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Abstract

Retrieval tasks play central roles in real-world machine
learning systems such as search engine, recommender sys-
tem, and retrieval-augmented generation (RAG). Achieving
decent performance in these tasks often requires fine-tuning
various pretrained models on specific datasets and select-
ing the best candidate, a process that can be both time and
resource consuming. To tackle the problem, we introduce a
novel and efficient method, called RetMMD, that leverages
Maximum Mean Discrepancy (MMD) and kernel methods to
assess the transferability of pretrained models in retrieval
tasks. RetMMD is calculated on pretrained model and tar-
get dataset without any fine-tuning involved. Specifically,
given some query, we quantify the distribution discrepancy
between relevant and irrelevant document embeddings, by
estimating the similarities within their mappings in the fine-
tuned embedding space through kernel method. This discrep-
ancy is averaged over multiple queries, taking into account
the distribution characteristics of the target dataset. Ex-
periments suggest that the proposed metric calculated on
pretrained models closely aligns with retrieval performance
post fine-tuning. The observation holds across a variety of
datasets, including image, text, and multi-modal domains,
indicating the potential of using MMD and kernel meth-
ods for transfer learning evaluation in retrieval scenarios.
In addition, we also design a way of evaluating dataset
transferability for retrieval tasks, with experimental results
demonstrating the effectiveness of the proposed approach.

1. Introduction
Developing transfer learning evaluation metrics for retrieval
tasks is of great importance in machine learning and infor-
mation retrieval. Reliable metrics enable assessing the effec-
tiveness of transfer learning models in retrieval-based appli-
cations, such as search engines, recommendation systems,
and Retrieval Augmented Generation (RAG) with Large
Language Models (LLMs) [1, 24, 39, 53]. For example, in-
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tegrating retrieval mechanisms into LLMs allows them to ac-
cess and leverage external knowledge sources, significantly
enhancing their ability to provide accurate, up-to-date and
contextually relevant responses. In these contexts, the goal is
often to retrieve the most relevant items from a large dataset
given a specific query or user profile. A well-designed trans-
fer learning evaluation metric can help assess whether the
learned representations from a pretrained model are effec-
tively capturing the underlying semantics of the data and
improving retrieval performance. Additionally, such a met-
ric can facilitate comparison between different models or
different fine-tuning strategies, thus guiding researchers and
practitioners in model selection and further optimization.

Existing transfer learning evaluation metrics primarily
focus on classification tasks [3, 37, 40, 50, 54]. Although
classification and retrieval tasks are often used together and
can be treated as complementary tasks, there exists funda-
mental differences between them. For instance, classification
assigns data items to predefined categories or classes, while
retrieval is the process of searching relevant information
from a collection of items, often using similarity measures
calculated from their embeddings. Another distinguishing
factor is the asymmetric distribution of item embeddings
in retrieval tasks. This asymmetric distribution can often
result in a complex and nuanced performance landscape for
retrieval models. Furthermore, the discrepancy between dis-
tributions of relevant and irrelevant documents in retrieval
tasks is often dependent on the specific query. This means
that any transfer learning evaluation metric must take into
account this query-dependent variability to provide an accu-
rate measure of model performance. In addition, one also
needs to take account into the importance of each examined
query, to be able to provide less biased predictions regarding
overall retrieval performance in downstream tasks.

Given these unique challenges, we propose a method de-
signed specifically to assess model transferability in retrieval
tasks. Our approach utilizes the Maximum Mean Discrep-
ancy (MMD) [15] to quantify the discrepancy between dis-
tributions of relevant and irrelevant document embeddings
in embedding spaces. We employ a kernel-based method to
estimate these discrepancies, which are then averaged over
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a large number of queries considering the target dataset’s
distribution. Note that in downstream retrieval tasks, using
cosine similarity or inner product to estimate items’ rele-
vance from fine-tuned embeddings, well fits into the use
of kernel method on estimating their relevance from pre-
trained embeddings. The proposed method allows us to
effectively estimate the retrieval performance of fine-tuned
models across various datasets, including image, text, and
multi-modal domains. In addition, we design a way to mea-
sure transferability between datasets particularly suitable for
retrieval tasks. In our experiments, we find that the transfer-
ability between datasets has a strong correlation with their
statistical discrepancies in retrieval settings.

