
TextNeRF: A Novel Scene-Text Image Synthesis Method based on Neural
Radiance Fields

Jialei Cui1, Jianwei Du2, Wenzhuo Liu1, Zhouhui Lian1*

1 Wangxuan Institute of Computer Technology, Peking University, China, 2 Southeast University, China

Figure 1. We propose a novel method that leverages NeRF to model real-world scenes and emulate the data collection process by rendering
novel views. In addition, detailed annotations including boxes and poses of each text are provided and photo-realistic text editing and
appearance changing are also achieved based on our method’s powerful geometric modeling capabilities.

Abstract

Acquiring large-scale, well-annotated datasets is essen-
tial for training robust scene text detectors, yet the pro-
cess is often resource-intensive and time-consuming. While
some efforts have been made to explore the synthesis of
scene text images, a notable gap remains between syn-
thetic and authentic data. In this paper, we introduce a
novel method that utilizes Neural Radiance Fields (NeRF)
to model real-world scenes and emulate the data collec-
tion process by rendering images from diverse camera per-
spectives, enriching the variability and realism of the syn-
thesized data. A semi-supervised learning framework is
proposed to categorize semantic regions within 3D scenes,
ensuring consistent labeling of text regions across vari-
ous viewpoints. Our method also models the pose, and
view-dependent appearance of text regions, thereby offer-
ing precise control over camera poses and significantly
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improving the realism of text insertion and editing within
scenes. Employing our technique on real-world scenes has
led to the creation of a novel scene text image dataset
(https://github.com/cuijl-ai/TextNeRF). Compared to other
existing benchmarks, the proposed dataset is distinctive in
providing not only standard annotations such as bounding
boxes and transcriptions but also the information of 3D
pose attributes for text regions, enabling a more detailed
evaluation of the robustness of text detection algorithms.
Through extensive experiments, we demonstrate the effec-
tiveness of our proposed method in enhancing the perfor-
mance of scene text detectors.

1. Introduction

The detection of text in natural images are pivotal in ad-
vancing numerous computer vision applications, includ-
ing industrial automation, image retrieval, robot navigation,
and autonomous driving. Despite the remarkable progress
in scene text detection, the inherent complexity of natural
scenes and the diverse manifestations of text present are still
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considerable challenges. These challenges necessitate large
amounts of annotated training data for algorithm optimiza-
tion. While public datasets [8, 9, 21] are available, they
often fall short in capturing the eclectic scenarios present in
real-world environments. This gap underscores the need for
tailored training data collection and annotation, a process
that is, however, costly and labor-intensive, particularly for
deep learning models.

To address this problem, researchers have turned to syn-
thetic data generation. Existing methods [5, 6, 14, 16, 35]
mainly rely on 2D static backgrounds or 3D graphics en-
gines for text image synthesis. Methods based on 2D static
backgrounds employ text placement and integration tech-
niques such as region selection, text warping, and color
matching but suffer from limited flexibility in data syn-
thesis and challenges in selecting appropriate backgrounds.
On the other hand, 3D graphics engine-based methods of-
fer greater control but still struggle to replicate the nuanced
complexity of real-world scenes.

Neural Radiance Fields (NeRF) [19], an emerging neural
rendering technique, provides an exciting avenue for real-
istic viewpoint synthesis by correlating spatial coordinates
and viewing angles to densities and radiances. NeRF uses
multi-layer perceptrons (MLPs) to represent scenes implic-
itly and enables high-fidelity image synthesis from novel
viewpoints using volume rendering. In this paper, we de-
velop a novel scene text image synthesis method that au-
thentically reconstructs scenes with NeRF and mimics the
image acquisition process to synthesize scene text images.
By leveraging NeRF’s geometric modeling capabilities, we
can evaluate the structural importance of each position in
a scene across different viewpoints and facilitate targeted
style transfers to enhance scene appearance. Additionally,
we employ a semi-supervised learning paradigm to achieve
the semantic modeling of local regions in 3D scenes, ensur-
ing consistent labeling of text areas across multiple view-
points. Building upon the semantic modeling of 3D re-
gions, we further model the surface poses of text areas, al-
lowing precise manipulation of text-to-camera positioning
and the determination of necessary camera poses for im-
age synthesis. This methodology not only allows for more
photo-realistic text editing in potential scene areas but also
broadens the diversity of synthetic data.

