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Abstract

Existing counting tasks are limited to the class level,
which don’t account for fine-grained details within the
class. In real applications, it often requires in-context or
referring human input for counting target objects. Take ur-
ban analysis as an example, fine-grained information such
as traffic flow in different directions, pedestrians and vehi-
cles waiting or moving at different sides of the junction, is
more beneficial. Current settings of both class-specific and
class-agnostic counting treat objects of the same class in-
differently, which pose limitations in real use cases. To this
end, we propose a new task named Referring Expression
Counting (REC) which aims to count objects with differ-
ent attributes within the same class. To evaluate the REC
task, we create a novel dataset named REC-8K which con-
tains 8011 images and 17122 referring expressions. Exper-
iments on REC-8K show that our proposed method achieves
state-of-the-art performance compared with several text-
based counting methods and an open-set object detection
model. We also outperform prior models on the class ag-
nostic counting (CAC) benchmark [36] for the zero-shot set-
ting, and perform on par with the few-shot methods. Code
and dataset is available at https://github.com/
sydai/referring-expression-counting.

1. Introduction
The objective of counting tasks is to predict the number of
the target object in an image. The counting task has evolved
from class-specific to class-agnostic through the years. The
trend clearly indicates an expansion in scope from closed-
set to open-set. The next step is to further enhance counting
models to handle more fine-grained and in-context queries.

Industries and businesses require specified and cus-
tomized quantitative analysis in order to create social and
economic values. Specifically, such fine-grained analysis
can empower transportation industry for traffic monitoring
and crowd analysis, retail businesses for customer demo-
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Figure 1. Comparison of class agnostic counting (CAC) task and
the proposed Referring Expression Counting (REC) task. CAC
takes class name [54] or class in natural language [2] or class de-
scription [2, 32] as input and count at class-level. REC aims to
count objects in a fine-grained and in-context manner, essentially
learning to differentiate attributes of the same-class objects.

graphic analysis, warehouses for inventory count, farms for
livestock management, government agencies for wildlife
monitoring, etc. To this end, we propose a novel counting
task named Referring Expression Counting (REC), which
aims to count fine-grained and contextual objects within the
same class e.g. ”female/male customer in the shop”, ”per-
son in the first/second queue”, etc.

In Fig. 1, we illustrate the difference between the pro-
posed REC task and the existing class-agnostic counting
(CAC) task. The fundamental difference is that CAC aims
to count at class-level while REC aims to count in a fine-
grained manner for objects of the same class but with dif-
ferent attributes. Two close works to ours are Teaching
CLIP to Count to Ten [32] and CounTX [2]. The former
proposes the CountBench, which is obtained by filtering a
large-scale image-text dataset. The authors look for cap-
tions that contain a number between two and ten, which
aligns with the count of a target object in the image, e.g.
”two zebras in Cape Town”. The objective is to enhance
contrastive models with counting capability but not to count
in a fine-grained manner. In CounTX, the authors consider
that class names are not natural language and some class
names in the original dataset [36] are incorrect or inaccu-
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Figure 2. Samples from REC-8K to illustrate different attributes within the class (better viewed in enlarged version).

rate. Therefore they rewrite the class names by adding ”the”
to the beginning of most of the classes and for some inac-
curate classes, they provide more descriptions e.g. ”candy
pieces” becomes ”the round desserts decorated with color-
ful candy pieces”. They still aim to tackle the CAC task but
not consider different attributes within the class.

In summary, our contributions are as follows: 1. We in-
troduce a new task: Referring Expression Counting (REC),
which takes counting to the next level by handling more
fine-grained queries. 2. We create a novel benchmark
dataset REC-8K which contains 8011 images with 17122
referring expressions covering a wide variety of attribute
types. 3. We achieve state-of-the-art performance on the
REC-8K benchmark, by leveraging prior knowledge of a
vision-language model to align image and text features, and
our innovative modules of global-local feature fusion and
contrastive learning. We also make it to the top for the zero-
shot setting on the CAC benchmark [36], and even match
the performance of the top few-shot model.