We summarize the contribution of this work as follows:
(1) To our knowledge, this work is the first attempt to design
a transfer learning evaluation metric in retrieval tasks. (2)
Experimental results on various modalities suggest that the
proposed method has capability to predict retrieval perfor-
mance of fine-tuned models using pretrained embeddings.
(3) We also design a straightforward way to measure dataset
transferability in retrieval settings. Experiments show strong
correlations between dataset distance and relative retrieval
gain from fine-tuning.

2. Related Work
Retrieval applications in machine learning. Retrieval ap-
plications have become a cornerstone in the realm of ma-
chine learning. In the context of search engines, retrieval
systems utilize complex algorithms to rank the relevance
of web pages, documents, or other data entities to a user’s
search query [34, 41]. Recommendation systems represent
another significant domain where retrieval applications play
a vital role. These systems analyze user behavior, pref-
erences, and interactions to suggest content, products, or
services that users are likely to find appealing [56]. Fur-
thermore, rencently the integration of retrieval mechanisms
with LLMs in the context of RAG systems has opened new
era for leveraging external knowledge sources. This fusion
empowers LLMs to provide responses that are both con-
textually relevant and up-to-date [24]. Recent advances in
retrieval applications also extend to specialized fields such
as medical information retrieval.The development of the
domain-specific retrieval systems, enhanced by deep learn-
ing techniques, aims to provide healthcare professionals with
timely access to medical literature, patient records, and other
critical information [55].
Transfer learning evaluation. Here we discuss existing
transfer learning evaluation methods that are relevant to our
paper, such as LEEP [37], H-score[3], LogME [54], GBC
[40] and NCE [50]. NCE considers the conditional entropy
between the label assignments of the two tasks, which is
shown to be related to the loss of the transferred model.
LEEP identifies transferable components using linear map-

ping, whereas H-score measures transferability through the
entropy of a model’s feature importance. LogME employs
logistic regression to assess the correlation between two
datasets. GBC leverages the probability distributions of
source and target domains, calculating the Bhattacharyya
coefficient to capture the dissimilarities between them. Esti-
mating distribution difference using GBC requires assuming
per-class Gaussian distribution.
Kernel methods in deep learning. Kernel methods [4, 7]
have significantly influenced the field of deep learning, evolv-
ing beyond their traditional roles in pattern recognition and
classification [8]. Today they are being increasingly inte-
grated into deep neural network architectures to augment
their capabilities in a variety of tasks [25, 30, 45]. The
use of kernel methods enables effective handling of high-
dimensional data, facilitating non-linear transformations that
aid in complex decision boundary formations in neural ar-
chitectures. Notably, in [16] authors show that existing con-
trastive learning methods can be reinterpreted as learning
kernel functions that approximate some fixed positive-pair
kernel, which serves as a support evidence to our work.
On the other hand, MMD [15] as a technique for measuring
distances between probability distributions has gained promi-
nence in deep learning, especially in areas like generative
modeling and domain adaptation. Its utility in Generative
Adversarial Networks (GANs) [14] and transfer learning
[33] is noteworthy, as it allows for effective comparison of
distributions without presuming their underlying forms.

3. Methodology
3.1. Problem Statement

The main purpose of this work is to propose a transfer learn-
ing evaluation metric used in retrieval scenarios. Let’s con-
sider q denotes query with its embedding vector vq gained
by mapping model fθ. The document embeddings given
q follow the distribution denoted by Dq. Furthermore, let
D(v+q |q) (denoted as D+

q ) represent the conditional distribu-
tion of the relevant documents with corresponding embed-
ding vectors {v+q }. Similarly, let D(v−q |q) (denoted as D−

q )
be the conditional distribution of irrelevant documents with
its embedding vectors {v−q }, where vq, v

+
q , v

−
q ∈ X mean-

ing that their embeddings lie in a shared space. One can
then estimate the discrepancy between the two conditional
distributions by quantifying the differences:

Hq(D
+
q , D

−
q ) ≈ Zq({v+q }, {v−q }) (1)

The exact form of the function Z depends on the method
one uses to quantify the difference. Note that the conditional
distributions D+

q , D
−
q and their discrepancy depends on q.

