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Abstract

In this work, we propose IDGuard, a novel proactive
defense method from the perspective of developers, to pro-
tect Persons-of-Interest (POI) such as national leaders from
face editing abuse. We build a bridge between identities and
model behavior, safeguarding POI identities rather than
merely certain face images. Given a face editing model,
IDGuard enables it to reject editing any image containing
POI identities while retaining its editing functionality for
regular use. Specifically, we insert an ID Normalization
Layer into the original face editing model and introduce an
ID Extractor to extract the identities of input images. To
differentiate the editing behavior between POI and nonPOI,
we use a transformer-based ID Encoder to encode extracted
POl identities as parameters of the ID Normalization Layer.
Our method supports the simultaneous protection of multi-
ple POI and allows for the addition of new POI in the in-
ference stage, without the need for retraining. Extensive ex-
periments show that our method achieves 100% protection
accuracy on POI images even if they are neither included
in the training set nor subject to any preprocessing. No-
tably, our method exhibits excellent robustness against im-
age and model attacks and maintains 100% protection per-
formance when generalized to various face editing models,
further demonstrating its practicality.

1. Introduction

Face editing technologies, coupled with user-friendly mo-
bile applications, have revolutionized the creation process
of face editing. Persons-of-Interest (POI) such as national
leaders bear the brunt because fake videos of them can trig-
ger polarized social discourse, and even incite crime [11].
To curb such malicious use, many works have been con-
ducted [3, 7, 14, 15]. Considering the peculiarity of face
editing compared to other types of forgery (the many-to-one
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Figure 1. IDGuard enables face editing models to proactively
reject editing any image containing the protected POI identities.
Whether users utilize the online API service or download it for lo-
cal inference, regular requests will be operated normally while any
malicious attempt will only result in a black image.

relationship between face images and identity), we classify
existing methods into four categories based on identity rel-
evance and application stage, as shown in Table 1.

Table 1. Classification of existing methods.

Identity-unrelated Identity-related

Post-event  passive detection behavior reference

Pre-event  adversarial attack ours

Category I: methods applied post-event and identity-
unrelated, usually focus on visual defects [21, 30], motion
artifacts [22, 31], multimodal mismatch [43, 45] and so on.
This category has been extensively researched and attained
good detection accuracy. However, they cannot prevent the
occurrence of malicious editing and are prone to fail when
encountering more visually convincing images. Category
II: methods applied post-event and identity-related, typi-
cally construct behavioral references of specific persons,
such as voice, face expressions, and head postures [1, 19],
and then they detect face editing by identifying anomalies
in these habit models. However, these methods need to
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model each figure separately and detection performance is

susceptible to accidental behavior. Similarly, they are also

unable to resist the occurrence of malicious editing. Cate-
gory III: methods applied pre-event and identity-unrelated,
usually need to process protected images using adversarial

attack [17, 25, 46]. That means if the model encounters im-

ages that have not undergone such processing, all defense

measures will inevitably fail. Category IV: methods ap-
plied pre-event and identity-related have not been explored.

However, Category IV possesses immense research
value in terms of industry development. Face editing mod-
els, as well as other generative models, are moving towards

a path of regulation and responsibility. The public expects

Al companies to release their products in a responsible man-

ner [0, 9]. But in reality, developers have limited control

over user behavior, especially in cases where the models are
open source, and it is also costly for developers to monitor

the usage of API (Application Programming Interface) [44].

Hence, it is urgent to enable face editing models to proac-

tively reject malicious use.

To pioneer in Category IV, we propose IDGuard,

a robust, general, identity-centric POI proactive defense

method. As shown in Fig. 1, we consider two scenarios for

the open-source released models: whether users utilize the
online API service or download it for local inference, regu-
lar requests will be operated normally, while any malicious
attempt on protected POI will only result in a black image.

To the best of our knowledge, we are the first to propose
an identity-centric proactive defense method from the per-
spective of developers to counteract face editing abuse. Our
contributions can be summarized as follows:

* We propose IDGuard, a novel identity-centric POI proac-
tive defense method, safeguarding POI identities rather
than merely certain face images. It enables face editing
models to retain their original functionality for regular
editing while proactively rejecting editing POI images,
even if the images are neither included in the training set
nor subjected to any specific preprocessing.