Our approach surpasses previous methods in the follow-
ing two aspects: Firstly, it reconstructs actual scenes, offer-
ing greater flexibility than 3D graphics engine-based meth-
ods. Secondly, it embeds text in genuine 3D space surfaces
rather than superimposing it on 2D images, which results in
synthetic effects that are more natural and visually pleasing.
To verify the efficacy of our approach, we create a dataset
of photo-realistic synthetic scene text images. The annota-
tion of this dataset not only includes conventional bounding
boxes and transcription attributes but also provides each text

instance with its 3D pose relative to the camera, enabling
a more nuanced assessment of text detectors’ robustness to
text perspective effects. To the best of our knowledge, this is
the first dataset to offer 3D pose attributes for text. We em-
ploy several representative text detectors in extensive exper-
iments from training and test perspectives, illustrating the
effectiveness of the proposed method in enhancing scene
text detecting performance and revealing their limitations.

The main contributions of our paper are threefold: (1)
We introduce a novel scene text synthesis method that har-
nesses the strengths of NeRF, enabling photo-realistically
scene text image synthesis with 3D controllability. (2) Our
semi-supervised learning framework for semantic model-
ing of 3D local regions ensures multi-view consistency of
generated text labels and provides the pose information of
text instances, thereby facilitating more accurate scene text
editing and camera positioning during synthesis. (3) We
propose the first scene text image dataset with 3D pose
attributes for each text instance, enabling a more detailed
evaluation of text detectors concerning perspective effects.

2. RELATED WORK
2.1. Scene Text Detection

Recent advancements in scene text detection are primarily
attributed to the integration of deep learning technologies
[17]. Generally, the scene text detection methods can be cat-
egorized into three main branches: regression-based, part-
based, and segmentation-based methods. Regression-based
methods, such as those introduced in TextBoxes++ [12]
and EAST [39], have shown remarkable efficiency by di-
rectly estimating the coordinates of text bounding boxes.
Part-based approaches, exemplified by SegLink [26], focus
on identifying smaller, manageable segments of text and
then heuristically assembling them to form complete text
instances. Segmentation-based techniques, like [15, 24, 27,
30, 33, 37], perform pixel-level classification to discern text
regions, followed by sophisticated post-processing to delin-
eate text boundaries. These methods benefit from large, an-
notated datasets, which educate the models on the diverse
manifestations of text in natural scenes.

2.2. Scene Text Image Synthesis

The paucity of annotated training images has led re-
searchers to craft synthetic datasets, such as MJSynth [7]
and SynthText [5], which generate text images by overlay-
ing textual content onto backgrounds. These datasets, how-
ever, often lack contextual realism. Zhan et al. [35] pro-
posed an enhanced approach that utilizes semantic segmen-
tation to ensure text is only placed on contextually appropri-
ate surfaces. The advent of 3D-based synthetic data gener-
ation, as seen in SynthText3D [14] and UnrealText [16], of-
fers greater control over environmental variables, producing
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more lifelike synthetic images that aid in training robust de-
tection models. Nonetheless, the efficacy of such synthetic
data is contingent upon the authenticity of the 3D models,
the capabilities of the rendering engines, and the diversity
of the text fonts used.

2.3. Neural Radiance Fields

The NeRF framework [19] has revolutionized the render-
ing of 3D scenes, enabling photorealistic image synthesis
from novel viewpoints. Its extensions, such as NeRF++ [36]
and Mip-NeRF [1, 2], have addressed specific challenges
like rendering unbounded scenes and anti-aliasing. To
mitigate NeRF’s computational intensity, approaches like
DVGO [25] and TensorRF [3] have been proposed, sig-
nificantly accelerating the training and rendering process.
Plenoxels [34] and Instant-NGP [20] further advance this
by dispensing with neural networks altogether or optimiz-
ing data structures, achieving training times on the order of
minutes and enabling nearly real-time rendering.