2. Related work
2.1. Existing counting tasks

Prior to this work, there are two counting tasks: category-
specific counting [9, 13–15, 18, 20, 22–24, 29, 31, 40, 43,
44, 53, 57]; and class-agnostic counting by few-shot set-
ting [17, 26, 30, 38, 42, 46, 58, 60] and by zero-shot setting
[2, 8, 11, 35, 54, 62]. Category-specific counting models are
trained and tested on one category of objects such as people,
vehicles etc., but don’t perform well on unseen categories.
Class-agnostic counting aims to train a generalist model to
count any seen or unseen category of objects. The authors
in [36] propose few-shot counting benchmark FSC-147 for

class agnostic counting. Their model FamNet predicts the
density map by matching the input image with a set of ex-
emplars and adapts novel categories at test time. In [54],
zero-shot counting is proposed, which takes the class name
as input and trains a conditional VAE to generate seman-
tic embedding prototype for selection of visual exemplars
from random image patches. In this paper, we present a new
task Referring Expression Counting (REC), which focuses
on fine-grained object counting within the class.

2.2. Language-based counting methods

With recent advances in cross-modality learning [7, 55],
text has been involved to take counting tasks to a new level.
The methods based on text input are essentially zero-shot
and are closely related to our work. In [32], the authors
teach CLIP [34] to count up to ten objects by fine-tuning
with a contrastive loss between the true and counterfactual
prompts besides the original text-image contrastive objec-
tive. ZSC [54], CounTX [2] and CLIP-Count [11] embed
class names with CLIP’s text encoder for further interaction
with the query image features to regress a density map for
zero-shot class-agnostic counting. TFOC [62] attempts to
use different prompts i.e. point, box and text to query SAM
[12], the segmentation model, to count objects in a training-
free manner. To tell apart our work from existing works,
we discuss the differences between us and [2, 32] in Sec. 1
and illustrate the same in Fig. 1. Again in this work, our
input is not the class name or class description but referring
expression that enables more fine-grained counting.

2.3. Related referring expression tasks

Referring object detection [16, 19, 21, 33, 41, 45, 47, 52,
59, 61] and referring expression segmentation [27, 28, 51,
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56, 63, 64] are closely related to REC. They are aimed for
detection or segmentation of target objects based on a refer-
ring expression, and requires fine-grained understanding of
both text and image. GroundingDino [21] unifies the evalu-
ation of closed-set, open-set and referring expression object
detection within a single framework. VLDet [16] directly
trains an object detector with image-text pairs by formu-
lating the region-word alignments as a set-matching prob-
lem. GRES [19] models the relationship between image
regions and regions-words explicitly by cross attention and
learn segmentation masks for the referred objects. Authors
in [61] extract global-local context features for both text and
image by decomposing the text into words and the image
into regions, and then compute cosine similarity scores and
choose the mask with the highest score. We leverage strong
text-image fusion capabilities of GroundingDino to perform
reasoning of the referring expression and locate the target
objects.

3. Task setting and dataset

(a) Percentages of person & object
categories, attribute types and at-
tributes.

(b) Histogram of points per image, per
Image-RE pair (up) and words per RE
(down).

Figure 3. Dataset REC-8K statistics.

3.1. Referring expression counting task

Counting tasks aim to output the number of a target object
in an image. Existing settings either count category-specific
objects or class-agnostic objects without considering differ-
ent attributes within the class. Category-specific counting
takes images as the sole input; and class agnostic counting
also takes as input the exemplars for the few-shot setting or
class names for the zero-shot setting. We believe these set-
tings are not flexible for real-world applications. Counting
objects with attributes is more beneficial.

We introduce Referring Expression Counting which
takes referring expressions and a query image as inputs and
outputs the target object count as well as the location. A
referring expression is composed of the class and attribute
of a target object. Unlike class specific datasets [9, 39, 48]
and class agnostic dataset [36] which only consider one cat-
egory of objects per image, REC accepts various referring

expressions for objects with different attributes.

3.2. The REC-8K dataset

Counting tasks usually involve dense objects. Referring ex-
pression counting additionally demands objects with var-
ious attributes. To this end, we create REC-8K, a novel
benchmark for evaluation of the REC task.

