately trains a back-
door into the protected model to classify inputs with spe-
cific triggers to the predefined labels [11, 14, 22, 26, 28].
However, these techniques are found to be vulnerable to
ambiguity attacks as the embedded triggers can be replaced
by attackers to forge the ownership with a substitute wa-
termark. To mitigate this risk, model passports are intro-
duced [5, 6], where the affine scale and bias factors of nor-
malization functions are substituted with those derived from
the passport images {pγ , pβ}.

Let xl be the output of the l-th convolutional layer, and
µxl and σxl be its mean and standard deviation, respec-
tively. Then, the normalization function at the l-layer with
affine factors γl and βl is given by:

x̂l = γl · x̃l + βl,

where x̃l =
1

σxl

(xl − µxl).
(1)

By substituting γl and βl by the passport affine factors
γl
pγ

and βl
pβ

, the following passport normalization [5] is ob-
tained:

x̂l
p = γl

pγ
· x̃l + βl

pβ
. (2)

The sign sequence of γl
pγ

in Eq. (2) is constrained to
match a self-defined binary signature sequence. As large
magnitudes of γl

pγ
can be penalized, the gradients are kept

small to ensure that the signs of γl
pγ

are lazy-to-flip so as to
prevent the signature from being replaced by retraining the
model. To minimize the influence of passport normaliza-
tion on inference performance, Zhang et al. [30] proposed
a dual-branch passport structure. Its normalization function
is expressed in Eq. (3) and illustrated in Fig. 2a.{

x̂l = γl · x̃l + βl,

x̂l
p = γl

pγ
· x̃l + βl

pβ
,

(3)

where the passport-free output x̂l and the passport-aware
output x̂l

p are used for the deployment and ownership verifi-
cation, respectively. Besides, a two-layer perception (TLP)
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(b) Proposed passport architecture

Figure 2. The existing and proposed passport architectures. The
dual branches are enclosed in the dashed line box.

structure is also inserted before the affine factors to miti-
gate the strict limitations in managing the functionality of
normalization layers.

To protect against ambiguity attacks with oracle pass-
ports due to passport leakage, Liu et al. [20] used trapdoor
normalization to establish a direct correlation between the
signature and the passport through a hash function. The
collision-intractable hash function makes it virtually im-
possible for the attackers to reverse engineer a counterfeit
passport, even if they can compromise the signature. Re-
cently, Chen et al. [3] proposed an advanced ambiguity at-
tack called Expanded Residual Block (ERB) on passport-
based methods. This attack exploits the extensive solution
space of TLP to force-flip the signs of the scale factors ac-
cording to their forged passport without compromising the
model performance. In summary, existing model passport
methods aim only to resist the diverse ambiguity attacks
by obfuscating the normalization functionalities with im-
mutable passports. They do not allow admission of new
users and their right-of-use verification upon model deploy-
ment. This is an important measure to safeguard the interest
of AIaaS providers against revenue extorts by unauthenti-
cated usage.

3. Proposed method
3.1. Problem statement
We consider a practical licensing scenario of a deep model.
Besides being able to detect and verify the ownership of a
deployed model, the model owner should also be able to
verify usage permission. If the passport images {pγ , pβ}
are used as a unique proof to verify the ownership of the de-
ployed model, they cannot be used to verify the usage per-
mission granted to licensed users of that model. Although
new backdoor triggers or watermarks can be added to verify
each licensed user, the model needs to be retrained to learn
the new features. This is very restrictive and impractical as
it requires the model owner to fix the number of users and
their identities upfront. Therefore, our aim is to enable the
passport-based scheme to grant verifiable usage permission
of a deployed deep model to ad hoc registered users without
requiring retraining and without undermining the validity
and robustness of the model’s ownership proof.

3.2. Steganographic passport framework
Recall that in existing passport approaches [5, 6, 20, 30],
a forged passport image can also be used to pass the fi-

delity assessment if it bears a high visual similarity to the
genuine passport image. Inspired by advanced steganog-
raphy techniques, we apply the art of imperceptible secret
concealment to the passport-based scheme. The proposed
Steganographic Passport follows the dual-branch setting, as
illustrated in Fig. 2b.

