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Figure 1. In the animation industry, digital painters use paint bucket tool to colorize drawn line arts frame by frame. Our proposed pipeline

streamlines this process by requiring the painters to colorize just one frame, after which the algorithm autonomously propagates the color to

subsequent frames, enabling automatic colorization. Compared with optical-flow-based method RAFT [35] and segment-matching-based

method AnT [8], our method can achieve more robust results on challenging cases such as one-to-many matching, large deformation, and

tiny region colorization. In this figure, RAFT is trained on Sintel dataset [5] and finetuned on AnimeRun [30]. We use the most frequent

color in each segment to colorize each line-enclosed region. ©drawn by Nicca (Sriprachum Kongwisawamit), used with artist permission.

Abstract

Colorizing line art is a pivotal task in the production of
hand-drawn cel animation. This typically involves digital
painters using a paint bucket tool to manually color each
segment enclosed by lines, based on RGB values predeter-
mined by a color designer. This frame-by-frame process is
both arduous and time-intensive. Current automated meth-
ods mainly focus on segment matching. This technique mi-
grates colors from a reference to the target frame by align-
ing features within line-enclosed segments across frames.
However, issues like occlusion and wrinkles in animations
often disrupt these direct correspondences, leading to mis-
matches. In this work, we introduce a new learning-based
inclusion matching pipeline, which directs the network to
comprehend the inclusion relationships between segments
rather than relying solely on direct visual correspondences.
Our method features a two-stage pipeline that integrates a
coarse color warping module with an inclusion matching
module, enabling more nuanced and accurate colorization.
To facilitate the training of our network, we also develope a
unique dataset, referred to as PaintBucket-Character. This

dataset includes rendered line arts alongside their colorized
counterparts, featuring various 3D characters. Extensive
experiments demonstrate the effectiveness and superiority
of our method over existing techniques.

1. Introduction

Colorizing line art is a critical step in hand-drawn animation

production. Initially, key animators create the characters’

keyframes, followed by in-between animators who gener-

ate intermediate frames and refine keyframes for seamless

connection between each stroke, as described in [31]. These

line arts are then scanned into binary images, featuring a pri-

mary color palette of red, blue, green, and black, which rep-

resents highlights, shadows, special instructions (e.g., eye

irises), and normal lines respectively. These scanned im-

ages, with regions of transparent background as shown in

Fig. 1, are forwarded to digital painters. The painters use a

paint bucket tool and a designated color palette to fill each

line-enclosed segment, including the color lines, which is

known as paint bucket colorization. Finally, special effect

artists add visual enhancements, such as anti-aliasing, to
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blend character animations with backgrounds, culminating

in the final video composition, detailed in [20].

Line art colorization is a notably laborious process. For

instance, even the relatively simple scenario in Fig. 1, in-

volving 93 segments, still requires hundreds of manual

clicks. To mitigate this demanding task, several commercial

software applications like Retas Studio Paintman, Open-

Toonz, and CLIP Studio Paint have been developed. These

tools provide helpful features that allow users to easily ad-

just assigned colors, fill small areas, and aid in line coloriza-

tion. Despite these advancements, fully automated coloriza-

tion has yet to be realized.

To address the challenges of line art colorization, numer-

ous segment-matching methods have been developed for

identifying corresponding segments in reference and target

frames. Traditional graph-based approaches [17–19, 39, 44]

consider each segment as a graph node and establish edges

based on adjacency relationships. These methods employ

optimization techniques to minimize topological similarity

loss among corresponding nodes. However, they are time-

intensive, often taking several minutes to process a single

image with around 100 segments. Casey et al. [8] intro-

duced the Animation Transformer (AnT) and its application

Cadmium, which significantly improved segment matching.

AnT standardizes the size of each segment and employs

convolutional neural networks (CNNs) to extract features,

transforming the image into a segment sequence. This con-

verts segment matching into a sequence-to-sequence prob-

lem. Although AnT excels in aligning segments between

adjacent frames featuring minimal motion, it struggles in

more complex scenarios, particularly those with occlusion

or pronounced motion. During occlusions, interlaced lines

tend to fragment segments into multiple pieces, as depicted

in Fig. 2. This fragmentation disrupts the strict correspon-

dence between segments, rendering the task of segment

matching inherently problematic and poorly defined.