* Our method supports simultaneous protection of multiple
POl identities and allows for adding new POI identities in
the inference stage without retraining.

* Our method also demonstrates strong robustness against
image and model attacks. Moreover, our method is ar-
chitecture agnostic and can be generalized to various face
editing models maintaining 100% protection accuracy.

2. Related Work

In this section, we introduce existing identity-related face
editing detection methods, which have the same objective
as ours, i.e., to protect specific identities. We also introduce
proactive defense methods, which align with our motivation
to prevent the occurrence of malicious face editing.

2.1. Identity-Centric Face Editing Detection

These methods target specific identities, such as celebri-
ties, and determine the authenticity of suspicious content
by learning biometric style features, including face appear-
ances [1, 19], expressions [3, 7], and audio [26, 35].
Individual differences in face expressions have been
proven to be unique and stable over time [!3] and can be
used to recognize identities, providing a basis for biometric
identity-specific face editing detection. Agarwal et al. [2]
learn the identity-related behavioral reference by modeling
both face and head movements, forming unique behavioral
patterns to distinguish real videos from fake ones. Taking
it a step further, Agarwal et al. [3] introduce the person-
specific correlation between face expressions and speech
patterns to improve the accuracy of authenticity verification.
To incorporate more identity-related factors, Bohacek er
al. [7] present an identity-based method by learning unique
face, gesture, and vocal habits. Considering the continuity
of face motion in videos, Bohacek ef al. [1] utilize tempo-
ral consistency of face appearance and movements to de-
tect fake videos for specific individuals. Moreover, Coz-
zolino et al. [15] train a temporal network to separate three-
dimensional morphable model (3ADMM) features of spe-
cific identities. The 3DMM features contain less but more
robust identity information, empowering the detection in
more generalized face editing scenarios. And in [14], Coz-
zolino et al. realize robust detection of single- and multi-
modality face editing by audio-visual features that capture
the distinctive traits of a specific individual. More recently,
Tian et al. [40] release a large-scale POI benchmark to ad-
vance research on identity-centric face editing detection,
which directly shifts the focus of face editing detection onto
the identification of POI. However, all these methods are
unable to prevent the occurrence of malicious editing.

2.2. Proactive Defense Against Face Editing

In recent years, the vulnerability of generative models to
adversarial attacks has attracted great attention [5, 27, 38].
In light of this, methods employing adversarial attacks as
a proactive defense have been widely explored. These
methods typically attack face editing models by adding
imperceptible adversarial noise to make the output dis-
rupted [4, 17, 18, 25, 36, 37, 41, 46]. Dong et al. [18]
propose both image-agnostic and image-specific adversar-
ial perturbation attacks, which can effectively disrupt the
output of face swap models. In contrast, Sun et al. [37]
employ adversarial attacks on face landmarks to disrupt
the face localization of face swap models. More recently,
Huang et al. [25] propose a Cross-Model Universal Adver-
sarial (CUMA) watermark, which enables the attack across
multiple face editing models. To tackle the problem of ex-
tensive querying in both white-box [36, 41] and black-box
[25] attacks in current studies, Dong et al. [17] propose a
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query-free adversarial attack method. They employ a Trans-
ferable Cycle Adversary GAN (TCA-GAN), which utilizes
a substitute model to generate adversarial samples, enabling
transferability to inaccessible black-box models. However,
these methods require the processing of every protected im-
age. Once an unprocessed image is encountered, the de-
fense measures will inevitably fail.

Unlike all methods mentioned above, our method takes
an innovative perspective from the developers of face edit-
ing models to enable them to proactively prevent any ma-
licious attempt on specific identities, thus nipping fake im-
ages in the bud. Our method not only has the advantages
of ‘identity-centric’and ‘proactive defense’, but also elimi-
nates the need for any preprocessing of input images. Fur-
thermore, our method safeguards all images containing the
protected identity, rather than selectively protecting certain
images. In terms of practical application and development
costs, our method exhibits superior performance.

3. Methodology
3.1. Threat Model

Our work aims to provide developers with a feasible and
efficient solution to proactively prevent malicious editing of
POI, thus helping them responsibly release their face editing
models. In the scenarios we consider, the involved three
entities are as follows:

(a) Developers: This role possesses full control of the
model architecture, training strategy, and dataset (including
the selection of POI). Developers will release online API or
open-source models to provide face editing services.