The final evaluation metric score S can be calculated as:

S =

∫
Zq({v+q }, {v−q })dq (2)
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We assume that the proposed transferability score S can
measure the capability of the pretrained embedding model
fθ in separating relevant and irrelevant documents after fine-
tuning on a given dataset. Here we provide some intuitions
on indicating the significance of the difference between D+

q

and D−
q .

Lemma 1. Given a metric space (X , d), where d is any valid
distance metric satisfying the triangle inequality, and three
points vq, v1, v2 ∈ X such that d(vq, v1) < c, d(vq, v2) < c,
and d(v1, v2) = c′, then c′ < 2c.

The proof is straightforward by using triangle inequality.
This simple fact indicates that given some query q, when rel-
evant (or positive) document embeddings are defined based
on bound c from its query embedding using any valid dis-
tance metric, the distances between any relevant document
embeddings in X are bounded as well. On the other hand,
negative document embeddings {v−q } are expected to be
further away from vq. As there is no constraint that these
negative embeddings should be close to each other, they can
be spread out over the entire embedding space, leading to a
potentially different and wider distribution compared to D+

q .
This observed difference in distributions between positive
and negative embeddings can serve as an effective criterion
when devising a metric for transfer learning evaluation for
retrieval tasks.

Figure 1. Illustration of pretrained embedding space X and fine-
tuned embedding space H.

3.2. Fine-Tuning as Kernel Learning

With the above assumption, we treat the fine-tuning neural
networks as functions mapping from the space of pretrained
embeddings as X , to a space of finetuned embeddings H
(as shown in Fig 1). Formally, we can represent such a
network as ϕ : X → H, where ϕ(x) signifies the embedding
of input x. This function maps the original embeddings
into the Reproducing Kernel Hilbert Space (RKHS) H. The
finetuned embeddings in H are then represented as ϕ(x) and
ϕ(y). Given two embeddings in the original feature space X ,
denoted as x and y, the distance between these embeddings
in this space is defined as:

dX (x, y) ≈ dH(ϕ(x), ϕ(y)) = ∥ϕ(x)− ϕ(y)∥H (3)

In the following, we denote dX (x, y) as d(x, y) for sim-
plicity. The function ϕ can be thought of as pulling back
the metric from the RKHS H to the original feature space
X . The underlying principle is that the fine-tuning process,
through the function ϕ, provides a more appropriate represen-
tation of the distances between embeddings for the retrieval
task. Thus, we can relate the distances in the original feature
space X and the RKHS H. This distance can be expanded
using the properties of the inner product in the RKHS:

d(x, y)2 = ∥ϕ(x)− ϕ(y)∥2H
= ⟨ϕ(x)− ϕ(y), ϕ(x)− ϕ(y)⟩H
= ⟨ϕ(x), ϕ(x)⟩H − 2⟨ϕ(x), ϕ(y)⟩H + ⟨ϕ(y), ϕ(y)⟩H

Recall that for a kernel associated with an RKHS, the kernel
function k(x, y) is related to the mappings ϕ(x) and ϕ(y) in
the space H by:

k(x, y) = ⟨ϕ(x), ϕ(y)⟩H

The squared distance can then be represented using the kernel
function as:

d(x, y)2 = k(x, x)− 2k(x, y) + k(y, y) (4)

For d to be a valid metric over space X , and for Lemma 1
to be applicable, it is essential for the kernel k to be positive
definite. This property ensures that d induces a valid inner
product in the associated RKHS. Embeddings from neural
networks that align with such kernels inherit the RKHS’s
structure, making MMD an appropriate measure for the
distance between distributions of these embeddings.