We define an owner-side passport po = {poγ , poβ} as
the genuine passport images selected and held only by the
model owner for generating the affine scale and bias factors
accordingly. By feeding po into the model, the correspond-
ing owner-side passport feature maps are sequentially gen-
erated across the n passport layers. These feature maps are
then transformed into the affine factors for obfuscating the
verification branch, which will be described in Sec. 3.3. We
also introduce a new user-side passport, pu = {puγ

, puβ
},

which is obtained by hiding the ID image Iu provided by
a registered user into po. The user-side passport pu fills
the gap of existing passport-based limitation in meeting the
goal of Sec. 3.1. The model owner can license the deploy-
ment branch of the model to multiple registered users by
merely hiding each user’s ID image into po.

Anti-forgery owner-side passport. To avoid user-side
passports from exposing the visual content of the owner-
side passports, the owner-side passport is irreversibly trans-
formed to a unique model signature to ensure that the own-
ership cannot be forged by knowing any of the user-side
passports. SHA-512 [25] is used as the one-way function
for this mapping.

Before training the target model, the model owner hashes
the owner-side poγ to a binary signature ξl of passport layer
l, as follows:

ξl = {SGN(x) | x ∈ HASH(poγ )}, (4)

where SGN maps each bit of a binary input sequence from
{0, 1} to {−1, 1}. If the desired length of ξl is shorter than
512 bits, the excess bits of the hash output are truncated
from the beginning; Otherwise, we cycle the hash function’s
output until the required sequence length is obtained.

For a model with n passport layers, its overall model
signature is represented as {ξ1, ξ2, ..., ξn}. The strict
avalanche criterion of the hash function ensures that even
minor changes to the passport image will result in signifi-
cantly different affine factors, which prevents force-flipping
from forging the passport with high model performance fi-
delity. Together with the irreversibility property of SHA-
512, the genuine model signature ξ can only be generated
with the owner-side passport to thwart ownership imperson-
ation fraud. The signature

{
ξ1, ξ2, . . . , ξn

}
will be used

to constrain the model’s learning in the subsequent training
phase to transform them into unique model’s weights. A
detailed exposition of this process is provided in Sec. 3.3.

License verification via key-based deep steganogra-
phy. To support an agile licensing scheme that is capa-
ble of admitting and verifying any new user after the tar-
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get model has finalized its training phase, we need to de-
couple the license verification from the ownership verifica-
tion. To this end, we hide the user’s ID into the owner-side
passport by integrating the key-based scheme of Invertible
Steganographic Network (ISN) [21] within the Deep Image
Hiding Network (HiNet) framework [15]. The key-based
ISN is divided into two processes: forward hiding pass Hs

and reverse revealing pass H−1
s . The forward hiding pass is

used to obtain the user-side passport pu from the owner-side
passport po as follows:

pu = Hs(po, Iu), (5)
where Iu denotes the user’s ID image to be hidden into the
owner-side passport po.

The reverse revealing pass is utilized for license verifi-
cation. Using the private steganographic key ks, the model
owner can reveal the hidden user’s ID image from the user-
side passport pu:

I′u = H−1
s (pu,ks), (6)

where I′u denotes the revealed ID image of the licensed user.
The detailed architecture and algorithms of the hiding and
revealing passes are given in the Appendix.

3.3. Activation-level obfuscation
To counteract sophisticated ambiguity attacks, an
activation-level obfuscation is proposed to safeguard
the verification branch against alterations of both the
passport and the model’s weights.

Immutable passport. As illustrated in Fig. 2b, the
passport-affine factors of layer l can be calculated from the
passport feature maps plo by:

γl
poγ

= Φ
(
Π
(
ploγ

))
, and βl

poβ
= Φ

(
Π
(
ploβ

))
, (7)

where Φ and Π denote the TLP and the global average pool-
ing, respectively.

Inspired by the controllable rectifiers of the Dynamic
ReLU [2], we make γl

poγ
and βl

poβ
the dependent variables

of the activation function. This can be incorporated into a
dual-branch architecture as follows:{

x̂l = γl · x̃l + βl,

x̂l
po

= γl
poγ

· (γl
t · x̃l + βl

t) + βl
poβ

,
(8)

where γl and βl denote the original affine factors used in
the deployment branch, and γl

t and βl
t denote the additional

temporal affine factors used in the verification branch.
To simplify the expressions, let x̂l

t = γl
t · x̃l + βl

t. By
subjecting the outputs of Eq. (8) to an activation function
(e.g. ReLU) before feeding them to the next layer, the final
outputs of layer l are given by:{

xl
φ = max(x̂l, 0),

xl
φpo

= max(γl
poγ

· x̂l
t + βl

poβ
, 0).