(b) Regular users: This role only utilizes the provided
service to edit ordinary faces that do not involve any POIL.

(c) Malicious users: This role may attempt to edit POI
images through the provided service, and even worse, once
they find the POI editing failed, they will turn to undermine
the protective functionality of the model itself.

3.2. Overview

Given a target face editing model G, we aim to equip it with
IDGuard to enable it to proactively reject editing any im-
age belonging to the protected POI identities selected by
the developer. Thus the primary goal is to enable the model
to perceive the identity of input images and behave accord-
ingly, i.e., either edit or reject. The next goal is to support
the protection of multiple POI, and considering the practical
needs in reality, it is also essential to allow for adding new
POl in the inference stage. Furthermore, IDGuard should be
able to resist various potential attacks to maintain its robust
protection functionality when the model is released. After
careful planning on how to tackle these problems, we have
developed a training pipeline for the model, as shown in
Fig. 2. For the sake of clarity, we will separately introduce

the training stage and inference stage of our method.

3.3. In the Training Stage

We denote two datasets 177 and I™°™ for POI and non-
POI respectively. 1797 consists of M images denoted as

IPOT = {(X]OTY,) }Zl and ["°" consists of N images
denoted as [™°" = {(X]’-"’", Y;) };V: | - Here, X represents

the image, while Y represents the corresponding identity
label. The target face editing model is denoted as G, the
discriminator is denoted as D and the face editing model
with IDGuard is denoted as Gpg. In each training iteration,
we sample 2 batches of unprotected identities from the non-
POI dataset and 1 batch of protected identities from the POI
dataset, denoted as I*°", IJ*°", and I}7O1.

Problem 1: How to enable Gpg to perceive the identity of
input images?

I7*°™ is used to train an ID Extractor (details are shown in
Fig. 8, Appendix Sec. 8). For each input image, we extract
features from intermediate G;ps and feed them into the ID
Extractor. We make I7"°" be a triplet { X", X /o™ Xon}
where a, p, and n denote anchor, positive and negative with
the first two having the same identity while the third one
differs. To ensure the ID Extractor captures identity-related
features, we employ Eq. 1 to maximize the distance be-
tween features of different identities while minimizing the
distance between features of the same identity.

;CEM = max((), d(Eid(XZLlon), E’L'd(Xgon))
— d(Eia(X3"), Eia(X3°")) + margin),

where FE;; denotes the ID Extractor, and d(-) is the Lo dis-
tance. For the hyper-parameter margin, we set it to 2.0 by
default. Note that I]*°" is exclusively used to train the ID
Extractor, without being passed through the downstream of
Gipg to generate any image output.

Considering that the optimization of the ID Extractor is a
gradual process during the initial stage of training, we adopt
the Exponential Moving Average (EMA) to iteratively up-
date the identity features when 1797 is fed in, aiming for
better precision. For any sample (X1, Y;POT) ¢ 1F0!
and training step ¢ + 1, we have

= i+ (1 =) Bia(X]O7), )

where f! is the current identity feature of identity Y77 of
step ¢, and y represents the decay factor which determines
the weights given to the most recent observations and the
past ones when the model calculates the moving average.
Here, we set v to be 0.99. EMA ensures that features ex-
tracted from each identity become more stable and precise
during the training process. Note that when the training is
finished, the ID Extractor is capable of directly extracting
accurate identity features from images.
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Figure 2. Training pipeline of Gipg (IDGuard incorporated with a face editing model G). We introduce an ID Extractor to extract POI
identities and utilize a transformer-based ID Encoder to encode identities into the parameter of the ID Normalization Layer (« and /). For
each iteration, we sample three batches for the training of the ID Extractor, face editing functionality, and POI protection, respectively.

Problem 2: How to maintain regular face editing func-
tionality on images of unprotected identities?

I7°" is used as training data for Gjpg to complete the
regular face editing task. For simplicity, we denote the op-
timization goal by a standard adversarial loss Eq. 3. We
assume the face editing is conditional on label ¢, which can
be an attribute label or identity, according to different tasks.

‘cad'u :X,\,[g”" 10g<D<X)) (3)
+ X,CN%‘7’L,C log(l - D(G(X’ C)))?

where C' is the label set. This ensures that G;pg maintains
regular face editing functionality on unprotected identities.