Data collection and annotation. We collect images
suitable for the REC task from various sources. We se-
lect from existing datasets: FSC-147 [36], JHU Crowd [39],
NWPU [48], VisDrone [65], DETRAC [50], Carpk [9],
Mall [5], Crowd Surveillance [57], and also source from
photo sharing websites Pixabay and Unsplash to construct
REC-8K. Considering application scenarios, we look for
images in the domains of crowd analysis, traffic surveil-
lance, retail and warehousing, etc.

We first create novel RE labels based on visible object at-
tributes and annotate the target objects accordingly. Similar
to existing counting datasets, we use point annotations for
the targets. For object and person category, we draw a dot at
the object center and at the center of the human head respec-
tively. If the target object is occluded, we mark the center
of the visible area. We use Amazon Mechanical Turk [1]
to annotate the dataset. Some sample annotated images are
presented in Fig. 2.

Statistics. REC-8K contains 8011 images with a total
of 286621 point annotations. The min, average and max
number of objects per image is 1, 36 and 1028. Due to
the nature of REC setting, we treat an Image-RE pair as a
training sample. We have a total of 17122 Image-RE pairs,
meaning in average there are 2.13 referring expressions per
image. The min, average and max number of target objects
per Image-RE pair is 1, 17 and 1004. We show statistics
for attribute types separately for object and person cate-
gories due to the distinctive natures. For object, the attribute
types include color, location, material, action, variety, size
and orientation. For person, we have attribute types cloth-
ing, action, accessory, location, age, orientation and gen-
der. We illustrate the distribution of attributes in Fig. 3a
and histograms of point annotations and word counts in
Fig. 3b. We also provide comparisons with existing count-
ing datasets in Tab. 1.

Dataset splits. Since we treat an Image-RE pair as a
sample, complying with our batching strategy in training,
we split the dataset into train, val, test sets which contains
10555, 3336, 3231 Image-RE pairs and 4923, 1566, 1522
images respectively. We try to minimize the shared REs
between different splits and still maintain a reasonable ra-
tio between train-val and train-test splits. Among the 723,
341, 299 unique REs in train, val, test sets, there are 80
REs shared between train and val sets and 79 REs shared
between train and test sets. Despite the shared REs, the im-
ages in different splits are unique.
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Dataset Text Anno. Classes REs No. of images Avg. points

JHU-Crowd [39] × 1 - 4372 345
NWPU [48] × 1 - 5109 417

UCF CC 50 [10] × 1 - 50 1279
CARPK [9] × 1 - 1448 62

FSC-147 [36] × 147 - 6135 56

REC-8K (ours) X - 1182 8011 36

Table 1. Comparison of existing counting datasets and REC-8K.

4. Method for REC task
We show the overview of our proposed method in Fig. 4.
We first explore the use of open-set object detector as
counting model (Sec. 4.1), and select a strong base model
for REC. With the prior knowledge from the base model,
we create modules that further enhance REC: global-local
feature fusion (Sec. 4.2) and contrastive feature learning
(Sec. 4.3). We present the final loss function (Sec. 4.4) in
the end of this section.

4.1. Object detector as counting model

The mainstream counting models have been based on re-
gression of density maps instead of object detection. How-
ever, transformer-based detectors have shown promising re-
sults in detection of occluded and small objects [37] thanks
to global contextual understanding and positional encoding.
Going forward to the open-set detection, state-of-the-art
model GroundingDino [21] enables text to image integra-
tion at multiple levels by using transformer architecture for
both. It also leverages strong capabilities of pretraining with
large-scale datasets of transformer-based detector, and end-
to-end learning for better generalization. Based on these
advantages, we choose GroundingDino as the base model
for REC thus name our model GroundingREC.

We adapt GroundingDino to REC by making the follow-
ing modifications: 1. Instead of bounding box, we take the
box center as output to align with the point annotation. In
the calculations of both Hungarian matcher cost and final
loss, we compute L1 loss for point regressions instead of
original GIOU and L1 loss for bounding box. 2. The orig-
inal GroundingDino detects objects for all nouns in the re-
ferring expression (RE), e.g. ”cat on the table” will output
bounding boxes for both ”cat” and ”table”. However, in
REC, ”on the table” is an attribute for ”cat” and we only
need to count cats on the table not the table itself or cats
elsewhere in the image. So we employ CLS token as the
global semantics for the RE instead of individual text to-
kens.