(9)

The activation function used for the deployment branch
(top expression) in Eq. (9) is a regular ReLU, whereas the

activation function used for the verification branch (bottom
expression) can be viewed as a special case of Dynamic
ReLU. This way, the changes in the affine factors due to any
alterations of the owner-side passport po will lead to appar-
ent changes in the passport-aware output, xl

φpo
, but not in

the passport-free output, xl
φ.

Immutable deployment branch. Under the dual-
branch setting, the deployment and verification branches
share all the model’s weights but the affine factors. The de-
ployment branch has to be consistently updated according
to the updated passport-derived affine factors in the verifica-
tion branch. If the deployment branch cannot keep up with
the updates, the shared weights will overfit the verification
branch, causing gradient explosions. To keep the updates
of the two branches in tandem, the following balance loss
function is proposed to train the model by explicitly align-
ing the affine factors in Eq. (8):

Lb=

n∑
l=1

(
Ly(γ

l, γl
t ·γl

poγ
)+Ly(β

l, βl
t ·γl

poγ
+βl

poβ
)
)
, (10)

where ℓ1 norm is used for Ly, and n is the total number of
passport layers.

This loss function aims to strike an equilibrium per-
formance between the two branches. After the model is
trained, the verification branch is removed from the model
before it is licensed to any user. As the model trained with
the balance loss function will have negligible accuracy dif-
ference between the two branches, any modification on the
deployment branch would amplify the mean absolute dif-
ference. By comparing the accuracy difference between the
two branches, the integrity of the model can be validated.

Immutable verification branch. During the target
model’s training phase, the owner uses the model signature{
ξ1, ξ2, . . . , ξn

}
to constrain the update of model’s weights

with the following signature loss function:

Ls =

n∑
l=1

max
(
ϵ− ξl ·Π

(
ploγ

)
· γl

poγ
, 0

)
, (11)

where ξl and ploγ denote the l-th layer’s signature and pass-
port feature map, respectively, and ϵ is a small constant.

Ls encourages the signs of the product Π
(
ploγ

)
· γl

poγ

to align with that of ξl, while keeping the magnitude of this
product low. Since ploγ and γl

poγ
are the outputs of the con-

volution and TLP, respectively, the weights of the convolu-
tion layer and TLP become tightly coupled. The unique-
ness of ξl in Eq. (11) contributes to the distinctiveness of
the weights. Any adjustment to the TLP will directly af-
fect the convolution output. This property helps to prevent
advanced ambiguity attacks, especially ERB, which mali-
ciously alter the weights of the TLP to force-flip the signs
of the product to align it with the forged signature.

3.4. Training objectives
The one-time training pipeline consists of training the key-
based ISN and the target model.
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Training the key-based ISN. The key-based ISN is
trained once independently of the target model to enhance
the hiding invisibility and the revealing quality by the fol-
lowing loss function:

LISN = Lh(po, pu) + Lr(Iu, I
′
u). (12)

Both Lh and Lr utilize the ℓ2 norm for distance calcula-
tion. po and Iu are randomly sampled in the training phase.

Training the target model. Given a target model, we
denote the models with only the weights of the deployment
branch as M, and those with only the weights of the po-
based verification branch as Mpo . Three loss functions are
used to train the dual branches parallelly. The loss function
for model performance is defined as:

Lf =
1

Ntr

Ntr∑
i=1

(Lc (M (xi) , yi)+Lc (Mpo
(xi) , yi)), (13)

where xi and yi are respectively the i-th sample and its label
from Ntr training samples, and Lc is the cross-entropy loss.

Together with the signature loss Ls and the balance loss
Lb, the total loss is defined as:

Lt = Lf + ωsLs + ωbLb, (14)

where the signature and balance losses are weighted by ωs

and ωb, respectively.

3.5. Inclusive verification chain
To confirm the ownership and legal usability of a deployed
model M, we propose the following verification chain in-
volving the model owner O, the licensed user U, and the
deployed model M.