NeRF’s applicability extends beyond static scene ren-
dering, applying it to dynamic reconstructions of humans
and faces by [11, 31]. Its inherent capabilities for cap-
turing geometric and appearance nuances make it a pow-
erful tool for semantic scene understanding, as demon-
strated in [28, 29]. Moreover, NeRF showcases its versatil-
ity and transformative impact across diverse fields, includ-
ing medical imaging[4], satellite imagery[18], and robotic
perception[40].

3. METHOD

3.1. Scene Modeling

NeRF for scene modeling. We construct a scene’s paramet-
ric representation using a Neural Radiance Field (NeRF)
[19], which enables photo-realistic rendering from multi-
ple images captured at known camera poses. The scene is
encoded in a neural field, where a function Fθ(x,d) maps
a spatial location x and a viewing direction d to the cor-
responding density σ ∈ R and RGB color c ∈ R3. To
render an image from a specific viewpoint, we cast rays cor-
responding to the camera’s pose and integrate the radiance
along these rays to compute the final image:

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci, (1)

where Ti = exp(−
∑i−1

j=1 σjδj) represents the amount of
lights transmitted through the ray r to the sample i, ci is the
color of the sample i, and δi is the distance to the next sam-
ple. The differentiable nature of NeRF facilitates its train-
ing by minimizing the difference between the predicted and

ground-truth colors of the rays R:

Lcolor =
∑
r∈R

∣∣∣∣∣∣Ĉ(r)−C(r)
∣∣∣∣∣∣2
2
. (2)

To enhance the geometric consistency of the reconstructed
scenes, we add the distortion loss [2] as a regularizing term
to encourage a more focused distribution of weights along
the rays:

Ldist(s,ω) =

N−1∑
i=0

N−1∑
j=0

ωiωj

∣∣∣∣si + si+1

2
− sj + sj+1

2

∣∣∣∣
+
1

3

N−1∑
i=0

ω2
i (si+1 − si),

(3)

where s is a vector of the distance from all sample points to
the ray origin, and ω is a vector of the weights of all sample
points on the ray. Furthermore, we adopt the novel train-
ing paradigm, S3IM [32], which extends beyond traditional
pixel-wise Mean Squared Error (MSE) by considering the
structural coherence within a set of input images:

LS3IM = 1− 1

M

M∑
m=1

SSIM(P(m)(Ĉ),Pm(C)), (4)

where SSIM is the structural similarity, P(C) is a patch
randomly formed from a batch of rays/pixels, and M is the
repeat times of SSIM computing. The incorporation of the
S3IM loss significantly improves the NeRF model’s ability
to capture nonlocal structural relationships within the scene.
Thus, our NeRF’s loss function is a composite of the color
loss, the distortion loss, and the S3IM loss:

L = Lcolor + λdistLdist + λS3IMLS3IM, (5)

where λdist and λS3IM denote balance weights for the dis-
tortion loss and the S3IM loss, respectively. We leverage
instant-NGP [20] for its efficiency and flexibility as our base
representation to reconstruct scenes.
Appearance changing. To diversify the synthesized im-
ages, we implement an appearance editing operation on
the NeRF renderings. Instead of modifying the radiance
fields directly which is computationally demanding, we ap-
ply style transfer on each rendered image. We observe that
many style transfer methods are prone to introducing arti-
facts that can compromise the realism of the images, partic-
ularly in text regions. Therefore, we introduce a novel tech-
nique to preserve the scene’s geometric structures while per-
forming style transfer. We hypothesize that the importance
of a pixel for structural representation is inversely propor-
tional to its frequency of occurrence across multiple views.
Hence, we utilize a frequency-based structural importance
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Figure 2. Important components of our method. Based on NeRF’s high-quality modeling of the scenes, we respectively implement (a) semi-
supervised semantic learning across multi-views, (b) modeling text regions, (c) controllable camera setting for rendering target viewpoint,
(d) changing the appearance of rendered images, and (e) photo-realistic text editing on target region.