Problem 3: How to ensure Gipg protects multiple identi-
ties simultaneously?

To facilitate the simultaneous handling of these identi-
ties, we introduce a transformer-based ID Encoder that is
able to process sequences because it can convert an arbitrary
number of features into a constant-length output, which
aligns with our demand. Let us assume that there are M
identities to be protected in total, and a batch 1797 consists
of m identities (number m varies for each iteration). When
IPO7T is fed into Gypg, the intermediate features are used as
the input of the ID Extractor to obtain m ID features. We
package the m extracted ID features into a sequence, de-
noted as S that does not necessitate a specific order. The
ID Encoder consists of L multi-head attention layers and a
two-head MLP (Multilayer Perceptron), it takes ID features

S as input and outputs two embeddings that are used as the
parameters of the ID Normalization Layer.

Problem 4: How to ensure the extracted POI identities
dominate downstream model behavior?

We need to build a bridge between identities and model
behavior. Since the perception of identity is determined by
parameters, we map identity features into model parameters
to make Gpg respond differently to POI and nonPOI identi-
ties. Specifically, we design an ID Normalization Layer and
insert it into the later stage of G, which is the only addition
for Gjpg at the architectural level in comparison to G. Note
that the ID Normalization Layer is trained together with the
entire model Gpg, and even after encountering removal at-
tacks, it is different from the original model G. We use the
output of ID Encoder as the embedding encompassing all
the POI identities. This embedding is then passed through a
two-headed multi-layer perceptron (MLP) and upsampled,
yielding two parameter sets, denoted as « and 3. The ID
Normalization Layer uses « and 3 as parameters to nor-
malize the feature F coming from upstream layers to F’
according to Eq. 4

F' = aF + B. 4)

For batch 1797, we force Gipg to ultimately generate a
black output as a result, hence employing a loss function
Eq. 5 to minimize the distance between the output and a
black image B of the same size with the output G(X, c).

@m:Xm%%ﬂBquwmg (5)
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Therefore, the total training loss of Gypg is:

Lipguard = MLE;; + A2Ladv + A3Lpor, (6)
where A1, A2, and A3 are weights balancing the three terms.
3.4. In the Inference Stage

Please note that upon entering the inference stage, (1) the ID
Extractor is capable of extracting precise identity features,
and (2) Gjp¢ is capable of performing normal face editing
on nonPOI while proactively reject editing POI.

Problem 5: How to add new POI identities when the train-
ing of Gpg is finished?

The perception of POI identities of Gpg is determined
by the parameters in the ID Normalization Layer. Updating
the parameters corresponds to updating the model’s percep-
tion of POL. If developers want to protect new POI identities
when the training is finished, they only need to include im-
ages of new POI identities to the original POI dataset and
feed the newly merged POI dataset into the trained ID Ex-
tractor to form a new ID sequence S. Then the new S is
fed into the ID Encoder to generate new parameters « and
B for the ID Normalization Layer. By doing so, the newly
added identities can be protected. Notably, the inclusion of
the new identities only requires one forward pass through
the network, without any backpropagation. In other words,
retraining is not required and thus the cost for developers to
add new identities is minimal.

4. Experiments
4.1. Implementation Details

Datasets. We utilize CelebA [33] and VGGFace2 [§]
datasets for training. CelebA serves as the nonPOI dataset
containing 10599 identities, each corresponding to about 20
images. We use 1224 identities from VGGFace2 as the POI
dataset and each identity has extensively over 200 images.
We train Gjpg using 1024 POI identities while the remain-
ing 200 POI identities are reserved for adding in the infer-
ence stage. To adapt Gjpg to the increase of POI number,
we randomly select 4 to 24 POI identities from each batch
in training. Additionally, we allocate 20 images per POI
identity as a separate testing set to evaluate the protection of
the trained G;pc model on previously unseen images. More
details are shown in Table 8 (Appendix Sec. 7).

Models. To demonstrate the effectiveness, robustness,
and generalization of IDGuard, we perform experiments
on various face editing models, including StarGAN [12],
AtGAN [23], HiSD [32], AGGAN [39], SimSwap [10] and
Faceshifter [29]. The first four models are image-to-image
translation models capable of conducting cross-domain at-
tribute editing. The last two models are face swap models,
which are able to replace the identity of a source image with
a target identity. More details are shown in Appendix Sec. 8.