3.3. MMD for Evaluation

Distinguishing two distributions with finite samples is known
as the Two-Sample Test. One approach to conduct this test is
using the MMD [15] as previously mentioned. MMD offers a
principled approach to quantify the discrepancy between two
distributions based on their mean embeddings in a RKHS.
Given our context, the MMD between distributions D+

q and
D−

q , using a kernel function k : X ×X → R, is defined as:

MMD2(D+
q , D

−
q ) = ∥µD+

q
− µD−

q
∥2H

= ED+
q
[k(v+, v+)]

− 2ED+
q ,D−

q
[k(v+, v−)]

+ ED−
q
[k(v−, v−)]

(5)

where v+ ∼ D+
q , v− ∼ D−

q , and µ represents the mean
embedding of the corresponding distribution in RKHS. In
practice we use finite samples from distributions to estimate
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the MMD distance:

M̂k,q({v+}, {v−}) =
1

n(n− 1)

∑
i ̸=j

k(v+i , v
+
j )

− 2

nm

n,m∑
i,j=1

k(v+i , v
−
j )

+
1

m(m− 1)

∑
i̸=j

k(v−i , v
−
j )

(6)

Here n and m are the numbers of samples from D+
q and D−

q ,
respectively. We denote the quantity as M̂k,q for simplicity.
Using the above quantity, the discrepancy function Zq from
our initial problem statement can be represented as:

Zq({v+q }, {v−q }) ≈ M̂k,q (7)

Following the above discussion, another way to judge the
separability between positive and negative embeddings is to
look at the statistical significance of MMD via two-sample
testing. In implementation, a small p-value from the permu-
tation test can serve as an indicator of strong separability
between positive and negative embeddings, where

Ik,q =

{
1 if p-value < 0.05

0 otherwise
(8)

3.4. Kernel Selection

A follow-up question is: how to choose the appropriate ker-
nel in MMD for metric calculation? To address the question
we consider a few approaches in the following. We observe
that although the following approaches tackle the problem
from various directions, the experimental results suggest
similar patterns.
Two-Sample Testing: Given a set of queries, one can com-
pute the p-value associated with each query as discussed
above. The efficacy of kernels can then be compared based
on the count of significant p-values. A kernel that consis-
tently provides a higher number of significant p-values is
indicative of its superior capability in discerning distribu-
tional differences for the given embeddings. Specifically,
the count of significant p-values across a set of queries is
defined as Ck =

∑
q Ik,q .

The above equation is also useful when comparison is
needed across kernels. While M̂k,q values from different
kernels are not directly comparable, the magnitude of Ck

can serve as a reference for the separability between positive
and negative embeddings using the underlying kernel.
SVM Classifier: One can also utilize SVM classifier to find
a kernel that gives the best classification performance on
positive and negative embeddings. The underlying assump-
tion is that the kernel that helps distinguish well between
positive and negative embeddings can provide good sepa-
rability between their distributions by using MMD as well.

In implementation, one can record the classification metric
such as F1 score or Recall for each query, and calculate the
mean of such metrics across queries. A better overall classi-
fication performance indicates better separability using the
corresponding kernel.
Empirical Evidence: Another viewpoint for kernel selec-
tion is based on empirical evidence. For example, a higher
curvature in embeddings may suggest the presence of more
complex, non-linear relationships within the embeddings.
Consequently, these embeddings might be matched with
kernels that capture an appropriate order of moments. On
the other hand, low curvature values can indicate simpler
relationships within embeddings. Note that curvature can
only serve as support evidence to intuitively understand em-
bedding space. One cannot merely depend on it for kernel
selection. Another empirical way for kernel selection is to
look at the performance of calculated correlations as an in-
dicator of using the underlying kernel given ground truth.
For example, a small standard deviation of correlations from
multiple runs suggests that the kernel provides consistent
evaluations of MMD across different queries, which indi-
cates the stability of the kernel.

3.5. Dealing with Long-Tail Distribution

Once we are able to estimate distribution difference per
query, we need to consider into account the distribution of
datasets. In retrieval tasks, we often encounter scenarios
where certain queries, referred to as head queries, appear
much more frequently than others. This long-tail distribution
can introduce biases in both training and evaluation. To
ensure that each query is adequately represented, especially
when there’s a bias towards the head queries, we can weight
each query q by its inverse frequency:

w(q) =
1

freq(q)
(9)

A similar idea can be extended to the common case where
queries formulate different classes and the number of queries
in each class is imbalanced. One can also define the fre-
quency of a query as the number of queries in the corre-
sponding class. However, whether to assign equal weight to
each query class as part of the calculation of the proposed
metric is a user-defined choice. To obtain consistent predic-
tion power, in retrieval evaluation of fine-tuned models one
needs to make corresponding adjustment in the measurement
set as well. For datasets without explicitly specifying the
frequency of queries, one can simply let w(q) = 1.