mask that dictates the degree of participation in style trans-
fer for each pixel. To generate this mask, we adopt the depth
information produced by NeRF to assess the frequency of
pixel occurrences across different views, thereby creating
a mask that identifies structurally important regions within
the image. Specifically, we manipulate the projection of
pixels between different views to calculate the frequency of
each pixel’s occurrence across views:

pct = F proj
cs→ct(pcs)

= dcsKctP
−1
ct PcsK

−1
cs pcs , (6)

where pcs and pct denote the corresponding points in the
source and target images, Kcs and Kct are the intrinsic
camera matrices, and Pcs and Pct are the camera poses,
respectively. Here, the conversion between European co-
ordinates and homogeneous coordinates has been omitted.
The depth dcs of the point pcs is obtained via volume ren-
dering along the ray’s samples. We map a pixel point in the
reference view onto a target view to validate its correspon-
dence. Furthermore, the corresponding point on the target
view will be re-projected back onto the original view, forti-
fying the geometric consistency across multiple viewpoints.

We employ PhotoWCT [10] as the style transfer method
for its efficiency, and we carefully select style images that
introduce distinct seasonal and climatic attributes. In this
manner, we can maintain the semantic integrity of a scene,

including legibility in text regions, while transforming the
environmental appearance of the images.

3.2. Text Region Modeling

Position-enhanced semantic representation of text re-
gions. To accurately delineate text regions within a scene,
we equip our NeRF with a region tailored semantic renderer
and formalize the task as a view-invariant function, as in
[38]. Unlike physical objects, text regions represent an ar-
tificial categorization of the scene surface and lack direct
correspondence with physical attributes. This challenges
the assumption in [38], where entities of similar shape and
appearance are likely to belong to the same class. To ad-
dress this issue, we add an additional positional encoding
of world coordinates with the input NeRF-features to the
semantic renderer. This empowers the renderer to discern
positional differences within geometrically similar regions,
yielding the improved delineation of text regions. With
the positionally enhanced semantic renderer integrated, our
NeRF’s representation of the scene becomes:

(σ, z) = Fθ1(γx1(x),d),

c = Fθ2(γd(d), z),

s = Fθ3(γx2(x), z). (7)

Here, γx1(·), γd(·) and γx2(·) represent the positional en-
coding functions for the position coordinates x and viewing
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direction d, which in this work are specifically the hash en-
coding, spherical harmonics and triangular wave function,
respectively. Therefore, it is feasible to employ volume ren-
dering to get the semantic label distribution along a ray:

Ŝ(r) =

N∑
i=1

Ti(1− exp(−σiδi))si, (8)

where si denotes the semantic probability distribution of a
sample, and the other terms are as defined in Sec 3.1. This
semantic representation is also employed to build custom
regions of the scene where we want to add text.
Semi-supervised learning by geometric consistency. As
shown in Fig. 2(a), our training methodology capitalizes
on NeRF’s geometric modeling strengths by implementing
a semi-supervised learning framework that minimizes the
need for exhaustive semantic annotations. We annotate a
sparse set of regions in a subset of training images and
directly supervise the semantic renderer with these labels.
For images without explicit annotations, we harness the ge-
ometric consistency inherent to NeRF to project semantic
labels across views. By establishing pixel-wise correspon-
dences through Eq. 6, we generate proxy labels for unanno-
tated images, allowing for effective learning of text seman-
tics across the scene:

Sproj
i (pi) = Sgt

j (F proj
i→j (pi)). (9)

The semantic loss is defined to encompass both labeled and
unlabeled data. For rays intersecting labeled semantic cat-
egories, a cross-entropy loss is directly applied, while for
rays without explicit semantic labels, proxy labels are ob-
tained through the aforementioned projection to calculate
the cross-entropy loss:

Lsem = −
∑
i∈Rl

Si log(Ŝ(ri))− λu

∑
i∈Ru

Sproj
i log(Ŝ(ri)),

(10)
where λu is a balancing weight for unlabeled data.
Text region labeling and editing. Upon completing the se-
mantic modeling of text regions, our approach allows for the
precise extraction of text area contours in the target view.
Unlike traditional methods, our method delineates the text
contours in 3D space by leveraging the geometry informa-
tion obtained from NeRF, and then projects them onto tar-
get 2D images. As shown in Fig. 2(b), we project the pixels
within the predicted text semantic regions from each ren-
dered view into 3D space through Eq. 11, generating a point
cloud representing the text surface:Xi

