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Abstract

It is especially challenging to achieve real-time human
motion tracking on a standalone VR Head-Mounted Dis-
play (HMD) such as Meta Quest and PICO. In this pa-
per, we propose HMD-Poser, the first unified approach to
recover full-body motions using scalable sparse observa-
tions from HMD and body-worn IMUs. In particular, it
can support a variety of input scenarios, such as HMD,
HMD+2IMUs, HMD+3IMUs, etc. The scalability of in-
puts may accommodate users’ choices for both high track-
ing accuracy and easy-to-wear. A lightweight temporal-
spatial feature learning network is proposed in HMD-Poser
to guarantee that the model runs in real-time on HMDs.
Furthermore, HMD-Poser presents online body shape es-
timation to improve the position accuracy of body joints.
Extensive experimental results on the challenging AMASS
dataset show that HMD-Poser achieves new state-of-the-
art results in both accuracy and real-time performance. We
also build a new free-dancing motion dataset to evaluate
HMD-Poser’s on-device performance and investigate the
performance gap between synthetic data and real-captured
sensor data. Finally, we demonstrate our HMD-Poser with
a real-time Avatar-driving application on a commercial
HMD. Our code and free-dancing motion dataset are avail-
able here.

1. Introduction

Human motion tracking (HMT), which aims at estimating
the orientations and positions of body joints in 3D space, is
highly demanded in various VR applications, such as gam-
ing and social interaction. However, it is quite challeng-
ing to achieve both accurate and real-time HMT on HMDs.
There are two main reasons. First, since only the user’s
head and hands are tracked by HMD (including hand con-
trollers) in the typical VR setting, estimating the user’s full-
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Figure 1. HMD-Poser can handle scalable input scenarios, includ-
ing (a) HMD, (b) HMD+2IMUs wherein two IMUs are worn on
the lower legs, (c) HMD+3IMUs wherein a third IMU is added to
the pelvis, etc. HMD-Poser runs on HMD and outputs full-body
motion data to drive an Avatar in real-time.

body motions, especially lower-body motions, is inherently
an under-constrained problem with such sparse tracking sig-
nals. Second, computing resources are usually highly re-
stricted in portable HMDs, which makes deploying a real-
time HMT model on HMDs even harder.

Prior works have focused on improving the accuracy of
full-body tracking. One category of methods utilizes three
6DOFs (degrees of freedom) from HMD to estimate full-
body motions, and they could be roughly classified into
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the physics-simulator-driven methods [24, 48] and the data-
driven methods [3, 4, 8, 9, 16, 59]. These methods usu-
ally have difficulties in some uncorrelated upper-lower body
motions where different lower-body movements are repre-
sented by similar upper-body observations. As a result, it’s
hard for them to accurately drive an Avatar with unlim-
ited movements in VR applications. The other category of
methods [15, 36, 50–52] uses six 3DOF IMUs (inertial mea-
surement units) worn on the user’s head, forearms, pelvis,
and lower legs respectively for HMT. While these meth-
ods could improve lower-body tracking accuracy by adding
legs’ IMU data, it’s theoretically difficult for them to pro-
vide accurate body joint positions due to the inherent drift-
ing problem of IMU sensors. Recently, SparsePoser [38]
combined HMD with three 6DOF trackers on the pelvis and
feet to improve accuracy. However, 6DOF trackers usually
need extra base stations which make them user-unfriendly
and they are much more expensive than 3DOF IMUs.

Different from existing methods, we propose HMD-
Poser to combine HMD with scalable 3DOF IMUs. Con-
sidering users’ preferences between easy-to-wear and high
accuracy, HMD-Poser designs a unified framework to be
compatible with scalable observations, as shown in Fig. 1.
Scalability means it can handle multiple input scenarios, in-
cluding a) HMD, b) HMD+2IMUs, c) HMD+3IMUs, etc.
Furthermore, unlike existing works that use the same de-
fault shape parameters for joint position calculation, our
HMD-Poser involves hand representations relative to the
head coordinate frame to estimate the user’s body shape pa-
rameters online. It can improve the joint position accuracy
when the users’ body shapes vary in real applications.