Evaluation Metrics. For fidelity, we use FID (Frechet In-
ception Distance) [24] to evaluate the quality of face editing
on nonPOI images, where a lower FID score indicates better
fidelity. For effectiveness, we follow the work of Huang et
al. [25], and adopt their evaluation metric S Ry,sx, Which
is determined by the pixel-level discrepancies between the
outputs of Gjpg and G when fed with POI images, and a
higher S Ry.sx score indicates better effectiveness. We also
use log;, FID of the generated POI results to measure effec-
tiveness, a higher log;, FID indicates that the model output
for POI images is more disrupted.

4.2. Fidelity Analysis

The incorporation of IDGuard in a face editing model
should not compromise its editing performance on nonPOI
images. That is, Gipg should maintain a similar FID com-
pared to G. Lower FID scores indicate better fidelity.

Table 2. FID | of face editing models G and Gypg.

Models | w/oIDG|  withIDG|  Diff |
StarGAN [12] 571 7.24 1.53
AGGAN [39] 2.08 3.45 1.37
AUGAN [23] 4.87 5.30 0.43
HiSD [32] 1.87 2.68 0.81
SimSwap [ 10] 12.66 13.07 0.41
FaceShifter [ 9.85 11.13 1.28

Table 2 shows the average FID scores of every face edit-
ing model on nonPOI images, with or without IDGuard.
The incorporation of IDGuard leads to an average increase
of approximately 1 in FID scores, which is practically in-
distinguishable from human eyes. It indicates that IDGuard
exhibits high fidelity and has almost no negative impact on
regular users. More visual comparisons are shown in Fig. 10
(Appendix Sec. 11).

4.3. Effectiveness Analysis

The effectiveness of Gpg is measured by the protection ef-
fectiveness (accuracy) on arbitrary images containing POI
identities, even if these images are neither included in the
training set nor subjected to any preprocessing.

Table 3 provides the quantitative results of IDGuard gen-
eralized to four different face editing models. We com-
pare them with existing defense methods based on adver-
sarial attacks in terms of perturbation (S Rysx) and quality
(log,o FID). Our findings are derived from testing on the
reserved 20 images per POI identity which G;pg has never
seen during training. It is evident that our method exhibits
remarkable superiority in comparison.

Fig. 3 displays the output of G;p (here using StarGAN
as an example). The images on the top depict face edit-
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Table 3. Comparisons of SRy, T and log;, FID 1 of our method and the state-of-the-art proactive face editing defense

methods using adversarial attacks.

Method S Runask log,, FID 1
StartGAN [12] AGGAN [39] AtGAN [23] HiSD [32] | StarGAN [12] AGGAN [39] AtGAN [23] HiSD [32]

BIM [25] 0.6755 0.9975 0.2126 0.0028 1.9047 1.6539 1.2451 1.6098
MIM [20] 1.0000 0.9994 0.0200 0.0438 2.5281 1.8435 0.7842 1.5205
PGD [34] 0.8448 0.9970 0.0146 0.0010 2.0203 1.6659 0.9403 1.6467
DI>-FGSM [47] 0.0280 0.3448 0.0074 0.0001 1.5714 1.3084 1.2036 14113
M-DI>-FGSM [42] |  1.0000 0.9987 0.0032 0.0050 15714 1.3084 1.2036 14113
AutoPGD [16] 0.8314 0.9963 0.0002 0.0007 1.5714 1.3084 1.2036 14113
CMUA [25] 1.0000 0.9988 0.8708 0.9987 23032 1.7072 1.8133 1.9672
Ours 1.0000 1.0000 1.0000 1.0000 2.5359 2.5402 2.5025 2.5309
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Figure 3. Editing results of Gipc (StarGAN) on unseen images of
nonPOI (top), POI (middle), and newly added POI (bottom).

ing performance with five different target labels(age, gen-
der, hair color, and so on) on nonPOI images, while the
images on the middle and bottom depict failed face editing
outputs of POI and newly added POI. It can be observed
that Gjpg is capable of generating high-quality results for
unprotected identities. However, when it comes to protected
identities, it directly outputs black images, effectively elim-
inating the potential malicious use. We also evaluate ID-
Guard on face swap models, considering that POI could be
either the source identity or the target identity, we separately
report the effectiveness for both cases, and the results of ID-
Guard on SimSwap and FaceShifter are shown in Table 4.
We can observe that, regardless of whether the attacker uses
the POI as the source or the target identity, the editing at-
tempts are always unsuccessful.