Yi

Zi

 = K × di ×

xi

yi
1

 , (11)

where (xi, yi) represents a pixel location in the 2D image,
di is the associated depth value, K is the camera’s intrinsic

parameter matrix, and (Xi, Yi, Zi) corresponds to the 3D
coordinates in the scene. To ensure a noise-free and smooth
representation, we employ a bilateral filter for point cloud
denoising, followed by a moving least squares smoothing
technique. For the 3D surface fitting, we implement an it-
erative least squares method which minimizes the sum of
squared distances between the observed points and the sur-
face. The minimum bounding rectangle for each text is de-
rived from the 3D fitted surface, ensuring alignment with
the quadrilateral annotations typical in public datasets.

Next, we define the 3D pose of the text regions, which
comprises a rotation matrix (R) and a translation vector (t).
To compute the rotation matrix, we employ a standard axis-
angle representation. We first calculate the 3D normal vec-
tor of the text surface, which becomes the z-axis. The long
and short sides of the bounding rectangle define the x and
y axes respectively. Finally, we compute the centroid of the
region and use it as the translation vector, completing the
3D pose representation of the text. We then project the 3D
pose and quadrilateral bounding box onto various camera
views to obtain the corresponding 2D annotations.

With the 3D geometric representation of a text region, we
can readily edit its textual content by rendering its frontal
view. Since NeRF does not decouple view-dependent at-
tributes such as shading and shadows from radiance, we
cannot modify only the text area in one frontal view. There-
fore, we simulate the view-dependent appearance by fixing
the camera viewpoint and changing the queried viewing di-
rection. All text editing operations are performed on a series
of frontal views with different appearances. For modifica-
tions of existing text, we leverage a stable diffusion model
[22] to erase the original text content according to its mask,
followed by adding new text to the erased area. For adding
new text to a custom frontal view region, as shown in Fig.
2(e), we first estimate its illumination and apply it to a new
plain text patch image. Then we blend the text patch with
the frontal view image to obtain the edited result. We make
slight adjustments to the rendering strategy when render-
ing an image with edited text regions. We treat rays pass-
ing through the text regions separately, replacing their color
with those of the edited result, while retaining the origi-
nal volume rendering approach for the remaining rays to
achieve a realistic editing effect.

3.3. Controllable Image Synthesis

Camera pose setting. To controllably synthesize images,
we develop a systematic approach for camera pose manip-
ulation that ensures accurate perspective effects of text re-
gions. This method primarily addresses two critical aspects:
achieving a uniform distribution of text orientations within
the synthetic dataset and enabling the generation of specific
images to uncover and mitigate model biases, thus con-
tributing to the development of more robust text detection
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models.
For precise implementation, we present a step-by-step

algorithm that circumvents the complexity of directly com-
puting camera poses: Text Position Selection: We first de-
fine the desired text location on the image plane. Ray Pro-
jection: A ray is projected from this position through the
center of the text region to establish the direction vector rel-
ative to the camera. Target Orientation: The target orien-
tation for the text region is set by calculating the rotation
matrix R that defines the text’s pose relative to the camera.
Area Proportion Adjustment: We control the text’s area
proportion on the image by scaling the text region’s projec-
tion, which in turn determines its depth from the camera.
Once the text region’s pose is established in camera coordi-
nates, we compute the transformation matrix to convert this
pose into the actual scene’s text region pose. Applying this
transformation to the camera achieves the required camera
pose for rendering the scene from the target viewpoint. Fig.
2 (c) shows the detailed camera pose establishment process.