Real-time on-device execution is another key factor
that affects users’ VR experience. Nevertheless, it has
been overlooked in most existing methods. Recent meth-
ods [9, 16, 59] usually adopt the clip setting, i.e., pro-
cessing all input data within a clip during each model in-
ference, which may increase computational cost and time
delay. Motivated by HMD-NeMo [4], our HMD-Poser
introduces a lightweight temporal-spatial feature learning
(TSFL) network that combines long short-term memory
(LSTM) [13] networks for temporal feature capturing with
Transformer [44] encoders for spatial correlation learning.
With the help of the hidden state in LSTM, the input length
and computational cost of the Transformer are significantly
reduced, making the model real-time runnable on HMDs.

Our contributions are concluded as follows: (1) To the
best of our knowledge, HMD-Poser is the first HMT so-
lution that designs a unified framework to handle scalable
sparse observations from HMD and wearable IMUs. Hence,
it could recover accurate full-body poses with fewer posi-
tional drifts. (2) HMD-Poser builds a simple yet effective
network by combining a set of standard components, such
as LSTM [13], Transformer [44], etc. It achieves state-of-

the-art results on the AMASS dataset and runs in real-time
on consumer-grade HMDs. (3) A free-dancing motion cap-
ture dataset is built for on-device evaluation. It is the first
dataset that contains synchronized ground-truth 3D human
motions and real-captured HMD and IMU sensor data.

2. Related Work
HMT has attracted much interest in recent years. Ex-
isting works generate tracking results from optical mark-
ers [11, 29, 54], depth sensors [5, 40, 41, 49, 53], monoc-
ular images [6, 14, 18–20, 22, 23, 25, 37, 42], ego-centric
views [2, 26, 46, 47], single-view videos [7, 10, 27, 55, 56,
58], and multi-view videos [28, 33, 57]. Recently, methods
using sparse signals from HMD or wearable IMU sensors,
have received more attention [3, 9, 16, 50, 51].

2.1. HMT in HMD Setting

In a typical VR HMD setting, the upper body is tracked by
signals from HMD with hand controllers, while the lower
body’s tracking signals are absent. One advantage of this
setting is that HMD could provide reliable global posi-
tions of the user’s head and hands with SLAM, rather than
only 3DOF data from IMUs. Existing methods fall into
two categories. First is the physics-simulator-based meth-
ods [24, 48]. QuestSim [48] and QuestEnvSim [24] utilized
Nvidia’s IsaacGym [32] for physics simulation and rein-
forcement learning for model training. However, physics
simulators are typically non-differential black boxes, mak-
ing these methods incompatible with existing machine
learning frameworks and difficult to deploy to HMDs. Sec-
ond is the data-driven methods [3, 4, 8, 9, 16, 59]. HMD-
NeMo [4], Avatarposer [16], and AvatarJLM [59] relied
on regression models to establish a direct mapping from
sparse tracking data to target 3D human motions. Other
works tried to improve performance by generative models,
such as normalizing flows [3], Variational Autoencoders
(VAE) [8] and diffusion models [9]. Although these meth-
ods have shown promising results on public datasets such as
AMASS [31], they still have many failure cases, e.g., when
the upper body remains stationary but the lower legs move.

2.2. HMT from Wearable IMUs

Recent studies [15, 17, 45, 50, 51] have explored the use of
six IMUs, which track the signals of the user’s head, fore-
arms, lower-legs, and pelvis respectively, for full-body mo-
tion estimation. The pioneering work is the optimization-
based approach SIP [45], which demonstrated the feasi-
bility of reconstructing accurate 3D full-body motion by
only six IMUs, albeit with limited speed. Subsequently,
a few deep learning-based approaches [15, 35] used recur-
rent neural networks (RNN) to improve real-time perfor-
mance but were unable to estimate the global translation.
TransPose [50] tried to estimate the global translation by
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Figure 2. Overview of HMD-Poser. At each time step t, each component in the input data xt (see Eq. 1) is firstly mapped to a higher-
dimensional embedding feature f t via the feature embedding module. Then, a lightweight temporal-spatial feature learning network is
adopted to generate representations with rich temporal and spatial correlation information. Next, two regression heads regress the local
pose parameters θt and the shape parameters βt of SMPL, respectively. Finally, a forward-kinematics (FK) module is adopted to calculate
the global poses and positions of all joints which are used to drive an Avatar in real-time.

fusing a supporting-foot-based method with an RNN-based
root translation regression model. Moreover, PIP [51] intro-
duced a physics-aware motion optimizer and TIP [17] pro-
posed a stationary-body-points predictor to further improve
the translation accuracy and physical plausibility. However,
these methods are prone to positional drift due to the in-
evitable accumulation errors of IMU sensors, making it dif-
ficult to provide accurate joint positions.