In this study, we introduce the novel notion of ‘inclusion
matching’, which obviates the necessity for exact segment-

to-segment correspondence. Instead of direct segment

matching, our approach computes the likelihood of each

segment in a target frame being included within a specific

region of a reference frame. Our methodology is unique

in that it follows a coarse-to-fine colorization pipeline, in-

spired by the approach of skilled digital painters. This ap-

proach typically begins with coloring larger, more notice-

able segments across all frames before filling in details of

smaller segments in each frame. Motivated by this work-

flow, our pipeline first computes optical flow between line

sketches, warping colors from a reference to a target frame

to achieve a preliminary, coarse colorization. This is fol-

lowed by the application of an inclusion matching module,

which refines the colorization result of tiny segments.

The sparse nature of line art requires special formula-

Reference frame Target frame Cadmium Ours

Figure 2. Methods relying on segment matching typically seek the

most similar segment across frames, yet challenges arise in scenar-

ios involving occlusion and wrinkles. This is particularly evident

in tiny segments, as highlighted in the red box, where disruptions

in correspondence lead to mismatches. Our innovative approach,

based on inclusion matching, addresses this issue by estimating the

inclusion relationship rather than pursuing direct correspondence,

as illustrated by the comparison of red and blue matching lines.

tion in our approach. Specifically, recognizing the neces-

sity for a large receptive field in extracting line art features,

we employ a U-Net structure [25] to process concatenated

color and line features. To address the difficulty in match-

ing segments under large deformations, we extract line se-

mantic features using CLIP [23] and concatenate them with

features from the U-Net’s bottleneck. This allows the net-

work to match the region with the same semantic informa-

tion across frames. Finally, we introduce super-pixel pool-

ing at each segment to transfer the image into tokens for

sequence-to-sequence matching.

Dataset plays a key role in the success of our method. To

train and evaluate our method, we select 22 character mod-

els from Mixamo [3] and Aplaybox [1]. We mimic real

intermediate line art data on the animation coloring pro-

duction line. We disable the anti-aliasing and provide the

color lines which is quite common in animation produc-

tion. Then we use 3D software Cinema 4D to synthesize

a specially-designed cartoon character colorization dataset

named PaintBucket-Character.

The contributions of our work include the introduction of

the PaintBucket-Character dataset tailored for paint bucket

colorization tasks, the novel inclusion matching pipeline ad-

dressing the challenge of lacking strict segment correspon-

dence, and a new coarse-to-fine baseline that outperforms

existing solutions, particularly in scenes with occlusion.

Our experiments demonstrate that our method surpasses the

performance of recent AnT application Cadmium, and out-

performs the results presented by Li et al. [30]. Notably, the

advantages of our approach extend beyond dataset improve-

ments, highlighting the effectiveness of our newly designed

inclusion matching pipeline and the coarse-to-fine baseline

in the context of animation colorization.
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Figure 3. Several examples of our rendered characters in PaintBucket-Character dataset.

2. Related Work

Line Art Colorization. Line art colorization aims to create

reasonable colors in the sketch’s blank regions. To achieve

precise control, many user guidance types are designed in-

cluding text [15, 45], scribble [6, 33, 40, 41], colorized ref-

erence [4, 7, 9, 16, 32, 34, 37, 42, 43]. These methods

mainly focus on pixel-wise estimation and cannot fill flat

accurate RGB values assigned by the color designer in line

arts’ segments, which always leads to flickering and color

bleeding. Besides, in the post-processing, the special effect

artists often need to select specific colors to create various

effects such as ramp or glow for the character’s specific re-

gion. Thus, current line art colorization methods are still

difficult to be merged into animation industrial processes.