3.6. Proposed Metric – RetMMD

The final metric score is computed by averaging the metric
values over a large number of queries. To compare embed-
dings using a single kernel, we use Eqn (6) to define the
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metric score SMk
as:

SMk
=
∑
q

wqM̂k,q (10)

The above equation considers models using a consistent
kernel setting thus the calculated MMD distances are com-
parable. Yet in the case where one needs to compare models
with different kernel settings, the above equation will lose
its power, since directly comparing MMD distances between
two distinct kernel settings is not meaningful. In this case,
one way to compare across different kernels is to utilize
the counting of significant p-values in MMD two-sample
test given a fixed set of queries, where one can pick the
kernel k∗ that leads to the largest counting number as the
default kernel choice for the corresponding model. Specif-
ically, k∗ can be searched within a set of kernel choices as
k∗ = argmaxk

(∑
q wqIk,q

)
, and the metric score SCk

is
defined as:

SCk
= max

k

(∑
q

wqIk,q

)
(11)

In the following, we denote SMk
as RetMMD-M, and

SCk
as RetMMD-C for reference. In practice, we use Princi-

ple Component Analysis (PCA) [17] to reduce the dimension
of embeddings before calculating MMD. It aims to remove
redundant information from high-dimensional embeddings
and mitigate the effect of the curse of dimensionality. In
the implementation, one can automate the selection of the
number of principal components, by using the intrinsic di-
mension of embeddings estimated from various methods
[9, 12, 23], or set up a threshold of the explained variance in
PCA, such as 90%.

3.7. Transferability between Datasets

Here we also study the transferability between datasets in
retrieval tasks. We first define transferability between source
(pre-training) dataset DS and target (fine-tuning) dataset DT

following the approach in [2]. In [2] authors use a relative
drop in classification error to quantify transferability between
datasets in classification scenario. Similarly, in the retrieval
case we define transferability between datasets based on the
relative difference between retrieval performance, such as
recall, where

τ(DS → DT ) =
RDS→DT

−RDT

1−RDT

(12)

Here RDT
represents the retrieval performance from a model

that is trained on DT from scratch, and RDS→DT
is the

retrieval performance of a model that is first pretrained on
DS then fine-tuned on DT .

On the other hand, we calculate the distribution distance
between datasets, in a specifically designed way suitable for

retrieval tasks: given some model, we treat relevant docu-
ments associated with each query as a class and calculate
the mean embedding within the class. Thus we will be able
to get a set of embeddings, where each embedding carries
information from all relevant documents for a query. Let
µqS be the mean embedding of relevant documents for some
query qS ∈ DS . Similarly, let µqT be the mean embedding
of relevant documents for a query qT ∈ DT . The distribution
difference dS,T between DS and DT can then be calculated
from two collections of mean embeddings:

dS,T = Z({µqS}, {µqT }) (13)

Here Z can be any valid approach to calculate the distance
between distributions, such as using MMD. If one chooses
to adopt MMD distance, calculating dataset distance is then
similar to comparing RetMMD scores obtained from source
and target datasets respectively. Note that one document
can serve as a relevant document for multiple queries and
be calculated separately. The above equation focuses on
the implementation for retrieval tasks, as opposed to the
default way to calculate dataset distance, where each sam-
ple is treated as an individual data point to contribute to
distribution distance.