Ownership verification. The ownership verification
comprises three tests: VI

O, Vf
O and Vs

O for the verification
of the model integrity, performance fidelity and signature
accuracy, respectively. By replacing the passport layers’
affine factors with the ones derived from the owner-side
passport po, the deployed branch M becomes a verifiable
branch Mpo

.
Let F(·, ·) denote the model performance. VI

O tests if
M has been modified based on the absolute performance
difference (AD):

VI
O⇐⇒ 1

Nt

∣∣∣∣∣∣
Nt∑
j=1

(
F
(
Mpo

, xt
j

)
−F

(
M, xt

j

))∣∣∣∣∣∣<τd, (15)

where xt
j is the j-th sample from total Nt test samples, and

τd is a small predefined passing threshold.
Vf
O verifies the performance fidelity by:

Vf
O ⇐⇒ 1

Nt

Nt∑
j=1

F
(
Mpo

, xt
j

)
> τf , (16)

where τf is the predefined minimum accuracy to pass the
performance fidelity verification.

To validate the signature accuracy, the owner uses Eq. (4)
to transform poγ into the model signature ξ =

{
ξ1, ξ2, . . . , ξn

}
. By comparing each element of ξ with

those of ξ∗ extracted from Mpo , Vs
O checks the sign agree-

ment (SA) by:

Vs
O ⇐⇒ 1

Nξ

Nξ∑
b=1

(ξb ∧ ξ∗b ) ≥ τξ, (17)

where Nξ is the total length of ξ. τξ is a predefined error
tolerance only for the post-distribution verification. Other-
wise, the SA of an untainted pre-deployment model has to
be 100% (i.e., τξ = 1) to satisfy Vs

O.
Remark 1: Before distributing the deployed model M,

the owner O is required to disclose the evidence of compli-
ance with VI

O, Vf
O, and Vs

O to establish the credibility of the
ownership claim of M.

License verification. Upon verifying that the model M
deployed by the licensed user U complies with the criteria
set by VI

O, Vf
O, and Vs

O, a provable association between the
licensed user U and the model owner O can be established
by two license verification tests: Vp

L for passport image sim-
ilarity, and VI

L for ID image similarity.
Upon receiving pu submitted by the user U, the owner

can compare the PSNR between the user and owner pass-
port images by:

Vp
L ⇐⇒ PSNR(po, pu) > τp, (18)

where τp is the predefined visual similarity threshold for
successful verification.

The reverse revealing pass is utilized for license verifi-
cation. Using the private steganographic key ks, the model
owner can reveal the hidden user’s ID image I′u from the
user-side passport pu by Eq. (6). VI

L tests the visual similar-
ity between Iu and the revealed ID image, I′u of the licensed
user by comparing the PSNR with predefined threshold τr:

VI
L ⇐⇒ PSNR(Iu, I

′
u) > τr. (19)

Remark 2: Once Vp
L and VI

L are satisfied, on the condi-
tion that the model M passes the three ownership verifica-
tion tests of the owner O, the user U is proven to be a legal
licensee of M.

4. Experiment
4.1. Setup
Generally, we follow the settings on image classifi-
cation tasks in existing passport approaches, including
dual-branch DeepIPR [6], Passport-Aware Normalization
(PAN) [30], and Trapdoor Normalization (TdN) [20].
AlexNet [17] and ResNet-18 [9], with Batch Normal-
ization (BN) [12] and Group Normalization (GN) [29],
are employed to evaluate and compare the performance.
The datasets used in the classification experiments include
CIFAR-10, CIFAR-100 [16], Caltech-101, and Caltech-
256 [18]. Besides, DIV2K [1] is used to train the key-based
ISN. For passport images pγ and pβ , we randomly select
them from the test set of COCO dataset [19]. For stegano-
graphic key image ks, we randomly select it from DTD
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Table 1. Inference performance (in %) for deployment/verification. ↑ / ↓ denotes higher / lower value for better performance.
CIFAR-10 CIFAR-100 Caltech-101 Caltech-256

ResNet-18 BN↑ GN↑ BN↑ GN↑ BN↑ GN↑ BN↑ GN↑ Mean↑ AD↓
Clean 94.69 93.85 76.42 73.57 74.58 70.73 55.43 49.52 73.60 –

DeepIPR 93.04 / 94.05 93.81 / 93.69 60.76 / 62.88 72.19 / 71.15 73.84 / 73.22 65.08 / 63.33 41.53 / 44.12 43.81 / 42.67 68.01 / 68.14 1.30
PAN 94.70 / 94.61 93.63 / 93.67 75.97 / 74.70 72.19 / 71.49 73.79 / 72.94 68.36 / 65.37 55.37 / 54.33 44.73 / 43.51 72.34 / 71.33 1.03
TdN 94.65 / 94.68 93.57 / 93.57 76.00 / 75.61 71.25 / 71.42 74.12 / 73.05 67.63 / 67.51 54.90 / 54.28 44.90 / 44.27 72.13 / 71.80 0.38
Ours 94.89 / 94.89 93.79 / 93.80 76.10 / 76.10 70.84 / 70.83 73.56 / 73.56 67.01 / 67.01 53.65 / 53.65 44.01 / 44.01 71.73 / 71.73 0.00