Animation-related Dataset. To facilitate hand-drawn an-

imation production, many real and rendered datasets are

proposed. To boost video interpolation performance, Li et
al. [29] propose the ATD-12K dataset which consists of

triplet frames from 30 real animation movies. Due to the

absence of correspondence labels for real animation, ad-

dressing this challenge has led to the adoption of 3D ren-

dering techniques. MPI-Sintel [5] and CreativeFlow+ [28]

provide different annotations such as optical flow, segmen-

tation labels, and depth maps for multiple applications using

Blender. To overcome the domain gap between rendered

images and real 2D cartoons, Li et al. [30] developed the

AnimeRun dataset using open-source 3D animations and

their rendered optical flow. It improves segment matching

accuracy and handles complex scenes.

Segment-based Animation Colorization. In the cleaning-

up process of the animation industry, animators enclose

each line manually, making segments serve as basic units

for colorization. Thus, how to calculate segment-level se-

mantic information and correspondence becomes the key

in animation colorization. Traditional methods [17–19, 39,

44] regards segment as node and adjacency relationship as

edge which transfer the segment matching to the graph op-

timization problem. Recently, Dang et al. [12] use Hu mo-

ments [14] to extract each segment’s feature to replace the

RGB value and apply a UNet structure [25] to obtain the

feature map. Subsequently, the feature is averaged in each

segment to calculate the distance across frames for match-

ing. Referring to the success of Transformer [36] in image

matching [27], Casey et al. [8] apply multiplex transformer

to aggregate information across frames to obtain more accu-

rate results. Besides, Casey et al. replace the Hu moments

algorithm with a segment feature extraction CNN which

crop and resize each segment to fixed resolution first. Since

both Dang et al. and Casey et al.’s methods and dataset

are not publicly available, AnimeRun [30] remains the sole

benchmark for segment matching available to researchers.

3. Paint Bucket Colorization Dataset

AnimeRun [30] employs rendered optical flow to calculate

segment correspondence, leading to frequent one-to-many

and many-to-one matching in the dataset. This results in in-

accurate benchmark evaluations, as each segment may have

multiple potential ground-truth correspondences. Further-

more, the limited dataset provided by AnimeRun, consist-

ing of only 1,760 training images, increases the risk of net-

work overfitting. Meanwhile, due to the anti-aliasing pro-

cessing of AnimeRun’s rendered images, accurate color la-

bels cannot be obtained in each segment. Consequently,

AnimeRun faces difficulties in serving as a paint bucket col-

orization dataset directly.

To address these challenges, we introduce a new

dataset PaintBucket-Character, comprising 11,345 training

images and 3,200 test images. The test set includes 3,000

3D rendered frames and 200 hand-drawn frames. No-

tably, our dataset focuses solely on character animations,

with consideration for the common practice among anima-

tors of just drawing foreground character animations while

employing 3D models or separate paintings for the back-

ground. Our dataset focuses on character animations, con-

sidering the industry practice where animators typically

sketch only the foreground character movements, while

backgrounds are created using separate 3D models or paint-

ings. Different from AnimeRun, our evaluation focuses on
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Table 1. A comparison between our PaintBucket-Character dataset and previous segment matching datasets. Since AnT [8]’s dataset is

not publicly available, we use ‘-’ to mark the unknown information. AnT does possess a private hand-drawn dataset with 3578 frames;

however, it does not provide train-test-split information, indicated by ‘+’. Compared with previous open-source datasets, our dataset is

more diverse and provides color lines that are closer to real hand-drawn animation. No anti-aliasing provides extra semantic information

for each segment, which enables the network to learn better semantic information rather than segment shape similarity.

Dataset
Statistics Annotations

Train Test Clips Seg per Fr. No anti-aliasing Optical flow Index label Color label Color line

AnimeRun [30] 1,760 1,059 20+10 237 × � × × ×
AnT [8] (private) 9,900+ 1,100+ - < 50 - × � � ×
Ours 11,345 3,200 180+170 169 � × � � �

(a) UV Map

(b) Color label

(c) Index label (d) Color image (e) Index image (f) Line art image

Figure 4. Overview of our synthetic data generation pipeline. We

extract the UV map (a) and the used UV region from the character.