4. Experiments
In this section we conducted extensive experiments on vari-
ous datasets and modalities.

4.1. Datasets and Implementation Details

Image: We mainly experimented on a few image datasets:
Caltech-UCSD Birds-200-2011 (CUB200) [51], CARS196
[20] and Stanford Online Products (SOP) [48] which are
commonly used in image retrieval studies. We also include
the Stanford Dogs dataset [19], SVHN [36], CIFAR-10 and
CIFAR-100 [21] for evaluating dataset transferability. For
fine-tuning, we took a common approach where in-batch
contrastive learning was used. Here we mainly experiment
on vision transformer (ViT) architectures [11] with different
sizes and pretraining methods, including models pretrained
on ImageNet-1K [46] and ImageNet-21K [44].
Text: We implement text experiments on NFCorpus [6],
FiQA-2018 [10] and FEVER [49]. We use six pretrained
models, including DistilBERT (D-BERT) [47](distilbert-
base-uncased), DistilBERT trained on Natural Questions
dataset (D-BERT-NQ) [22] (nq-distilbert-base-v1), Distil-
BERT trained on MS MARCO passage dataset (D-BERT-
MSMARCO) [38] (msmarco-distilbert-dot-v5), distilled
Roberta (D-RoBERTa) [32] (all-distilroberta-v1) and two
variants of MiniLM [52] (all-MiniLM-L12-v1 and all-
MiniLM-L6-v1) provided by Sentence-Transformers library
[43]. These models are fine-tuned in a similar procedure,
where we save the model that has the best MAP@1 per-
formance on the validation set. In cases where there are
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few amounts of relevant documents per query, we use data
augmentation techniques to augment the set of relevant doc-
uments, for example using back-translation and summariza-
tion if needed.
Multimodal: We also test the performance of RetMMD on
the image-to-text retrieval task on the MS-COCO dataset
[31]. In this study, we compare CLIP [42], ALBEF [27],
BLIP [28] and BLIP-2 [29] models provided by the LAVIS
library [26]. We use R@1 in [29] as a reference for fine-
tuned results. Note that except for CLIP, in the other papers
authors first use text embedding to broadly select a set of
candidates and then use multimodal embedding to perform
retrieval. For simplicity in our experiments, we use multi-
modal embedding for the evaluation of consistency.

In implementation, without further notice, for each model
and dataset combination, we randomly pick 100 queries, and
for each query, we randomly select 5 positive documents
and 50 negative ones. When it comes to the process of
fine-tuning, we acknowledge that there is a wealth of sophis-
ticated methods available. However, it is neither practical nor
required to test every existing fine-tuning technique. Thus, to
facilitate comparison we aim to conduct our experiments un-
der a broadly consistent setting. More experimental details
are provided in the supplementary material.

4.2. Analysis

Two-sample test with MMD: We first attempt to explore
choosing the optimal kernel by using two-sample test with
MMD. We start experimenting with the CARS196 dataset us-
ing pretrained ViT-B model. Figure 2 shows the percentage
of significant p-values from 5 runs. The result shows linear
kernel significantly outperforms other kernels in this case,
indicating its better capability of separating between positive
and negative embeddings. In other cases where the amount
of significant p-values is almost 100% and there is no strong
indicator of choosing kernel using the other approaches, we
use RBF kernel as the default setting.

Figure 2. Percentage of significant p-values from a two-sample test
using MMD from different kernels.

SVM classifier for kernel selection: Next we use SVM
classifier with various kernel choices to classify positive and
negative embeddings generated from text models and plot
the corresponding F1 scores. In experiments we randomly
select 50 positive documents (after augmentation) and 50
negative ones. The F1 scores are averaged across 100 ran-
domly selected queries and each with 5-fold cross-validation.
Training and test data were split into a consistent ratio of
4 to 1. Figure 3 shows the averaged F1 scores from differ-
ent pretrained text models with regard to kernel choices for
SVM classification. One can see RBF kernel outperforms
other ones in most cases, suggesting its better separability
on the NFCorpus dataset.

Figure 3. Averaged F1 scores from SVM classifiers using different
kernels. Dataset: NFCorpus [5].