4.2. Global and local feature fusion

We categorize attributes in the RE labels in two high-level
categories: local attributes and relational attributes. Local
attributes are attributes that can be inferred from a local crop
of the specific object in the image, such as color, material,

age and gender, etc. Relational attributes are attributes that
require understanding of the context, such as location and
relative size. We observe that the base model performs bet-
ter on local attributes than on relational attributes. The hy-
pothesis is that the base model is pre-trained to attend to
individual objects in the text input, but we need a global un-
derstanding of the image to infer relational attributes. To
tackle this, we propose a global-local feature fusion module
to enhance the global understanding of the image. The key
idea is for the candidate image tokens potentially yielding
true detections to be aware of the global context.

The encoder extracts multi-scale image features from
different blocks of the image backbone. The encoded im-
age tokens from different layers of feature maps correspond
to different sizes of receptive field in the image, with lower
layers representing smaller receptive fields and higher lay-
ers bigger ones [25]. For REC task, we are looking for
target objects that are generally smaller in size. Built on
this, we propose global-local feature fusion in two steps as
illustrated in the yellow box of Fig. 4 as well as in Algo-
rithm 1. First, we perform cross attention between text and
image features, and then between image features at differ-
ent layers. Specifically, we first split the input referring ex-
pression into two parts: the subject part which is the object
with any local attribute and the context part which is the
relational attribute. For example, for RE ”red apple in the
left bowl”, the subject is ”red apple” and the context is ”in
the left bowl”. We also split the image features into two
parts: lower-layer image tokens and higher-layer image to-
kens. In order to enhance image features, we use lower-
layer image features as query to attend to the subject part of
the text feature, and higher-layer image features as query
to attend to the context part of the text feature. After en-
hancement in step one, we use the lower-layer image fea-
tures to query the higher-layer image features, essentially
asking ”what is the global context of this local image fea-
ture?”. The global-context informed image tokens are then
processed by a cross-modality decoder of GroundingDino
to generate the final image features.

Algorithm 1 Global-local feature fusion

Input: image features I , text features T , subject mask
Msubj , context mask Mctx

Output: global-context informed image features I ′

Split I into lower-layer tokens Ilow and higher-layer to-
kens Ihigh
# Step 1: cross attention between text and image features
Ilow ← CrossAttention(Ilow, T,Msubj)
Ihigh ← CrossAttention(Ihigh, T,Mctx)
# Step 2: cross attention between image features
Ilow ← CrossAttention(Ilow, Ihigh)
I ′ ← Update(I, Ilow)
return I ′
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Figure 4. Overview of the proposed method. The model takes a referring expression and a query image as inputs. After encoder, the image
and text embeddings first go through the global-local feature fusion module to yield global-context enhanced image embeddings. Then
the contrastive learning module further encourages discriminative feature learning by maximizing the similarity between the image and
positive text embedding and minimizing the similarity with negative text embeddings. The final loss function is a weighted sum of the
localization, classification and the contrastive loss.

4.3. Contrastive learning

In REC, we want to differentiate the target objects by a
given attribute from the other attributes of the same class.
For example, in referring expression ”red apple in the left
bowl”, we want to differentiate red apples from green ap-
ples or apples in other locations. To this end, we propose
the contrastive learning module to learn more discrimina-
tive features associated with attributes.

In particular, we take multiple RE inputs for different at-
tributes of the same-class object. After feature enhancement
encoder of our base model, we obtain the text embeddings
of the attributes and image tokens embeddings. By Bipartite
Matching, we match the predicted points with the ground
truth points, and then identify the image tokens associated
with the matched points. For each matched image token k,
we take the corresponding RE’s attribute as the positive text
sample and the other attributes of the same class as nega-
tive text samples. By taking mean of the attribute tokens
embeddings, we obtain the positive text embedding t+i and
the negative ones t−j . We then compute sik, the similarity
score between the k-th matched image embedding and the
positive text embedding t+i , and sjk, the similarity score
with the negative text embeddings t−j . The contrastive loss
is indicated in Eq. (1).