4. EXPERIMENTS

In this section, we conducted extensive experiments on both
synthetic and real-world scene text datasets. Our method
was implemented to create a diverse set of images de-
rived from real scene text scenarios. The effectiveness of
each synthesis method was evaluated by training text de-
tectors on these synthesized images and testing them on
real-world datasets. A distinctive feature of our approach
is the capability to generate images from multiple view-
points within a single scene, thereby offering a more de-
tailed analysis of detector performance to perspective trans-
formations. Furthermore, we conducted ablation studies to
assess the impact of the structural importance mask on ap-
pearance changing and the role of positional encoding in
text region delineation.

4.1. Datasets.

Synthetic Datasets: We selected three synthetic datasets
for comparison. (1) The Verisimilar Image Synthesis
Dataset (VISD) [35] comprises 10,000 images synthesized
using background images from the COCO dataset. (2) The
Synthetic Image from 3D Virtual World (SynthText3D) [14]
includes 10,000 images generated from 30 virtual scenes.
(3) The UnrealText (UT) [16] dataset initially provided
728,000 English/Latin images, yet our quality control mea-
sures excluded images lacking text or predominantly black.
Consequently, we sampled 10,000 images to align with the
aforementioned datasets in quantity.
Real-world Datasets: The evaluation utilized three popu-
lar benchmark datasets: (1) ICDAR 2013 [8] (IC13), featur-
ing horizontally-oriented text; (2) ICDAR 2015 [9] (IC15),
consisting of incidental scene text with diverse conditions;

Figure 3. (a): The test metrics of trained NeRFs. (b): The spatial
text occurrence probability across the three real-world datasets.
(c): Text location distribution used during synthesis. (d): The t-
SNE reduced dimensionality visualization of clustered text poses.

and (3) MLT 2017 [21], focused on multilingual scene text
detection across nine languages and six scripts.
Our Synthetic Dataset: A collection of 300 real-world
scene text videos was collected as the foundation for our
dataset construction. Frames compromised by blurriness
were excluded, yielding between 50 to 80 sharp images for
each scene. Among them, 85% were allocated for training
our NeRFs, with the remaining 15% reserved for testing,
aligning with practices commonly adopted in NeRF-related
literature [2, 19, 36]. Camera parameters for each frame
were estimated utilizing COLMAP [23]. A subset of im-
ages, ranging from 1 to 3 per scene were annotated to de-
fine text regions. Individual scenes underwent training for
15 to 30 epochs, averaging between 10 to 30 minutes per
scene. During the scene modeling phase, we configured the
loss weight parameters as follows: λdist and λS3IM were set
to 0.001 and 1.0, respectively, while λu was adjusted to 0.3
in the text modeling phase. To assess the quality of train-
ing across various scenes, we computed the PSNR, SSIM,
and LPIPS metrics for all NeRF models, obtaining average
values of 28.96, 0.822, and 0.147, respectively. A box plot
distribution of these metrics across all test images from dif-
ferent scenes, as illustrated in Fig. 3(a), confirms the con-
sistency of NeRF training with our expectations.
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Train dataset
DB EAST

ICI3 ICI5 MLT17 ICI3 ICI5 MLT17

P R F P R F P R F P R F P R F P R F
VISD-10k 71.41 66.39 68.81 70.89 55.22 62.08 56.49 36.70 44.49 69.13 68.44 68.78 65.96 63.99 64.96 46.73 40.53 43.41
ST3D-10k 71.31 64.47 67.72 75.84 57.73 65.56 59.87 41.71 49.17 69.40 54.50 61.05 74.01 60.04 66.30 54.63 43.40 48.37

UT-10k 79.69 51.60 62.64 76.40 48.77 59.54 69.08 39.70 50.42 76.58 64.20 69.85 64.98 52.96 58.36 54.99 47.93 51.22
Our-10k 73.22 67.44 70.21 74.91 59.64 66.41 64.13 46.22 53.72 74.15 66.52 70.13 71.44 66.21 68.73 60.93 47.24 53.22

Real 72.66 46.12 56.42 84.11 76.94 80.37 70.34 56.09 62.41 65.48 46.75 54.55 76.38 82.38 79.27 68.50 54.32 60.59
VISD-10k + Real 84.67 69.59 76.39 85.98 81.22 83.53 75.50 54.44 63.26 77.53 63.37 69.74 84.81 85.22 85.01 73.84 54.13 62.47
ST3D-10k + Real 83.19 72.33 77.38 87.27 80.21 83.59 70.70 56.67 62.91 70.06 68.69 69.37 74.49 80.26 77.27 70.24 55.44 61.97