Effect of moment matching: The above analysis provides
insights into the separability of positive and negative em-
beddings with different kernel choices. Here we would also
like to see the effect of moment matching reflected by using
a polynomial kernel on the performance of the proposed
metric. Figure 4 shows weighted Kendall rank correlations
[18] using a polynomial kernel with different degrees. As
suggested from previous analysis, matching lower order mo-
ments provides better prediction performance on CARS196.
For comparison, matching higher order moments provides
better results on the COCO dataset, which also aligns with
the intuition provided in curvature analysis.
RetMMD vs retrieval performance during fine-tuning:
We fine-tune ViT-S on CUB200 dataset and save checkpoints
during training. For each saved checkpoint, we evaluate R@1
as retrieval metric, and compute RetMMD-M scores using
cosine kernel. In Fig 5 one can see higher RetMMD values
with cosine kernel correspond to higher R@1. Intuitively, in
a common retrieval setting, a better fine-tuned model would
have better separability between positive and negative doc-
uments using cosine similarity between the query and their
embeddings. After fine-tuning, this can be approximated
as using MMD with a cosine kernel. The pretrained model
without any fine-tuning results in very low R@1 and metric
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Table 1. Weighted Kendall rank correlations from different methods evaluated on various models and datasets.

CUB200 [51] CARS196 [20] SOP [48] NFCorpus [6] FEVER [49] FiQA-2018 [10] COCO [31]

LogME [54] 0.52± 0.00 0.58± 0.07 0.70± 0.05 −0.60± 0.00 −0.12± 0.00 −0.35± 0.00 −0.09± 0.14
GBC [40] 0.77± 0.10 0.75± 0.13 0.71± 0.10 0.70± 0.13 0.67± 0.09 0.33± 0.00 −0.72± 0.00

RetMMD-S 0.90± 0.00 0.57± 0.18 0.73± 0.07 - - - 0.79± 0.14
RetMMD-M 0.90± 0.08 0.89± 0.08 0.80± 0.13 0.94± 0.00 0.52± 0.05 0.80± 0.02 1± 0.00

Figure 4. Weighed Kendall rank correlation vs degree of polyno-
mial kernel in calculation RetMMD.

value SMk
= 0.04 which is not shown in the figure.

Figure 5. R@1 vs RetMMD-M values calculated from fine-tuned
models at different fine-tuning stages on CUB200 [51].

4.3. Quantitative Evaluations

Comparison with other transfer learning evaluation
methods: We compare the proposed method RetMMD with
GBC and LogME where corresponding metric scores can
be calculated using document embeddings. For calculating
GBC, we first perform PCA on the embeddings following
the steps in [40]. Other transfer learning evaluation metrics

such as LEEP, NCE and H-Score are designed for classifica-
tion problems that require pseudo labels and do not directly
fit into the settings of retrieval tasks. We finally evaluate the
effectiveness of transfer learning evaluation metrics by com-
puting the weighted Kendall Rank Correlation [18] between
the metric scores and the corresponding retrieval perfor-
mance after fine-tuning. Weithed Kendall rank correlation
extends the classic Kendall tau correlation by accounting
for the varying significance of different pairs in the ranking,
where higher ranks carry more weights. In Table 1 we see
that the proposed method RetMMD shows stronger corre-
lations between metric score and fine-tuning performance
on most of the datasets. For implementing RetMMD-S on
text datasets, we find proportions of significant p-values are
nearly 100% on different kernels, where we only reported
scores using RetMMD-M.

Table 2. F1 score and number of significant p-values using different
kernels applied on OpenAI embeddings on NFCorpus [5] dataset.

Kernel F1 score Significant p-values

Linear 0.50± 0.01 47.6± 0.47
Poly, degree=3 0.51± 0.01 48.6± 0.47
RBF 0.43± 0.01 34.3± 1.69

Table 3. Comparisons of RetMMD, zero-shot and fine-tuned re-
trieval performance against different settings on NFCorpus [6].