Then, we use a paint bucket tool to fill the used UV region, creating

color label (b) and index label (c). Label images (b) and (c) are

then pasted back to the 3D meshes to create flat color characters

(d) and (e), respectively. Finally, we post-process the index image

(e) to obtain the rendered line art image (f).

segments’ color accuracy rather than traditional matching

accuracy. To build our dataset, we sample 22 characters

from Mixamo [3] and Aplaybox [1] and set 12 characters

for training and 10 for testing. Then, we replot the UV map

for these character models in flat color style and use Cin-

ema 4D’s Sketch and Toon Effect to produce the line art.

To ensure consistent color in each segment, we disable the

anti-aliasing and change the texture sampling method to the

nearest. As depicted in Fig. 3, our dataset showcases a di-

verse array of characters encompassing both Japanese and

Western cartoon styles.

3.1. Synthetic Dataset Construction

To include temporal and occlusion relationships in our

dataset, we apply Mixamo’s actions to our characters. For

each character, we add five types of actions and animate the

camera motion to capture different viewpoints of the char-

acter in each sequence. We classify the camera positions

into three types: face shot, long shot, and close-up, in which

we separately focus on the face, whole body, and other parts

of the body. Following this pipeline, we obtain 15 clips for

each character and form 180 clips for training and 150 clips

for test. In the animation industry, keyframes always have a

Our synthetic line artReal hand-drawn line art

Figure 5. Our simulation method can generate color lines that

closely mimic hand-drawn line arts. Red, blue, and green lines

represent highlights, shadows, and other instructions respectively.

low frame rate [29]. Thus, in each clip, we set the frame rate

to 10 to mimic real animation and bring larger motion and

deformation. Meanwhile, to address the fine scale of char-

acter details such as pupils and buttons, we use 1920×1920

as our training size and 1024×1024 as our test set size to

provide clear segments in these areas.

Flat Color Style Rendering. To render characters in a flat

color style, we use Cinema 4D to extract a UV mesh map

and set unused regions as black. Then, we draw contour

lines of character details such as pockets and shoelace on

the UV mesh. Based on this original UV map, we use a

paint bucket tool to colorize the mesh as the color label. To

obtain a more precise matching relationship for training, we

connect the label with the same semantic information (such

as palm and back of the hand) and use the connected com-

ponents algorithm for each color to extract the index label as

shown in Fig. 4. Since we aim to achieve accurate line art to

separate each segment, we calculate the difference between

each color’s segment and its erosion as the black lines. This

operation ensures that each line-enclosed segment contains

clear semantic information and comprises only one color.

Color Line Extraction. To simulate color lines which are

common in real hand-drawn animation’s shadow and high-

light regions, we mark these highlight and shadow colors

and erode these regions to create color lines, as shown in

Fig. 5. Compared with AnimeRun [30], our dataset features

more realistic line art and provides clear semantic informa-

tion for each segment. Since our characters are rendered

with discrete colors, we can easily obtain specific meanings

for each segment.

3.2. Hand-drawn Dataset Collection

Obtaining intermediate unprocessed data poses a chal-

lenge, as common commercial animations undergo post-
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processing techniques including anti-aliasing. To address

this challenge, we invite some professional animators to

draw line art animation clips with different characters.

Then, we use the paint bucket tool to colorize these line

arts as our ground truth to synthesize paired line art and

colorized data. Besides, animation creation software such

as Retas Studio Paintman and CLIP Studio Paint all pro-

vide animation production tutorials. We collect animations

in these tutorials and use the color line extraction method to

synthesize the paired data. Finally, we collect a hand-drawn

test dataset with 200 frames and 20 clips for evaluation.

4. Method

4.1. Inclusion Matching

Given two line art images Li, Lj ∈ R
H×W×3, lines sepa-

rate the blank area into Ni and Nj’s line-enclosed segments.