HMD-Poser combines the HMD setting with scalable
IMUs. IMUs worn on the pelvis and lower legs improve the
lower body pose estimation, and full-body joint positions
are derived from the reliable head position from HMD.

3. Method

3.1. Overview

Task. Our task is to estimate both the orientations and
positions of all body joints in real-time using HMD and
a variable number of IMUs. Specifically, we consider
three input scenarios as shown in Fig. 1. Intuitively, the
HMD scenario is the most convenient for users among
the three scenarios, but with the worst tracking accuracy.
While the HMD+3IMUs scenario is exactly the opposite.
The HMD+2IMUs scenario balances user-friendliness and
tracking accuracy, making it suitable for most applications.
It’s worth noting that our method can also be applied to
other HMD/IMU configurations.

Framework. As illustrated in Fig. 2, HMD-Poser’s
pipeline consists of four components. (1) A feature embed-
ding module maps the input data xt to a higher-dimensional
embedding space which serves as the input to subsequent
networks. (2) A lightweight TSFL network learns how each
input component is related to each other and evolves over
time, generating representations with rich temporal and spa-
tial correlation. (3) With the feature aggregated from TSFL,
Two MLP-based (multi-layer perceptron) heads regress the
local pose parameters θt and the shape parameters βt of
SMPL, respectively. (4) Given θt, βt and the head position
provided by HMD, a forward-kinematics (FK) module cal-
culates all joint positions and concatenates them with θt to
generate the final output yt ∈ R(J×6). Following previous
works [16, 50], we adopt the first 22 joints of the SMPL [30]
model, i.e., J = 22.

3.2. Scalable Input Processing

Input representation. The input signal xt contains HMD’s
head and hand 6DOF data and optionally the rotation and
acceleration measurements from IMUs. We follow Avatar-
Poser [16] to use a concatenated vector of position, lin-
ear velocity, rotation, and angular velocity to obtain the
representation for the head xt

h, the left hand xt
lh, and the

right hand xt
rh. As for IMU data, we adopt a concate-

nated vector of rotation, angular velocity, and accelera-
tion to obtain the representation for the pelvis xt

pel, the
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left leg xt
lf , and the right leg xt

rf . We represent rotation
and angular velocity with a 6D vector due to its simplicity
and continuity [60], resulting in xt

h, x
t
lh, x

t
rh ∈ R1×18 and

xt
pel, x

t
lf , x

t
rf ∈ R1×15. All IMU rotation and acceleration

data are calibrated to a common body-centric frame before
feeding to the model. To better estimate the shape param-
eters and improve the joint position accuracy (see Sec. 4
for more experimental results), we additionally calculate the
hand representations relative to the head coordinate frame,
xt
lh/h ∈ R1×18 and xt

rh/h ∈ R1×18. Overall, the input data,
xt ∈ R1×135, can be written as

xt = [xt
h, x

t
lh, x

t
rh, x

t
pel, x

t
lf , x

t
rf , x

t
lh/h, x

t
rh/h] (1)

As described in Sec. 3.1, our model needs to be com-
patible with scalable inputs. It means that the IMU data of
the pelvis xt

pel is missing in the second scenario, and all
the IMU data (xt

pel, x
t
lf and xt

rf ) is missing in the first sce-
nario. To make our model compatible with all scenarios in
a unified framework, the feature dimension of the input data
remains the same for all scenarios, and the missing obser-
vations are filled with zero-padding.
Feature embedding. A set of fully connected (FC) layers
is adopted to project raw input data to a higher-dimensional
embedding space. Note that eight components within
the input stream, as shown in Eq. 1, are processed inde-
pendently, then generating the embedding representations
[f t

h, f
t
lh, f

t
rh, f

t
pel, f

t
lf , f

t
rf , f

t
lh/h, f

t
rh/h]. For each compo-

nent, since the range of values corresponding to the orienta-
tions is different from those of the positions, we follow [4]
to decouple such information and embed them via separate
FC layers and concatenate the results back together.