Lcontrast = −
1

K

K∑
k=1

[log(sik) +
∑
j 6=i

log(1− sjk)] (1)

As illustrated in the blue box of Fig. 4 for the contrastive
loss function, we learn more discriminative features for at-
tributes by pushing the positive text embedding t+i closer to
the matched image embedding k and pushing the negative

text embeddings t−j away from it.

4.4. Loss function

With the adaption of DETR-like object detector to REC,
we first conduct Bipartite Matching to match the predicted
points with the ground truth points. Then we compute the
following losses between the matched points.

Localization loss for point regression which is the L1
distance between predicted point p̂k and ground truth point
pk. In Eq. (2), K is the total number of matched points.

Lloc =
1

K

K∑
k=1

‖p̂k − pk‖ (2)

Cross-entropy classification loss for point classifica-
tion, where yi is the ground truth label for i-th text token
and ŷi is the class logit between i-th text token and k-th pre-
dicted image token. The loss is calculated by taking mean
of all scores for N text tokens then averaged over K matched
points.

Lcls =
1

K

K∑
k=1

[
−

1

N

N∑
i=1

[
yi log ŷ

k
i + (1− yi) log(1− ŷki )

]]
(3)

Contrastive loss (see Eq. (1)) for image-text alignment
as described in Sec. 4.3. The final loss is a weighted sum of
all three losses.

L = Lloc + λ1Lcls + λ2Lcontrast (4)

5. Experiments
5.1. Implementation details

We use GroundingDino [21] as the backbone of our model,
which takes as input a referring expression and a query im-
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Method Backbone Finetuning Val set Test set

MAE↓ RMSE↓ Prec↑ Rec↑ F1↑ MAE↓ RMSE↓ Prec↑ Rec↑ F1↑

Mean - - 14.28 27.75 - - - 13.75 25.91 - - -
ZSC [54] ResNet-50 X 14.84 31.30 - - - 14.93 29.72 - - -
ZSC [54] Swin-T X 12.96 26.74 - - - 13.00 29.07 - - -

TFOC [62] ViT-B - 16.08 31.61 0.30 0.07 0.12 17.27 32.68 0.23 0.07 0.11
CounTX [2] ViT-B-16 X 11.88 27.04 - - - 11.84 25.62 - - -

GroundingDino [21] Swin-T × 11.77 28.6 0.57 0.25 0.34 11.71 26.97 0.59 0.25 0.35
GroundingDino [21] Swin-T X 9.03 21.98 0.56 0.76 0.65 8.88 21.95 0.59 0.76 0.66

GroundingREC (ours) Swin-T X 6.80 18.13 0.65 0.71 0.68 6.50 19.79 0.67 0.72 0.69

Table 2. Comparison of Results on Referring Expression Counting benchmark REC-8K.

age and outputs the total count by summing up all posi-
tive point predictions. In particular, we use the text encoder
and image encoder of GroundingDino to extract the text and
image features, and then perform the proposed global-local
feature fusion after the feature enhancer. Specifically, we
split the image tokens after language-guided query selection
of GroundingDino and empirically choose top 10% from
the tokens sorted from lowest to highest feature maps as
higher-layer tokens and the rest as lower-layer tokens. For
model output, we follow the DETR [3] paradigm to output
a fixed number of 900 predictions from which we select the
positive detections by thresholding the class logits with the
following method. We first compute the class logits by dot
product each image token with each text token (see score
matrix in Fig. 4). Then for each image token, we compare
its score with the CLS token by a threshold of 0.25 and
scores with rest of the text tokens by a threshold of 0.35.
If all scores are higher than the thresholds, we include the
corresponding prediction in the final count.

For training, we keep frozen the BERT [6] text encoder
and Swin-T [25] image encoder, and only train the pro-
posed global-local feature fusion modules and the cross-
modality encoder and decoder of GroundingDino. We use
the AdamW optimizer with a learning rate of 1e-5. For
Hungarian matching, we set the ratio of localization loss
and classification loss to 1:5. For final loss, we set λ1 and
λ2 to 5 and 0.06 respectively.