In the reference frame Li, each segment is colorized with

M colors whose color labels can be represented as one-hot

representation ci ∈ R
Ni×M . To estimate the Lj’s color la-

bel ĉj ∈ R
Nj×M , previous segment-matching-based meth-

ods [8, 30] mainly focus on calculating segments’ visual

correspondence with the matching mj→i ∈ R
Nj×Ni . Nev-

ertheless, the absence of strict correspondence among seg-

ments imposes limitations on the model’s learning capacity.

To tackle this challenge, we introduce a novel method

called inclusion matching. In the reference frame, segments

with identical semantic information are merged, creating Ki

large regions with different labels. As each line-enclosed

segment in the target frame can only possess one color with

a specific meaning, it can be identified as a subset of one of

the Ki regions. Specifically, in the training process, the in-

dex label stated in Fig. 4 separates the reference frame into

Ki region. We train a network to estimate each segment’s

index label RNj×Ki . To enrich the diversity, we randomly

merge the adjacent labels in the reference frame to create

larger regions to guide the network to learn a more robust

inclusion relationship, as shown in Fig. 6.

4.2. PaintBucket Colorization Pipeline

Color Warping Module. Colorized line art carries substan-

tial information about how segments are grouped, making it

crucial for inclusion matching. However, previous segment

matching methods [8, 30] exclusively leverage the line art’s

features for matching and do not incorporate the colorized

reference. To encode the color feature, we recolorize the

index label image. Specifically, we partition the RGB space

into Ki cubes, each with a side length of 255×K
− 1

3
i . Sub-

sequently, we select the RGB value at the center of each

cube and randomly assign them to index labels as the refer-

ence color image Ci. We employ the optical flow estimation

model RAFT [35], fine-tuned on AnimeRun [30], to esti-

Reference frame 1 Reference frame 2 Target frame

Figure 6. Our inclusion matching training pipeline employs in-

dex labels to partition the reference frame into Ki regions, which

are then randomly merged with adjacent index labels with a prob-

ability of 20%. Subsequently, the model estimates the affiliation

of each line-enclosed segment in the target frame with a specific

region in the reference, thereby facilitating the learning of the in-

clusion relationship.

mate the optical flow between the reference line art Li and

the target line art Lj . Utilizing this optical flow, we warp

the reference color image Ci to generate the coarse color

estimation Cj for the target frame.

Feature Extraction Module. Lacking textual information

and large deformation in animation make warped color im-

age Cj hard to precisely align with the line art in the tar-

get frame. To address this, we employ deformable convolu-

tion [11] on the warped color Cj to extract aligned features.

For a given deformable convolution kernel of K sampling

positions, we use ωk and pk to represent the weight and pre-

specified offset. The aligned features Fa at each position p0

can be expressed as:

Fa(p0) =

K∑
k=1

ωk · Fa(p0 + pk +Δpk), (1)

where learnable offset Δpk can be predicted from the off-

set estimation network as depicted in Fig. 8. This network,

designed as a lightweight U-Net [25] denoted as Φ, is em-

ployed to expand the receptive field:

Δpk = Φ([Lj , Cj ]). (2)

For the reference frame, we deactivate the offset estima-

tion module and set the offset to zero. Subsequently, the

aligned color feature is concatenated with the line feature

and passed through a feature encoder network. To guide the

network in learning semantic information matching, we re-

size the line art image to 320× 320 and utilize CLIP [23]’s

image encoder to extract features. To preserve the feature’s

positional information, we choose to use the ConvNext-

Large model from OpenCLIP [10]. We only selected the

initial layers of CLIP, which downsample the feature to a

resolution of 40 × 40. The CLIP feature is interpolated to

concatenate with the encoded features. Finally, the feature

decoder decodes these concatenated features to the input’s
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Figure 7. Our paint bucket colorization architecture. Initially, we estimate the optical flow based on the line arts and warp the reference

color as the coarse colorization result. The mask and position embedding module tokenizes the segments and features extracted by the

feature extraction module into a sequence, which is then fed into the multiplex transformer for information aggregation. Finally, we

compute a similarity matrix between reference and target tokens to calculate matching loss and predict the final color.