UT-10k + Real 85.52 70.68 77.40 89.51 80.50 84.77 71.98 58.51 64.55 76.07 70.33 73.09 88.77 83.00 85.79 71.36 57.62 63.76
Ours-10k + Real 86.28 73.09 79.14 89.75 81.87 85.63 70.15 60.43 64.93 81.67 71.89 76.47 86.30 85.46 85.88 70.20 59.28 64.28

Table 1. Comparison between previous synthetic datasets and our dataset on the ICDAR2013, ICDAR2015, ICDAR2017MLT datasets. R:
Recall, P: Precision, F: F-score, Real: the corresponding training set of the evaluation dataset.

After training, the NeRFs were harnessed to render im-
ages, where camera poses were established as described in
Sec 3.3. To bridge the gap with real-world data, we an-
alyzed text location distributions across three real datasets,
providing a prior for text placement in our synthetic dataset.
To streamline camera pose configuration for synthetic im-
ages, a clustering analysis was performed on the text poses
by employing k-means. This analysis categorized rotation
matrices (converted to quaternions) into 16 distinct clusters
for subsequent sampling during text image synthesis. Fig.
3(b)(c)(d) show the visualization of analysis results. The
final synthetic dataset comprised 12,520 images, with an-
notations including bounding boxes, transcriptions, and 3D
pose attributes for text regions.

4.2. Scene Text Detection

Comparison with state-of-the-art methods. To assess the
quality of our dataset against current state-of-the-art coun-
terparts [14, 16, 35], we employed EAST[39] and DB[13]
as baseline text detectors by directly using their official
source codes. To ensure an equitable experimental setup,
the total number of images in each synthetic dataset was
controlled to 10,000. All models featured a ResNet-50
backbone and were trained on 8 NVIDIA GeForce RTX
3080 GPUs with a batch size of 56. Initially, models
were exclusively trained on each synthetic dataset to es-
tablish their generalizability to real-world scenarios. Both
EAST and DB detectors underwent a training phase of 1200
epochs on the four synthetic datasets, followed by evalua-
tion on three real-world datasets. Subsequent fine-tuning
on real-world data was conducted to scrutinize the impact
of synthetic data as a pre-training resource. The results
are succinctly summarized in Table 1. Across all bench-
marks, it was observed that the overall performance of DB
slightly surpassed that of EAST. When focusing on mod-
els trained solely on synthetic data, those trained on UT-
10K exhibited relatively higher precision. However, detec-
tors trained on our dataset consistently achieved superior

recall and F-scores. Notably, when comparing the fine-
tuning effects on real data following pre-training on syn-
thetic datasets, the advantages of our dataset became even
more pronounced. DB and EAST demonstrated remark-
able F-score improvements of 22.72%, 5.26%, 2.52%, and
21.92%, 6.61%, 3.69% on the IC13, IC15, and MLT17
datasets over models trained exclusively on real data. We
attribute this success partly to the high fidelity of synthetic
data from real-world textual scenes. As for the superior re-
call rates, we believe it to be a consequence of incorporating
prior text distribution knowledge from real data during syn-
thesis. This underscores the strengths of our methodology
in offering enhanced control over data generation.
Multi-view robustness evaluation. To conduct a more
granular assessment, we exploited our synthesis method’s
provision of text pose attributes across diverse viewpoints
to examine detector biases and evaluate robustness against
text perspective effects. The synthesized scenes were parti-
tioned in a 9:1 ratio for training and testing, preserving the
quantity and pose distribution of text instances per scene.
Sixteen images from each scene were chosen to ensure com-
prehensive coverage of all pose categories and to maxi-
mize the diversity of viewpoints. In this manner, a dataset
of 4,320 training images and 480 test images was con-
structed. To validate our balanced viewpoint distribution
strategy for setting camera poses during rendering, a con-
trol dataset was sampled from 270 training scenes. For this
dataset, 16 images per scene were randomly selected with-
out considering viewpoint diversity. The previously men-
tioned text detectors, configured identically, were trained
on both two datasets and evaluated against the same test
set. Additionally, we computed detector performance on a
scene-by-scene basis by averaging the precision and recall
rates for all viewpoint images within a scene, thereby pro-
viding a scene-level performance metric that reflects model
robustness to varying perspectives within the same context.
The results are compiled in Table 2. It is evident from the
tabulated data that models trained on datasets utilizing a
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balanced viewpoint sampling strategy consistently outper-
form those trained on randomly sampled data. Moreover,
on a scene-level basis, detectors trained with a balanced
viewpoint approach exhibit a lesser degree of performance
degradation compared to those trained on randomly sam-
pled datasets, attesting to the robustness of our viewpoint
distribution methodology.