5.2. Evaluation metrics

Following the previous works [26, 36, 54], we use the
Mean Absolute Error (MAE) and Root Mean Squared Er-
ror (RMSE) for evaluation of REC. They are defined as:

MAE = 1
n

∑n
i=1 |ci − ĉi|, RMSE =

√
1
n

∑n
i=1(ci − ĉi)2,

where ci is the ground truth count and ĉi is the predicted
count for the i-th Image-RE pair in the test set of size n.

Besides MAE and RMSE, we also consider localiza-
tion errors for REC, since it’s easy to predict objects with
a wrong attribute when all objects are of the same class.
When the counting error is low for a model, it could be FP
and FN predictions cancel each other out. To this end, we

propose to use Precision, Recall and F1 score as localiza-
tion metrics for REC. We first match the predicted points
with the target points by Hungarian Matching. Then we
calculate the TP, FP and FN based on matched point pairs.
Specifically, we find the median of the predicted bounding
box area (w ∗h) and define σ =

√
w2+h2

2 as the threshold to
determine whether a matched predicted point is a TP or FP.
Then we compute FP by subtracting TP from the total num-
ber of predicted points, and compute FN by subtracting TP
from the total number of target points. Finally, we calculate
the Precision, Recall and F1 score as: Precision = TP

TP+FP ,
Recall = TP

TP+FN , F1 = 2×Precision×Recall
Precision+Recall .

5.3. Results on REC task

We compare existing language based counting methods,
and open-set object detection model GroundingDino [21]
with our proposed method on the REC benchmark. In ad-
dition, we show some qualitative results of our proposed
method. Then we present the ablation study for the pro-
posed global-local feature fusion and contrastive learning
modules. Finally, we perform evaluation on the class agnos-
tic counting task and compare with state-of-the-art methods.

Quantitative results. We first compare with language
based counting methods including ZSC [54], TFOC [62],
CounTX [2]. The fine-tuning of these models are based
on the training script provided by the authors. The re-
sults are shown in Tab. 2. ZSC [54] uses the class name
to generate an exemplar prototype, which is critical for ex-
emplar patch selection and counting result. In REC task,
a referring expression is more complex than a class name.
Selected exemplars may not fully capture the complex se-
mantics of the referring expression. Especially when the
attribute is relational, exemplar-based methods will gener-
ally fail due to the lack of global context. The same prob-
lem applies to TFOC [62]. TFOC by text prompt essen-
tially leads to finding the most appropriate box prompt for
SAM [12], which segments the query image for objects re-
sembling the reference object in the box prompt. For both
ZSC and TFOC, the performance is limited by the quality
of exemplar and the level of text-image alignment. CounTX
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Method Val set Test set

MAE RMSE F1 MAE RMSE F1

full model 6.80 18.13 0.68 6.50 19.79 0.69
w/o global-local fusion 7.31 18.77 0.65 7.33 19.71 0.67
w/o contrastive learning 7.25 15.97 0.65 6.92 21.00 0.66

Table 3. Ablation study.

[2] on the other hand enforces the alignment between text
and image by using transformer decoder layers. Therefore,
CounTX achieves better performance in REC task. How-
ever, it’s still not as effective as our proposed method in
terms of reasoning about the text input and fusing global
and local features. We couldn’t report localization errors
for ZSC and CounTX because their output is density map.
For TFOC, the localization metrics are low due to the reason
stated above.

We then compare our method with GroundingDino [21]
which is a state-of-the-art open-set object detection model
that can detect objects of unseen classes. Even without fine-
tuning, GroundingDino has improved counting errors, but
the localization performance is still poor. After finetuning,
the localization performance is improved further. Lastly,
our method outperforms all prior methods with the pro-
posed global-local feature fusion and contrastive learning
among different attributes.