AlexNet BN↑ GN↑ BN↑ GN↑ BN↑ GN↑ BN↑ GN↑ Mean↑ AD↓
Clean 91.20 90.27 68.40 65.72 71.58 68.70 44.24 41.18 67.66 –

DeepIPR 81.80 / 90.76 89.90 / 90.20 45.71 / 51.77 64.89 / 64.16 67.91 / 65.95 67.80 / 67.06 31.39 / 36.25 40.69 / 39.73 60.14 / 63.24 3.07
PAN 91.51 / 91.29 90.22 / 90.39 68.46 / 66.44 50.60 / 56.71 71.03 / 70.90 66.95 / 66.71 44.93 / 41.13 40.03 / 38.84 66.47 / 65.31 1.32
TdN 91.28 / 91.02 90.08 / 89.80 68.71 / 68.07 64.54 / 63.77 70.45 / 69.44 68.31 / 66.38 45.36 / 44.82 42.39 / 37.88 67.64 / 66.40 1.24
Ours 91.39 / 91.38 89.77 / 89.77 67.86 / 67.85 63.36 / 63.34 71.98 / 71.98 68.42 / 68.42 46.10 / 46.07 41.10 / 41.12 67.50 / 67.49 0.01

dataset [4]. For hyper-parameters ϵ, ωs, and ωb, we empiri-
cally set them as 0.1, 1, and 1. By default, the last three/five
normalization layers of AlexNet/ResNet-18 are set as the
passport layers.

4.2. Verification assessment

We evaluate the effectiveness of the proposed stegano-
graphic passport by the verification and inference perfor-
mances. All the models are trained with 200 epochs, uti-
lizing a multi-step learning rate that decreases gradually
from 0.01 to 0.0001. A twofold verification is adopted
in our method, which entails a) an ownership verification
{VI

O,Vf
O,Vs

O} and b) a license verification {Vp
L,VI

L}.
For ownership verification, our steganographic passport

exhibits the lowest AD values of 0.00% on ResNet-18 and
0.01% on AlexNet for VI

O with the correct owner passport,
as presented in Table 1. This is attributed to the effect of the
balance loss function, which ensures that the updates of the
affine factors of the two branches are more synchronized
during training. For Vf

O, due to the stronger anti-forgery
passport constraint imposed by our method, there is a slight
decrease in model inference performance compared to TdN
and PAN, but it still outperforms DeepIPR. As shown in Ta-
ble 1, the average deployment and verification branch accu-
racies of our method on ResNet-18 are both 71.73%, which
is only 0.40% and 0.07% lower than the accuracies of the
deployment and verification branches, respectively of TdN.
The performance of our method peaks in several cases high-
lighted with the bold-printed percentages. For instance, it
achieves the top score of 71.98% for AlexNet on Caltech-
101. For Vs

O, the SAs of all four methods achieve 100% in
all the settings.

For license verification, a comparison of the visual im-
ages for Vp

L and VI
L is presented in Fig. 3. A very high

PSNR of 41.47 between the original ID image and the ID
image revealed using the genuine steganographic key is ob-
tained, indicating a high level of visual similarity between
them. In contrast, using forged keys to reveal the ID image
results in significantly lower PSNR. Specifically, a PSNR
of only 15.48 is obtained for the revealed ID images by us-
ing a random noise-like forged passport image and 32.56 by
using a steganographic key image selected randomly from
the same distribution as the genuine key image. Further-
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Figure 3. Hiding and revealing performance of the key-based ISN.

more, upon repeating this evaluation 100 times, the average
PSNRs obtained from revealing the ID image by using ran-
dom noise-like forged and randomly-selected key images
are 15.68 and 35.89, respectively.

Based on the above observations, we empirically set τd,
τξ, τp and τr to 0.05%, 93%, 39 and 41 for VI

O, Vs
O, Vp

L and
VI
L, respectively. For Vf

O, τf is calibrated according to the
task as the same clean model trained for different tasks has
different inference performance.