3.3. Lightweight TSFL Network

After the embedding layer, components in the input are still
temporally isolated and spatially independent of each other.
In other words, it lacks temporal and spatial correlation
information, which is the key to tracking accurate human
motions. To solve this problem, two representative mod-
els, i.e., Transformer and RNN, are adopted for temporal
and spatial feature learning in existing methods. Although
Transformer-based methods [16, 59] have achieved state-of-
the-art results in HMT, their computational costs are much
higher than RNN-based methods [50, 51] as Transformer
does not preserve the hidden state and needs to recompute
the entire history in the video clip at each time step. There-
fore, the current Transformer-based methods are not suit-
able for HMD deployment.

For a sequence of length M , the time complexity of a
standard Transformer block is O(M2d +Md2) where d is
the dimension of the hidden state. It means that the Trans-
former has a quadratic time complexity with respect to the
sequence length in attention layers. To achieve both ac-
curate and real-time human motion tracking, HMD-Poser

introduces a lightweight TSFL network that combines the
RNN model with the Transformer. As shown in Fig. 2, the
lightweight TSFL network is composed of a stack of N = 2
identical blocks. And each block has two sub-blocks. The
first is a set of long short-term memory (LSTM) modules
to independently learn the temporal representation of each
component in the input, and the second is a Transformer en-
coder to learn the spatial correlation among different com-
ponents. The time complexity of the LSTM model is O(d2),
which is negligible compared to that of the Transformer
model. With the help of the hidden state in LSTM, the
Transformer could focus on spatial feature learning within
each frame. It means that the sequential length M in our
Transformer is reduced to the number of input components,
i.e., M = 8, which is much smaller than that in previous
methods (e.g., M = 40 in [16] and M = 45 in [59]). As
a result, our method is more than 5 times faster than previ-
ous Transformer-based methods [16, 59] in terms of a single
Transformer layer. Meanwhile, by introducing LSTM to re-
tain complete historical information, our TSFL network can
result in accuracy improvements for long-period motions.

3.4. Position Estimation with Shape Head

Pose and shape estimation. Most previous methods [4, 9,
16, 59] only considered the pose parameters and ignored
the shape parameters. In other words, they used the same
default shape parameters to calculate joint positions. We
argue that these methods are not optimal in practical appli-
cations, because the shape parameters usually vary by dif-
ferent users. This would lead to problems such as pene-
tration, skating, and joint position errors, especially when
the difference between the user’s shape parameters and the
default is significant. To solve this problem, HMD-Poser
adopts two regression heads named pose head and shape
head. As shown in Fig. 2, the pose head aims at regressing
the local pose parameters θt of SMPL and the shape head is
responsible for shape parameters βt of SMPL. Both regres-
sion heads are designed as a 2-layer MLP.
Forward-Kinematics. The FK module calculates all joint
positions given θt, βt, and the head position in xt

h. We
use the differentiable SMPL model [30], M(θ, β, trans) ∈
R(6890×3), as the FK module. Using the estimated joint po-
sitions and their corresponding ground-truth values can (1)
train the shape head and (2) assist in reducing the accumu-
lating error of pose estimation along the kinematic chain.

3.5. Training HMD-Poser

We define the overall loss function L as a combination
of root orientation loss Lori, local pose loss Llrot, global
pose loss Lgrot, joint position loss Ljoint and smooth loss
Lsmooth:

L =αoriLori + αlrotLlrot + αgrotLgrot

+ αjointLjoint + αsmoothLsmooth

(2)
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Method MPJRE↓ MPJPE↓ MPJVE↓ Jitter↓ H-PE↓ U-PE↓ L-PE↓ R-PE↓
AvatarPoser [16] 2.94 5.84 26.60 13.97 4.58 3.24 9.59 5.05
AGRoL [9] 2.70 5.73 19.08 7.65 4.29 3.16 9.44 5.15
AvatarJLM [59] 2.81 5.03 20.91 6.94 2.01 3.00 7.96 4.58

Transpose [50] 3.05 4.57 22.41 7.98 3.83 3.05 6.76 4.62
PIP [51] 2.45 4.54 19.02 8.13 4.54 3.15 6.53 4.54

HMD-Poser: HMD 2.28 3.19 17.47 6.07 1.65 1.67 5.40 3.02
HMD-Poser: HMD+2IMUs 1.83 2.27 13.28 5.96 1.39 1.51 3.35 2.74
HMD-Poser: HMD+3IMUs 1.73 1.89 11.03 5.35 1.27 1.46 2.46 2.37

Table 1. Comparison with state-of-the-art HMD-based and 6IMUs-based methods on protocol1. We retrain existing approaches with their
public source code and training data on this protocol. Note that we also provide head and hand positions to Transpose and PIP for a fair
comparison. The best results are in bold.