Model Zero-shot RetMMD RetMMD Fine-tuned
MAP@1 (linear) (RBF) MAP@1

D-BERT [47] 0.04 114.97 0.10 0.39
MiniLM-L6 [52] 0.27 88.43 0.69 0.47
D-RoBERTa [32] 0.37 189.49 0.26 0.43
D-BERT-NQ [22] 0.40 124.62 0.10 0.41
MiniLM-L12 [52] 0.27 94.33 0.96 0.48
D-B-MSMARCO [38] 0.40 132.95 0.15 0.42

OpenAI [35] 0.47 316.86 - -

Study on OpenAI embeddings: We also attempt to predict
the performance of OpenAI embeddings using the proposed
method. In this regard, we used the OpenAI embedding
service "text-embedding-ada-002" [35] to generate the em-
bedding vectors of the queries, positive and negative text
samples on NFCorpus [5] dataset as an example, Since we
did not have access to fine-tune the OpenAI model, we de-

22396



(a) MMD (b) MMD + proposed (c) Wasserstein (d) Wasserstein + proposed

Figure 6. Pearson correlation between dataset distance (x-axis) and τ(DS → DT ) (y-axis) on image datasets. Each subfigure corresponds
to a different setting. In each setting, dataset distance is calculated between source dataset ImageNet [46] and different target datasets.

cided to present the experiment as an exploratory section.
In order to find the best kernel to calculate MMD score, we
used both SVM classifier and kernal two-sample test. Ta-
ble 2 shows that linear and polynomial kernels reach better
performance in terms of classification and number of sig-
nificant p-values. Here we use linear kernel for calculating
RetMMD scores for reference. Results in Table 3 show the
zero-shot performance of the OpenAI embedding is already
as good as the best fine-tuned model from other candidates,
indicating its better retrieval performance after fine-tuning.
This behavior is suggested by its significant larger RetMMD
score reported in the table.

Note that whether RetMMD is sensitive to zero-shot per-
formance depends on the choice and definition of the kernel.
Here we display RetMMD for both linear kernel and RBF
kernel in Table 3. With the proposed kernel selection method
(i.e. two-sample test or SVM classifier), one can see that with
the selected RBF kernel for the six models other than Ope-
nAI’s, RetMMD is not sensitive to zero-shot performance.
On the other hand, it is reasonable that with linear kernel,
MMD distance has higher correlation with zero-shot perfor-
mance, by the definition of linear kernel itself. More specif-
ically, with linear kernel ⟨ϕ(x), ϕ(y)⟩ = k(x, y) = xT y, ϕ
(fine-tuned model) is simply a linear transformation of the
pretrained embeddings. It is not surprising that zero-shot
performance sensitive to predicted scores with linear kernel.
Dataset transferability in retrieval tasks: We further ex-
plore dataset transferability following our earlier discussion
in Section 3.7. For the proposed approach we use mean em-
bedding of positive documents per query to calculate dataset
distance in retrieval tasks. For default setting we simply
take embeddings from each single image in the dataset. Fig-
ure 6 shows the distance between ImageNet and various
datasets for downstream fine-tuning. One can see that using
the proposed way for evaluation achieves significant Pearson
correlations [13] between relative gains from fine-tuning and
dataset distance. The significance was revealed using both
MMD and 1-Wasserstein distance as shown in the figure,
which implies the universality of the proposed approach.
One can utilize the approach to explore patterns of dataset
transferability in other scenarios.
Evaluation time: In experiments we recorded the time and

resources needed for evaluating and fine-tuning model can-
didates. We experimented with the proposed evaluation
method using the SOP dataset and the five pretrained image
models on one NVIDIA A10 GPU and record its running
time. We also recorded the time needed to get the best
retrieval performance for these models with fine-tuning. Fig-
ure 7 shows the proposed method is much faster than directly
fine-tuning these models, which greatly saves time and com-
putational cost for model selection.

Figure 7. Time needed for evaluating using RetMMD and directly
fine-tuning on SOP dataset [48].

5. Conclusion and Discussion
In this paper we discussed on evaluating model and data
transferability in retrieval tasks. We designed a metric based
on MMD and kernel method, utilizing the characteristic that
calculating cosine similarity or inner product to estimate rel-
evance from fine-tuned document embeddings, well fits into
the use of kernel method on estimating relevance from their
pretrained embeddings. It is worth mentioning that in the
current setting relevant documents are treated in equal posi-
tions. An interesting direction to explore would be designing
algorithms that take account into the importance or the rank
of each document for more sophisticated retrieval settings.
Another direction is to study scenarios where retrieval does
not merely rely on embedding similarities. The challenge
of building such metrics will then depend on the underlying
techniques used for retrieval.
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