Table 4. SRmask T and log;, FID 1 on unseen POI images
of face swap models with IDGuard.

Faces | Models S Rimask T log,, FID 1
SimSwap [10] 1.00 2.43
T: t
arge | FaceShifter [29] 1.0 2.53
Source SimSwap [10] 1.00 2.35
FaceShifter [29] 1.00 2.52

4.4. Robustness Analysis

In terms of model application, we consider two scenarios:
one is interactive online through the API service, and the
other is local inference by downloading the model with ID-
Guard released by developers. We conduct robustness test-
ing for both scenarios.

Image Processing Attacks. In the scenario where users uti-
lize the API, they can only interact with G;pg by inputting
images, Gjpc may be susceptible to image processing at-
tacks. These attacks can include unintentional image degra-
dation during transmission, like JPEG compression, or de-
liberate attacks like blurring, noise addition, and brightness
jitter. Hence, we conduct experiments to evaluate the pro-
tective performance of Gjpg under various intensities and
types of image processing attacks. For JPEG compression,
the quality factors (QF) are set to 10, 30, and 70. For Gaus-
sian blurring, the kernel sizes (KS) are 1, 2, and 3. For
Gaussian noise, the mean is 0, while the standard devia-
tions (STD) are 0.05, 0.1, and 0.2. For brightness jitter, we
set the multipliers to 1.5, 2.0, and 3.0.

Table 5. SRy, of different face editing models with ID-
Guard after unseen images of protected identities being sub-
jected to various types of image processing attacks.

Models | JPEG Blur Noise Color
StarGAN [12] 1.00 1.00 1.00 1.00
AGGAN [39] 1.00 1.00 1.00 1.00
AttGAN [23] 1.00 1.00 1.00 1.00

HiSD [32] 1.00 1.00 1.00 1.00
SimSwap [10] 1.00 1.00 1.00 1.00
FaceShifter [ 1.00 1.00 1.00 1.00

As shown in Fig. 4, it is apparent that identity informa-
tion of input has survived all image processing attacks, al-
lowing Gjpg to persist in its rejection of any POI face edit-
ing. Even though Gaussian blurring seems to have a slightly
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Figure 4. Editing results of G;p¢ (StarGAN) for unseen images of protected identities after various image processing attacks.

greater impact than other attacks and its corresponding out-
puts do reveal face patterns, these edited faces remain visu-
ally unusable, affirming that IDGuard is still effective.

Table 5 presents the quantitative results on different face
editing models, with S Ry, as the metric, where each at-
tack corresponds to the maximum intensity in Fig. 4. We
can see that under any case, IDGuard achieves 100% pro-
tection accuracy, showcasing its superior effectiveness.
Model Modification Attacks. In the scenario where G;pg
has been downloaded by users for local inference, it may be
vulnerable to white-box model modification attacks. Once
attackers become aware of the existence of IDGuard, they
may launch attacks against the ID Normalization Layer,
such as removal or perturbing its o and 3 by noise. There-
fore, G;pg needs to demonstrate model robustness when
confronted with aforementioned attacks.

We initially consider layer removal attacks. The results
in Fig. 5 show that removing the ID Normalization Layer
may produce non-completely black images, but the image
quality is significantly decreased. Although Gpg loses its
identity protection ability after the removal attack, it is still
visually unusable.

We then consider the noise addition attack. Attackers
may add noise to « and 3, in order to disrupt identity en-
coding and thus undermine the POI protection capability.
Fig. 6 shows the face editing results on both POI and non-
POI identities after the noise addition attack with different

StarGAN

AGGAN

standard deviations. It can be observed that even when the
added noise intensity is strong enough to destroy the orig-
inal face editing functionality, Gjp¢ still produces almost
black outputs for POI.

Adversarial Attack. Fig. 7 shows some POI outputs after
varying degrees of adversarial attacks on the ID Extractor.
Extractor. We can see adversarial attacks may result in out-
puts that are not black, but still heavily perturbed, which
indicates that IDGuard is robust to adversarial attack.