Method MPJRE↓ MPJPE↓ MPJVE↓ Jitter↓ H-PE↓ U-PE↓ L-PE↓ R-PE↓
AvatarPoser [16] 4.68 6.62 33.16 10.79 3.93 2.97 11.89 5.30
AGRoL [9] 4.38 6.74 24.14 6.33 3.53 3.02 12.11 5.86
AvatarJLM [59] 4.45 5.96 27.50 6.91 2.30 2.97 10.28 5.22

Transpose [50] 4.31 5.29 28.18 5.16 7.38 3.86 7.36 4.80
PIP [51] 3.61 4.16 22.22 6.89 4.28 2.97 5.89 4.30

HMD-Poser: HMD 4.27 5.44 30.15 5.62 2.56 2.44 9.77 4.83
HMD-Poser: HMD+2IMUs 3.66 3.68 20.29 6.22 1.65 2.14 5.92 4.51
HMD-Poser: HMD+3IMUs 3.49 3.13 16.17 4.93 1.81 2.17 4.51 3.88

Table 2. Comparison to baselines on protocol2. Similarly, we retrain existing approaches with their public source code on this protocol.

where αori, αlrot, αgrot, αjoint, and αsmooth are the
weights for the respective loss terms. The root orientation
loss Lori, local pose loss Llrot, global pose loss Lgrot, and
joint position loss Ljoint are calculated as the mean of ab-
solute errors (L1 norm) between the predicted values and
the ground-truth values. To further enhance the temporal
smoothness, we define a smooth loss as follows.

Lsmooth =
1

(T − 2)× (3J)

T−1∑
t=1

3J∑
i=0

∣∣ati − âti
∣∣
1

(3)

where at and ât are the computed and the ground-truth ac-
celeration at time t, respectively, and T is the sequential
length in the training and J is the number of joints.

4. Experiments
In this section, we first compare our method with state-of-
the-art methods and conduct ablation studies on the public
AMASS [31] dataset. Then, we present detailed quantita-
tive and qualitative results on real-captured data using PICO
4 and PICO Motion Trackers. Note that our model can be
also deployed to other commercial VR systems that provide
the required orientation and position information, such as
Meta’s Quest2 HMD.

Implementation details. We set αori, αlrot, αgrot, αjoint,
and αsmooth in Eq. 2 to 1.0, 5.0, 1.0, 1.0, and 0.5, respec-
tively. The number of blocks in the TSFL network is set to
2. Further details about the model are presented in the sup-
plementary materials. The training data is clipped into short
sequences in 40-frame lengths for more effective learning.
To train HMD-Poser, we use Adam solver [21] with a batch
size of 256. The learning rate starts from 1× 10−3 and de-
cays by a factor of 0.1 after 300 epochs. The total number
of epochs for training is set to 400.
Metrics. Following [9], we use a total of 9 metrics which
can be divided into three categories. The first category
measures the tracking accuracy and includes the MPJRE
(Mean Per-Joint Rotation Error [degrees]), MPJPE (Mean
Per-Joint Position Error [cm]), H-PE (Hand), U-PE (Up-
per), L-PE (Lower), and R-PE (Root). The second cate-
gory reflects the smoothness of the generated motions and
includes the MPJVE (Mean Per-Joint Velocity Error [cm/s])
and Jitter (102m/s3). The third category measures the in-
ference speed with the FPS (Frames Per Second [Hz]).

4.1. Experiments on AMASS Dataset

We follow the recent common practice [3, 9, 16, 59] of
using AMASS [31] dataset with two different protocols.
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Figure 3. Qualitative comparisons between our method and state-of-the-art methods in HMD setting. When comparing with methods in
this category, HMD-Poser uses the HMD input scenario for a fair comparison.