4.3. Robustness against ownership ambiguity at-
tacks

Ownership ambiguity attacks aim to falsely claim the own-
ership of a deep model by satisfying the conditions outlined
in Remark 1. Owing to the avalanche criterion provided by
the hash function, attacks that attempt to forge the genuine
passport images by random selection [6, 20, 30] or tamper
with the user-side passport images will fail on Vs

O due to
the significant signature deviation. Additionally, it is com-
putationally intractable to reverse the uniformly random and
collision-resistant cryptographically secure hash function to
recover genuine passport images [20]. Thus, we specifi-
cally focus on the state-of-the-art ERB ownership ambigu-
ity attack, under the strict assumption that the attacker has
stolen both the deployment and verification branches, along
with 10% of original training data. The individual version
of ERB, i.e., IERB is used to attack the models with BN.

ERB demonstrated its effectiveness by retraining the
model to fit a forged passport. In ERB’s original configu-
ration, attackers directly fabricate the passport layer’s affine
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Table 2. Inference performance fidelity (in %) for deployment/verification under ERB ambiguity attacks with BN. FSA and BDR refer to
the forged signature accuracy and the bit difference rate between benign and forged signatures, respectively.

CIFAR-10 CIFAR-100 Caltech-101 Caltech-256
ResNet-18 ERB↓ FSA↓ BDR↓ ERB↓ FSA↓ BDR↓ ERB↓ FSA↓ BDR↓ ERB↓ FSA↓ BDR↓ Mean↓ AD↑
DeepIPR 94.19 / 94.39 100 50.22 62.92 / 64.06 100 49.49 73.56 / 73.89 100 50.23 46.05 / 46.39 100 49.37 69.18 / 69.68 0.50

PAN 94.64 / 94.72 100 48.71 75.28 / 75.10 100 49.57 73.11 / 73.05 100 49.30 53.62 / 53.58 100 50.08 74.16 / 74.11 0.90
TdN 94.48 / 94.24 100 53.09 75.91 / 66.66 100 48.20 73.22 / 64.54 99.96 50.04 54.49 / 34.61 100 51.76 74.53 / 65.01 9.51
Ours 94.70 / 92.87 100 49.53 75.85 / 50.27 99.96 49.18 73.00 / 50.06 99.92 51.05 52.87 / 38.44 100 49.18 73.82 / 57.91 16.20

AlexNet ERB↓ FSA↓ BDR↓ ERB↓ FSA↓ BDR↓ ERB↓ FSA↓ BDR↓ ERB↓ FSA↓ BDR↓ Mean↓ AD↑
DeepIPR 26.54 / 85.72 100 47.61 46.61 / 51.97 100 50.11 63.56 / 67.83 100 52.65 32.61 / 34.34 100 51.08 42.31 / 59.97 17.64

PAN 91.56 / 82.06 100 52.43 68.36 / 60.29 100 49.87 70.37 / 69.17 100 53.38 44.41 / 40.15 100 52.56 68.68 / 62.92 5.76
TdN 90.16 / 53.16 100 51.33 66.96 / 1.65 98.96 49.78 70.26 / 37.19 98.96 49.96 44.14 / 0.28 95.31 48.24 67.88 / 23.07 44.81
Ours 84.90 / 16.11 99.57 50.24 67.38 / 1.02 96.75 49.72 71.26 / 35.86 98.96 50.33 45.00 / 4.93 100 51.17 67.14 / 14.48 52.66
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Figure 4. Results of license ambiguity attacks on our method.
Batch Normalization is used in the evaluated models. We set the
Z-score as 2.33 for 98% confidence interval (CI).

factors, leveraging the network’s differentiable architecture
to deduce the passport images. However, this possibility
is denied by the hash functions of our method and TdN.
Therefore, while maintaining the original settings of ERB
for DeepIPR and PAN, the passport layer’s affine factors
in our method and TdN are to be derived from the corre-
sponding hash-related functions. Table 2 displays the ex-
perimental results. To successfully meet the criteria of Re-
mark 1, the attack must achieve 100% of forged SA (FSA)
for Vs

O. As evinced by the results presented in Sec. 4.2, the
legitimate owner is able to comply with this stringent crite-
ria. The experimental results show that the attacks on TdN
and our method can only achieve 100% FSA for four and
three model-dataset cases, respectively. Conversely, despite
having around 50% BDR between the forged and genuine
signatures, DeepIPR and PAN fail to withstand this attack
with 100% FSA on all the model-dataset combinations. Be-
sides, our method consistently produces the lowest mean
performance fidelity of the verification branch for Vf

O, es-
pecifically for ResNet-18 (57.91%) and AlexNet (14.48%).
Furthermore, our method also exhibits the highest AD that
surpasses τd of Vd

O by a significant margin. The results,
taken holistically, corroborate that our method has the high-
est resilience against ambiguity attacks.