4.5. Ablation Studies

Number of Newly Added POI in the Inference Stage.
Given the multitude of influential persons in the real world,
a crucial aspect of IDGuard is the protection capacity. It
not only requires the model to simultaneously protect mul-
tiple POI but also demands that the model can add new POI
after training, with a preference for higher numbers while
ensuring model effectiveness.

We evaluate the impact of the number of newly added
POI identities on the effectiveness, as shown in Table 6.
Please note that these POI identities are added during the
inference stage, and the protection functionality is achieved
by updating the parameters of the ID Normalization Layer
solely through network feed-forward, without retraining.

Table 6. SR, of different face editing models with dif-
ferent number of protected identities.

Identities 10 50 100 200
Models

StarGAN[12] | 1.00  1.00  1.00  1.00
AGGAN[39] | 1.00 100 100  1.00
AUGAN[23] | 1.00 100  1.00  1.00
HiSD [32] 100 1.00 100  1.00
SimSwap[10] | 1.00 100  1.00  1.00
FaceShifter [29] 1.00  1.00  1.00  1.00

Table 6 presents the results obtained from scenarios in-
volving 10, 50, 100, and 200 POI identities. We can see

11940



nonPOI

POIL

Noise std = 0.01 Noise std = 0.1

Noise std = 0.3 Noise std = 1.0

Figure 6. Editing results of Gipg (StarGAN) under noise addition attacks with different intensities.
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Figure 7. Protection results against white-box FGSM (left) and
PGD (right) for different .

from Table 6 that IDGuard can provide 100% protection ac-
curacy even when dealing with a new group of 200 POI,
which indicates that the effectiveness of IDGuard is remark-
able. Considering the number of world leaders in reality, we
assume that the dynamic addition of 200 POI identities in
the inference stage, along with the 1024 identities trained in
the training stage, would be sufficient to meet the required
protection for world leaders in practice.

Training Dataset Requirement. The number of high-
quality images specific to protected POI may be limited, so
it is worth studying the training dataset size for IDGuard.
For this purpose, we establish varying sizes of POI training
sets, which comprise different numbers of training images
per POI, and evaluate the performance on unseen images.
The results are shown in Table 7. It can be observed that
IDGuard does not require a large dataset size. For any POI,
achieving over 95% protection accuracy only requires 100
images, and when the number of images increases to 180,
the protection accuracy can reach 100%. In the real world,
it is not difficult to obtain a training dataset of this scale for
POI, implying that IDGuard possesses strong practicality.

5. Conclusion

In this work, we propose IDGuard, a novel proactive de-
fense method against face editing abuse from the perspec-
tive of developers, safeguarding the identities rather than
merely certain face images. IDGuard enables face editing
models to proactively reject editing any image containing
protected POI identities even if these images are neither in-
cluded in the training set nor subjected to any preprocess-
ing. Extensive experiments show that our method achieves

Table 7. SR, of different face editing models with dif-
ferent numbers of training images per POL.

Images | 75 50 100 180
Models

StarGAN [12] 0.17 0.96 1.00 1.00
AGGAN [39] 0.06 0.95 1.00 1.00
AttGAN [23] 0.21 0.96 1.00 1.00

HiSD [32] 0.22 0.99 1.00 1.00
SimSwap [10] 0.18 0.92 0.96 1.00
FaceShifter [ 0.20 0.85 0.99 1.00

100% protection accuracy for unseen faces of protected
identities. Our method supports the simultaneous protec-
tion of multiple POI and allows for the addition of new POI
in the inference stage without model retraining. It also ex-
hibits excellent robustness against image and model attacks
and maintains 100% protection performance when general-
ized to different face editing models.

Our method provides a new solution for face protection
in the era of AIGC (Artificial Intelligence Generative Con-
tent). By allowing developers to include POI as whitelisted
entities in the model training process, IDGuard can com-
pletely eliminate any attempt to edit the POI, thus enabling
better protection compared to previous passive forensics
and proactive defense methods. In our future work, we aim
to offer solutions for standardized management of AIGC as
well as compliant usage of face editing and related models.
Furthermore, we will delve into extensive research on the
generation of malicious forgeries through text-driven and
diffusion models. To lighten the burden on developers, we
will explore more efficient versions of IDGuard.
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