The first protocol uses three subsets CMU [12], BMLr [43]
and HDM05 [34] in AMASS, and randomly splits the three
datasets into 90% training data and 10% testing data. The
second protocol includes more subsets in AMASS, using
twelve subsets as training data and HumanEva [39] and
Transition [31] as testing data. Instead of using the same de-
fault shape for all motion sequences, which is widely used
in previous work [4, 9, 16, 59], we utilize the ground-truth
body shape parameters to calculate the joint positions.

4.1.1 Comparison

As described in Sec. 2, there are two mainstream HMT
methods, which use 6DOFs from HMD with hand con-
trollers or use 3DOFs from IMUs respectively. We com-
pare our HMD-Poser with state-of-the-art methods in both
categories. Tab. 1 and Tab. 2 show the detailed quantitative
results in the first and second protocols respectively. It can
be concluded from these two tables that: (1) HMD-Poser
surpasses all existing methods in both tracking accuracy
(lower MPJRE and MPJPE) and motion smoothness (lower
MPJVE and Jitter), introducing a new state-of-the-art on the
AMASS dataset. (2) By adding IMU sensors to the lower
legs and pelvis, all metrics especially the L-PE are signif-
icantly improved, proving the effectiveness of combining
HMD with IMUs. (3) HMD-Poser in the HMD scenario,
surpasses all HMD-based methods, i.e., AvatarPoser [16],

AGRoL [9] and AvatarJLM [59]. It shows that our model
can obtain the best results using the same data. We attribute
this performance increase to our TSFL network generating
rich temporal-spatial correlation information via combining
LSTM with Transformer. We provide more comparison re-
sults in each scenario in the supplementary materials.

In Fig. 3, we show the comparison results between our
HMD-Poser in the HMD scenario and previous HMD-based
approaches. In Fig. 4, we also provide the comparison re-
sults between our HMD-Poser in the HMD+3IMUs sce-
nario and previous works using six IMUs. Obviously, our
model could achieve better tracking accuracy and reduce
abnormal issues such as floating and penetration.

4.1.2 Ablation Studies

We ablate our method in various settings to validate the ef-
fect of the main components in HMD-Poser. All ablation
studies are conducted on protocol1 with the HMD scenario.
Effect of input representation. As discussed in Sec. 3.1,
HMD-Poser additionally introduces the hand representa-
tions relative to the head coordinate frame to improve joint
tracking accuracy. Tab. 3 presents the results with and with-
out these representations. As shown, adding these input fea-
tures could improve both the accuracy and smoothness of
the generated motion. In particular, it reduces the H-PE by
a large margin, which proves its effectiveness in estimating
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Figure 4. Qualitative comparisons between our method and 6IMUs-based methods. For a fair comparison, we provide head and hand
positions to the baselines and compare them with our method under the HMD+3IMUs input scenario.

bone lengths on the chain from head to hands.

Method MPJRE MPJPE H-PE Jitter

w/o {xt
lh/h, x

t
rh/h} 2.45 3.43 2.36 6.25

with {xt
lh/h, x

t
rh/h} 2.28 3.19 1.65 6.07

Table 3. Evaluating the effect of adding hand representations rela-
tive to the head coordinate frame to input representation.

Method MPJRE MPJPE H-PE Jitter

w/o ShapeHead 2.32 5.08 4.25 6.11
with ShapeHead 2.28 3.19 1.65 6.07

Table 4. Evaluating the effect of the shape regression head. The
default shape is used when there is no shape regression head.

Effect of the shape head. Here, we compare the results
with and without a shape regression head in Tab. 4. It can
be concluded that the shape regression head has a significant
contribution to reducing position errors (lower MPJPE and
H-PE). This also indicates that joint position estimation is
sensitive to differences in shape parameters among users,

and it is unreasonable for previous methods to use the same
default body shape for joint position calculation.

For more experiments on the effect of the model size and
each loss term, please refer to our supplementary materials.