4.4. Robustness against license ambiguity attacks
Two license ambiguity attacks are considered. The first at-
tack is to reveal the attacker’s ID image by manipulating the
genuine user-side passports. The second attack is to reveal
the attacker’s ID image from the genuine user-side passport
image by forging the steganographic key image.

Forged user-side passport. To simulate this attack, we

retain the ISN’s weights and forge user-side passports with
the attacker’s ID images by minimizing the reveal loss Lr

between the original forged ID images and revealed forged
ID images. The attack was performed by randomly sam-
pling 100 owner-side passport images to generate 100 cor-
responding user-side passport images, and then using the
Adam optimizer on each user-side passport image for 1000
iterations with a learning rate of 0.001. The progression of
the attack is depicted in Fig. 4a. The mean PSNR between
the original forged ID images and their revealed forged ID
images increases and the mean PSNR between the forged
user-side passport images and genuine owner-side passport
images decreases with iterations. As a result, it becomes
impossible for the attacker to simultaneously satisfy the cri-
teria of both VI

L and Vp
L.

Forged steganographic key. In this experiment, the at-
tacker steals the key-based ISN to forge the steganographic
key image. We initialize this attack by randomly sampling a
noise vector from a Gaussian distribution 100 times. Corre-
spondingly, we also randomly sample a target forged ID im-
age from the distribution of genuine ID images 100 times,
ensuring that there is no overlap between the forged and real
images. The forged key images are obtained by an Adam
optimizer with a learning rate of 0.001 over 1000 iterations.
The progress of this process is depicted in Fig. 4b, where the
shaded region marks the range of average PSNRs obtained
over 100 rounds of attack. For the forged key images, the
deviation is small and the purple shaded region is not vis-
ible for the scale of the plot. These observations indicate
that this attack fails to satisfy the criteria of VI

L.

4.5. Robustness against removal attacks
We consider removal attacks that happen on the deploy-
ment branch when that branch is stolen by the attacker or
abused by the licensed user. Unlike the pre-deployment
model ownership claim in Sec 4.3, the model may be delib-
erately or maliciously altered after its deployment without
compromising its utility, τξ for Vs

O needs not be infinitely
close to 1 to claim the ownership of the deployed model.

Fine-tuning. We consider a transfer-learning task by
fine-tuning the deployment branch of a pretrained dual-
branch model for 100 epochs at a learning rate of 0.001.
As shown in Table 3, our method has the second-highest
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Table 3. The performance fidelity (in %) of deployment model under fine-tuning attacks. The value in bracket is the signature accuracy.

ResNet-18 CIFAR-10 to CIFAR-100 CIFAR-100 to CIFAR-10 Caltech-101 to Caltech-256 Caltech-256 to Caltech-101 MeanBN GN BN GN BN GN BN GN
DeepIPR 73.81 (96.16) 70.71 (95.23) 92.10 (99.10) 90.98 (99.45) 48.53 (99.49) 41.48 (99.30) 76.05 (99.92) 71.75 (100) 70.68 (98.58)

PAN 71.73 (74.30) 68.15 (96.37) 91.97 (78.71) 90.46 (99.34) 47.61 (81.29) 39.51 (84.53) 79.96 (100) 71.64 (99.97) 70.13 (89.31)
TdN 70.77 (56.05) 69.43 (62.70) 91.86 (87.50) 89.93 (73.87) 46.55 (90.51) 39.88 (82.30) 77.12 (96.09) 71.58 (82.81) 69.64 (78.98)
Ours 64.13 (98.60) 65.11 (93.91) 92.28 (96.17) 90.22 (93.86) 43.91 (98.24) 37.48 (97.11) 76.09 (99.09) 69.04 (99.26) 67.28 (97.03)
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Figure 5. The performance of our method under random and ℓ1
norm pruning attacks.

average SA of 97.03%. Given the avalanche criterion of the
hash function, a false passport will lead to substantially high
signature bit errors. The model owner can still attest the
ownership under Vs

O with this small signature error. This is
because both Vf

O and VI
O can still be fulfilled by applying

this slightly mismatched signature obtained from the fine-
tuned deployment branch to the original dual branch model
kept by the model owner. Compared to other passport-based
methods, our method has the lowest average performance
fidelity upon fine-tuning, making it less attractive to attack
our model.