Feature
decoder

Feature
encoder

Target line 

Warped color 

Offset 
estimation

module

DConv

Conv

Feature extraction network

Concat

Concat

CLIP
image 

encoder

Output feature

Figure 8. Overall pipeline of our feature extraction module. De-

formable convolution is applied to align the color features of the

target frame to the line image. Then, the line features and aligned

color features are concatenated and fed to the feature extraction

network in a U-Net structure. Line art’s CLIP features are also

concatenated to the bottleneck of the feature extraction network.

resolution with C channels. To preserve features in high

resolution, shortcuts are added between the network’s en-

coder and decoder, following the structure of the U-Net.

Mask + Position Embedding Module. To transform dif-

ferent segments into tokens, we employ super-pixel pooling

to average the features within each segment’s mask, result-

ing in a C-dimensional visual token, denoted as di. Subse-

quently, a Multilayer Perceptron (MLP) layer is utilized to

encode the segment’s bounding box’s four-dimensional co-

ordinates, denoted as pi, into a C-dimensional positional

embedding. The token xi for matching is obtained by

adding the positional embedding and visual token:

xi = di + MLP(pi). (3)

Differing from previous segment matching pipelines [8, 30],

our approach matches each line-enclosed segment in the tar-

get frame with a specific index label in the reference frame,

rather than employing label-to-label matching.

Multiplex Transformer. Building upon [8, 27], we employ

multiplex self- and cross-attention layers to aggregate tok-

enized features. In a self-attention layer, queries, keys, and

values are derived from a single source feature:

self-attention(xi) = softmax

(
QiKi√

D

)
Vi, (4)

where Qi, Ki, and Vi represent xi processed by MLPs for

query, key, and value. In contrast, the cross-attention layer

computes keys and values from another feature:

cross-attention(x′
i,x

′
j) = softmax

(
Q′

iK
′
j√

D

)
V′

j .

(5)

Following each self- or cross-attention layer, the output is

added to the original xi or x′
i, and then processed with

a feed-forward MLP. After repeating these operations N
times, as illustrated in Fig. 7, we obtain the final aggregated

features x̂i ∈ R
Ki×C and x̂j ∈ R

Nj×C .

Loss function. After the propagation step, the similarity

matrix S ∈ R
Nj×Ki is represented as follows:

Smn =
exp(x̂im · x̂jn)∑Nj

m=1 exp(x̂im · x̂jn)
. (6)

This matrix can be interpreted as the color probability

ŷm ∈ R
Ki for segment m in the target frame. Given that

each frame has a one-hot ground truth index label ym, the

loss function is derived from the cross-entropy loss:

Lce = −
Ki∑

m=1

ym log(ŷm). (7)

Inference Pipeline. Since real animation’s colors have an

obvious domain gap with our randomly generated colors,

we adopt a color redistribution strategy to reassign ran-

domly generated colors to replace the original colors during

the warping and matching pipeline. This strategy can avoid

the mismatching problem when several predefined colors
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Reference frame Target frame ControlNet AnT (AnimeRun) AnT (Cadmium) RAFT Ours Ground truth
Figure 9. The visualization results of our proposed methods and other approaches on real hand-drawn animation. Compared with previous

methods, our proposed approach demonstrates enhanced robustness in handling occlusion situations (e.g., hand of the running girl and

shadow near eyebrows of the girl in the second row.)

Table 2. Quantitative comparison of our method with different methods. ‘Acc’ and ‘Acc-Thres’ denote segment-wise accuracy, providing

insights into the potential workload reduction for digital painters. In ‘Acc-Thres,’ segments smaller than 10 pixels are filtered out. ‘Pix-

Acc,’ ‘Pix-F-Acc,’ and ‘Pix-B-MIoU’ represent pixel-wise accuracy, foreground pixel-wise accuracy, and pixel-wise background MIoU,

respectively, reflecting the visualization performance. All RAFT models undergo training on MPI-Sintel [5], and ‘F/C’ indicates the models

fine-tuned on AnimeRun’s colorized frames and contours.