Model Train data Instance level Scene level

P R F P R F

DB Random 73.25 57.22 64.25 71.57 48.62 57.90
Balance 89.89 75.53 82.09 85.70 70.36 77.28

EAST Random 68.13 58.14 62.74 61.51 50.08 55.21
Balance 87.39 74.90 80.66 83.66 68.22 75.16

Table 2. Detection performance on the random sampled dataset
and view balanced dataset. R: Recall, P: Precision, F: F-score.

4.3. Ablation Study

Effect of structural importance mask on appearance
changing. In order to examine the influence of structural
information on appearance control in the style transfer pro-
cess, we conducted a comparative analysis between two
settings: one with the application of style transfer on syn-
thesized images using structural importance masks, and the
other without such masks. Fig. 4 visually demonstrates the
differences in content authenticity and semantic complete-
ness between the two settings. It is evident that without the
inclusion of structural importance masks, the content of text
regions undergoes uncontrollable modifications. This un-
controlled modification poses a significant challenge to the
generation of high-quality synthetic text image data. Hence,
the incorporation of structural importance masks is crucial
in preserving the original content and semantic meaning in
the style transfer process.
Effect of positional encoding on text region modeling.
In this experiment, we investigated the impact of positional
encoding on the rendering accuracy of text semantic labels.
We compared the performance of two distinct text semantic
renderers: the one incorporates positional encoding and the
other one that does not. Fig. 5(a) compares the semantic
loss of the two renderers on labeled and unlabeled images
during training on a same scene. The results show a notice-
able disparity, with the renderer without positional encoding
registering higher losses on both labeled and unlabeled im-
ages. Fig. 5(b) visualizes the learning outcomes and further
substantiates the comparison. This discrepancy underscores
the insufficiency of relying solely on NeRF’s geometry fea-
tures to precisely delineate text regions within a scene. The
integration of positional encoding injects additional high-
frequency details that enhance the semantic renderer to ac-
curately identify these highly customized regions.

Figure 4. The difference of the style transfer results with and
without employing structural importance masks.

(a) Semantic loss of labeled and unlabeled views

(b) Results of semantic renderer w/o and w/ positional encoding

w/ P.E.w/o P.E.

Figure 5. The training losses and rendering results of two dif-
ferent semantic renderers.

5. Conclusion

This paper proposed a novel NeRF-based method for syn-
thesizing scene text images with 3D controllability. Our
approach leverages the geometric modeling capabilities of
NeRF to semantically model text regions in 3D space and
produces photo-realistic and diverse synthetic data. Both
qualitative and quantitative experimental results demon-
strated that our method significantly enhances the robust-
ness and performance of scene text detectors. Moreover, the
introduction of a dataset with 3D pose annotations is con-
ducive to more in-depth evaluation of text detection models.
Limitations. While our approach has shown promising re-
sults, there still exists some limitations. The current method
needs to train a specific NeRF for each scene, which limits
scalability. There may be some color inconsistencies caused
by style transfer, and it is difficult to capture text under ex-
treme conditions, such as highly stylized fonts or severe oc-
clusions. In future work, we aim to further optimize our
synthesis pipeline to reduce computational demands and ex-
plore the extension of our method to other domains requir-
ing fine-grained control over synthetic data generation.
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