4.2. Experiments on VR Devices

Existing human motion capture datasets, such as AMASS,
are built on optical markers and do not contain HMD and
IMU sensor data. So all existing methods used synthetic in-
put signals from ground-truth data. And they did not cover
some common issues in real VR applications, such as sensor
measurement errors, calibration errors, etc. To investigate
the model’s performance gap between synthetic and real
data and evaluate our HMD-Poser’s performance running
on HMDs, we built an additional dataset of real-captured
data with HMD+2IMUs. It contains 74 free-dancing mo-
tions from 8 subjects (3 male and 5 female) wearing PICO
4 and 2 PICO motion trackers on the lower legs. Each mo-
tion sequence contains both the input HMD and IMU sensor
data and the ground-truth SMPL parameters obtained via
OptiTrack [1] and Mosh++ [29]. Meanwhile, a pre-trained
model using AMASS data is deployed to PICO 4 HMD,
and the model output is stored for evaluation. Please refer
to supplementary materials for further details.
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Method MPJRE↓ MPJPE↓ MPJVE↓ Jitter↓ H-PE↓ U-PE↓ L-PE↓ R-PE↓
HMD-Poser (Online) 6.48 6.55 30.60 16.96 8.10 5.25 8.52 7.13
HMD-Poser (Offline) 6.45 6.53 30.56 16.95 8.01 5.20 8.46 6.98
HMD-Poser (Offline*) 4.77 4.75 22.30 15.25 2.09 3.35 6.77 6.06

Table 5. Comparisons between our HMD-Poser method running offline and running on PICO 4 HMD. We choose the HMD+2IMUs input
scenario for evaluation as it is suitable for most VR applications. * indicates results using synthetic input from ground-truth data.

Figure 5. Results of real-time Avatar-driving on PICO 4 HMD.

4.2.1 Quantitative Results

First, we make a quantitative comparison between our
HMD-Poser method running offline and running on PICO
4 HMD. In this experiment, we all use real sensor data from
HMD and IMUs. As shown in Tab. 5, the performance gap
between offline and online is small and it demonstrates that
our HMD-Poser could run in real-time on portable HMDs
with limited computing resources and achieve similar track-
ing performance as offline. Second, we compare the experi-
mental results using synthetic and real data. The results us-
ing synthetic data are much better than those using real data,
especially for the H-PE metric. The results are in line with
expectations, as the connection between the user’s hand and
the hand controllers is not rigid all the time. When there are
relative motions between them, the transformation matrix
from the hand controller to the hand would deviate from the
calibration results, resulting in large H-PE.

4.2.2 Qualitative Results

We qualitatively demonstrate our HMD-Poser’s on-device
performance with a real-time Avatar-driving application on
PICO 4. As shown in Fig. 5, the Avatar’s motions are almost
identical to those of the human. It demonstrates that our
method could accurately reconstruct full-body motions in
real-time in most sequences. Please refer to the videos in

Method FPS (GPU)↑ FPS (HMD)↑
AvatarPoser [16] 114.1 -
AGRoL [9] 60.8 -
AvatarJLM [59] 1.9 -
Transpose [50] 123.0 -
PIP [51] 62.5 -
HMD-Poser (Ours) 205.7 90.0

Table 6. Comparison with baselines in terms of inference speed.

the supplementary materials for more qualitative results.

4.3. Inference Speed

For a fair comparison, we calculate the FPS of all meth-
ods running on the same NVIDIA GeForce RTX 3080 de-
vice, and present the results in Tab. 6. Owing to our
lightweight TSFL network, HMD-Poser achieves an infer-
ence frequency of 205.7Hz on GPU and outperforms all ex-
isting methods by a large margin. Meanwhile, our HMD-
Poser can reach a frequency of 90.0Hz on PICO 4 HMD,
which has not been demonstrated in previous methods.

5. Conclusion

In this paper, we present HMD-Poser, the first unified
approach to recovering full-body motions with scalable
sparse observations from HMD and wearable IMUs. Mean-
while, HMD-Poser proposes a lightweight TSFL network,
making it deployable to consumer-level HMD devices and
runnable in real-time. We experimentally demonstrate that
our method achieves superior results with respect to state-
of-the-art methods on the public AMASS dataset.In addi-
tion, we build an additional dataset of real-captured HMD
and IMU data to validate that HMD-Poser could run online
in portable HMDs and while maintaining similar tracking
accuracy. We believe that our method paves a new way for
human motion tracking on VR platforms.
Limitation and future works. As a data-driven method,
our approach is also highly dependent on large-scale train-
ing data, and more real-captured training data can also con-
tribute greatly to the task. Besides, due to the limitation of
IMU itself, our method may struggle to disambiguate lower-
body poses with similar measurements, such as slowly and
uniformly lifting one foot vertically.
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