Type Method
3D rendered test set Hand-drawn test set

Acc Acc-Thres Pix-Acc Pix-F-Acc Pix-B-MIoU Acc Acc-Thres Pix-Acc Pix-F-Acc Pix-B-MIoU

Reference-based ControlNet 0.1709 0.1856 0.4274 0.2653 0.4600 0.1715 0.1812 0.2449 0.2298 0.2260

Segment matching
AnT(AnimeRun) 0.5584 0.5930 0.8734 0.6537 0.8954 0.6779 0.7043 0.9193 0.7377 0.9429

AnT(Cadmium) 0.6634 0.7713 0.9765 0.9471 0.9801 0.7224 0.7879 0.9792 0.9303 0.9899

Optical flow

RAFT 0.6589 0.7456 0.9724 0.9099 0.9763 0.7528 0.8093 0.9819 0.9190 0.9898

RAFT (F) 0.7133 0.8054 0.9818 0.9449 0.9852 0.7758 0.8424 0.9860 0.9425 0.9922

RAFT (C) 0.7028 0.7944 0.9723 0.9411 0.9690 0.7718 0.8356 0.9833 0.9375 0.9916

Inclusion matching Ours 0.8266 0.8726 0.9905 0.9724 0.9948 0.8593 0.8929 0.9900 0.9638 0.9984

are too closed. Finally, the estimated color for each line-

enclosed segment ĉj ∈ R
Nj×M can be derived by:

ĉj = Ŝci, (8)

where Ŝ ∈ R
Nj×Ni is the similarity matrix for each line-

enclosed segment in reference and target frames. In this

paper, we set the match threshold as 0.2 to filter out all the

segments which are unmatchable.

5. Experiments
5.1. Implementation Details

During the training stage, our model undergoes 300,000 it-

erations with a batch size of 2, utilizing NVIDIA GeForce

RTX 3090 GPUs. We employ the Adam optimizer with a

learning rate of 10−4 and no weight decay. Throughout the

training process, we keep the weights of the pretrained op-

tical flow estimation module and the CLIP image encoder

fixed. In the feature extraction module, the offset estima-

tion module is structured as a lightweight U-Net with three

down-sampling layers and a bottleneck featuring 128 fea-

tures. Simultaneously, the feature extraction network is im-

plemented as a U-Net with four down-sampling layers and a

bottleneck containing 512 features. The channel number C
for our extracted feature is set to 128. Within the multiplex

transformer, the layer number N is set to nine, and the num-

ber of heads is configured as four. The data augmentation

pipeline is shown in the supplementary material.

5.2. Comparisons with Previous Methods

Since there is no existing paint bucket colorization method,

we mainly compare our method with reference-based line

art colorization [42], segment matching methods [8, 30],

and optical flow estimation methods [35]. The quantitative

comparison is shown in Table 2. The visual comparison

of real hand-drawn animation and rendered 3D test sets are

shown in Fig. 9 and Fig. 10.

Reference-based Line Art Colorization. The saturated lu-

minance of the blank regions within line art impedes the ap-

plication of reference-based methods for natural gray-scale

image colorization. Thus, we choose ControlNet [42] as our

reference-based line art colorization method. We use Sta-

ble Diffusion v1.5 [24] as our base model and employ the

ControlNet’s line art checkpoint to encode the line art con-

dition. Then, we adopt the IP-Adapter [38] to encode the

reference image. We set the number of steps to 50 and use
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Table 3. Quantitative comparison of different datasets, different network structures, and different methods on test data. ‘IM’ signifies the

inclusion matching pipeline, which incorporates adjacent index label merging and segment-label matching strategies. Since the inclusion

matching pipeline and coarse warping module with RAFT can also be applied to other networks, we also adopt them to AnT for comparison

to illustrate the generalization of these methods.