Pruning. Two prune strategies, i.e., random pruning and
ℓ1-norm pruning are evaluated. For each model, the prun-
ing rate was increased from 0% to 100% with a step size of
10%. The results are shown in Fig. 5. The SA remains rel-
atively high and stable even when the model performance
starts to drop abruptly. For example, in Fig. 5a, a 100% sig-
nature detection accuracy is preserved at 80% pruning rate
while the accuracy of the pruned model has fallen to around
50%. This implies that the pruned model can still pass Vf

O

and Vs
O unless the pruning rate is so high that it renders the

model unusable. Additionally, the large AD between the
two branches also signifies that the model has been modi-
fied, as stated in Sec. 3.5.

4.6. Ablation study
This section investigates the variations of our method with-
out the TLP structure and with other activation functions.

Without TLP. We examine the inference performance
fidelity when the TLP is removed from the BN variants of
ResNet-18 and AlexNet, and compare their performances
across different datasets. The results presented in Table 4
indicate that the drop in inference performance is trivial for
models without TLP compared to their corresponding TLP
counterparts. The higher AD of AlexNet, 0.23% as opposed
to 0.00% of ResNet-18, implies that TLP has negligible im-
pact on the performance fidelity of our method for complex
networks but is essential to keep for simpler networks.

Table 4. Inference performance fidelity (in %) for the deploy-
ment/verification branches of our method without TLP.

CIFAR-10 CIFAR-100 Caltech-101 Caltech-256

ResNet-18 BN↑ BN↑ BN↑ BN↑ AD↓
94.47 / 94.47 75.19 / 75.20 71.53 / 71.53 50.46 / 50.46 0.00

AlexNet BN↑ BN↑ BN↑ BN↑ AD ↓
91.05 / 91.25 68.26 / 68.65 70.11 / 70.11 42.42 / 42.75 0.23

Table 5. Performance (in %) integrating Sigmoid and LeakyReLU
in our proposed passport architecture, trained on CIFAR-10.
Dep/Ver refer to deployment/verification branch, respectively.

ResNet-18-BN Inference Ambiguity attack (ERB)
Dep / Ver SA AD Dep / Ver FSA AD

Sigmoid 94.60 / 94.66 100 0.06 94.49 / 17.76 99.84 76.73
LeakyReLU 94.96 / 94.55 100 0.41 94.46 / 91.93 100 2.53

With other activation functions. To assess the impact
of different activation functions on our method, we also in-
corporate Sigmoid and LeakyReLU into ResNet-18 with
BN. For each activation function, the inference performance
and robustness to the ERB attack are evaluated and pre-
sented in Table 5. Both activation functions demonstrate
comparable performance fidelity between the deployment
and verification branches, with SA of 100% for both acti-
vation functions, and AD of 0.06% and 0.41% for Sigmoid
and LeakyReLU, respectively. The Sigmoid-based model
is more resilient to ERB attack than the LeakyReLU-based
model, with a significantly higher AD of 76.73%. Nonethe-
less, we can adapt the tamper threshold τd to the activation
function for higher ambiguity attack resistance.

5. Conclusion
In this paper, we introduce Steganographic Passport, a novel
passport-based model IP licensing protection method that
allows the original model ownership to be verified with
the passport-aware branch and individual licensees to be
verified from the passport-free deployed model without re-
quiring retraining the model for the admission of each li-
censed user. Legal license verification is made possible
by hiding and revealing the licensed user’s ID image in a
user-side passport of the deployed model by the invertible
steganographic network without compromising the accu-
racy and security of original model ownership verification.
Activation-level obfuscation is added to heighten the secu-
rity of both passports against ambiguity attacks. The affine
factors of the deployment and verification branches, as well
as the signatures and model’s weights are tightly coupled
during training to safeguard the owner-side passport and the
deployed model’s weights against malicious tampering to
succeed in forging the ownership or licenseship. The ex-
perimental results substantiate the resilience of our method
against a range of attacks, including ownership ambiguity
attacks, license ambiguity attacks, and removal attacks.
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