3D rendered test set Hand-drawn test set
Type Method

Acc Acc-Thres Pix-Acc Pix-F-Acc Pix-B-MIoU Acc Acc-Thres Pix-Acc Pix-F-Acc Pix-B-MIoU

Baseline Ours 0.8266 0.8726 0.9905 0.9724 0.9948 0.8593 0.8929 0.9900 0.9638 0.9984
Dataset AnimeRun 0.7359 0.7958 0.9693 0.9201 0.9765 0.8278 0.8634 0.9818 0.9399 0.9906

w/o CLIP 0.8180 0.8653 0.9873 0.9685 0.9910 0.8489 0.8843 0.9878 0.9570 0.9925

w/o RAFT 0.8001 0.8447 0.9824 0.9481 0.9878 0.8446 0.8750 0.9804 0.9404 0.9851Model

w/o DConv 0.8247 0.8685 0.9894 0.9709 0.9928 0.8525 0.8833 0.9875 0.9549 0.9937

Ours w/o IM 0.7637 0.8352 0.9721 0.9573 0.9688 0.8348 0.8763 0.9777 0.9495 0.9822

AnT 0.7450 0.7930 0.9708 0.9361 0.9758 0.8162 0.8497 0.9817 0.9374 0.9905

AnT with IM 0.8063 0.8447 0.9837 0.9551 0.9887 0.8388 0.8698 0.9839 0.9388 0.9943
Method

AnT with IM/RAFT 0.8177 0.8587 0.9879 0.9681 0.9932 0.8483 0.8828 0.9886 0.9598 0.9946

the text prompt ‘A character in the white background’. We

calculate the average RGB value per segment and match the

average color with the nearest color in the reference image

for evaluation.

Optical Flow Estimation. Since optical flow meth-

ods cannot produce segment-wise estimation without post-

processing, we warp the color and calculate the colors that

appear most frequently in each segment as the baseline of

optical estimation method. Since finetuning RAFT on Ani-

meRun can promote the optical flow’s performance effec-

tively, we use the finetuned RAFT in the following sessions.

Segment Matching. We also compare our method with

the Cadmium application, the official implementation of

AnT [8], and AnimenRun’s reimplemented AnT [30]. The

visual comparison shown in Fig. 9 and Fig. 10 demonstrate

the robust performance of our proposed method, particu-

larly in scenarios where strict segment correspondence is

absent, and challenges with large motion and complex de-

formations. More visual results are presented in the suppl.

material.

5.3. Ablation Study

Dataset. To demonstrate the effectiveness of our proposed

dataset, we also train the proposed method on the Ani-

meRun. In the training process, we adopt the inclusion

matching strategy by merging the segments in the reference

frames. The quantitative results reported in Table 3 suggest

the positive influence of our proposed dataset.

Model. We conduct an ablation study on our model design

to examine the necessity of each structure. In our exper-

iments, we explore alternative configurations by replacing

the deformable convolution and offset estimation module

with the original convolution, eliminating the coarse warp-

ing module, and omitting the CLIP image encoder for abla-

tion. The results presented in Table 3 underscore the signif-

icance of each module, highlighting the crucial role of the

coarse warping module.

Method. The results in Table 3 further highlight the effi-

cacy of our inclusion matching pipeline. Its application to

AnT [8] yields a substantial improvement in network per-

formance, suggesting the broad applicability and general-

ization of our inclusion matching pipeline. Ablation study

Reference 
frame

Target 
frame AnT (Cadmium) RAFT Ours Ground truth

Figure 10. Visual comparison of different methods on our 3D ren-

dered test set. Our proposed method produces satisfactory results

in the presence of occlusion, significant motion, and substantial

changes in viewing angles.

visualizations are available in the supplementary material.

6. Conclusion

We have introduced a new approach for line art paint bucket

colorization. Departing from traditional segment matching

methods that struggle with one-to-one correspondence, we

proposed a novel inclusion matching pipeline that estimates

each segment’s inclusion relationship rather than the direct

correspondence. To facilitate the learning of this inclusion

relationship, we presented a dedicated dataset, PaintBucket-
Character, and a two-stage colorization pipeline. Our

pipeline incorporates a coarse color warping module and

an inclusion matching module. The experimental results

demonstrate the superior performance of our method in

handling occlusion and accommodating large movements

within challenging scenarios.
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colorization of black-and-white cartoons. In International
Symposium on Non-photorealistic Animation and Rendering,

2004. 3
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