Qualitative results. We show good examples in Fig. 5
and bad examples in Fig. 6 to illustrate the strength and
weakness of our method. For the good examples in Fig. 5,
our method can more easily handle attribute types: color
(a, h), simple location (c, e, f) and action (b, d). The suc-
cess with the color and action types comes from the model’s
prior knowledge as well as our proposed contrastive learn-
ing to differentiate one attribute from another. As shown
in (d), for example, the model can differentiate ”person
standing” from ”person sitting” and gives a close count with
high TPs. While location attribute is more challenging, our
method by fusing global and local features enhances global
context learning to locate the target object. The model is
able to tell the difference between ”on the second top shelf”
and other locations in (f).

For the bad examples in Fig. 6, our method fails to count
the target object for attribute types of more complex loca-
tion (a, c, g), negation (f), ambiguous (d) and attribute that
involves text (e). The problem is mainly related to text rea-
soning and alignment of image and text features, which is
still an open problem in the field of computer vision. We
hope our work can shed some light on this challenge and
inspire future research. Another challenging case is the mis-
leading elements such as in image (h), many FPs are being
taken into the count: the human figures on the building fa-
cade and the reflection of persons in the mirror.

Method Setting Val set Test set

MAE RMSE MAE RMSE

FamNet [36] few-shot 23.75 69.07 22.08 99.54
BMNet+ [38] few-shot 15.74 58.53 14.62 91.83
CounTR [4] few-shot 13.13 49.83 11.95 91.23

CACViT [49] few-shot 10.63 37.95 9.13 48.96
TFOC [62] (box prompt) few-shot 37.56 113.14 19.95 132.16

ZSC [54] zero-shot 26.93 88.63 22.09 115.17
CounTX [2] zero-shot 17.10 65.61 15.88 106.29

TFOC [62] (text prompt) zero-shot 47.21 127 24.79 137.15
GDino [21] (w/o finetune) zero-shot 51.11 101.28 54.40 92.36
GDino [21] (w/ finetune) zero-shot 10.32 55.54 10.82 104.00

GroundingREC (ours) zero-shot 10.06 58.62 10.12 107.19

Table 4. Comparison of state-of-the-art methods and different set-
tings on dataset FSC-147. Note: 1. GDino is short for Ground-
ingDino; 2. TFOC [62] results for val set is obtained by running
the code provided by the authors. All the other results are obtained
from the original papers.

5.4. Ablation study

In this section, we present the ablation study to analyze the
effectiveness of each component in our proposed method.
The results are shown in Tab. 3. By removing the con-
trastive learning, the performance drops especially in the
localization metric. It shows that by pushing the image and
positive text embedding close to each other and pushing the
negative text embeddings away, we actually help the model
to learn discriminative features for different attributes. By
removing the global-local feature fusion, the performance
also drops. This shows the cross attention between global
and local features indeed helps with global and relational
context learning.

5.5. Results on class agnostic object counting

Besides REC task, we also evaluate our method on class
agnostic counting to show our method is generalizable to
prior tasks. The results are presented in Tab. 4. We evaluate
the benchmark dataset FSC-147 [36] in a zero-shot man-
ner, which means the model is trained on FSC-147 train set
and evaluated on novel classes of the val and test set. The
few-shot setting in Tab. 4 refers to the known exemplars
provided by the dataset during inference.

Tab. 4 shows that our method GroundingREC outper-
forms the state-of-the-art methods in the zero-shot setting,
and is even comparable to the methods in the few-shot set-
ting. We also include our base model GroundingDino in
the table for comparison. The similar performance is due
to the fact that the text input is simply the class name,
which doesn’t require global context or discrimination of
attributes. Our proposed modules work more effectively in
the REC task.
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Figure 5. Visualization of results for good examples (better viewed in enlarged version).

Figure 6. Visualization of results for bad examples (better viewed in enlarged version).

6. Conclusion
We propose a new counting task named Referring Expres-
sion Counting (REC) which aims to count fine-grained ob-
jects with different attributes within the class. To evalu-
ate REC, we create a novel dataset named REC-8K, cov-
ering a variety of object classes and attributes types. We
also propose a novel model GroundingREC which lever-
ages the prior knowledge from a vision-language model.
Through extensive experiments, we show that our model
achieves state-of-the-art performance in both referring ex-
pression counting and zero-shot counting. By analysis of

the experimental results, we show that our model is capable
of learning local and relational attributes and discriminative
attribute features, powered by the proposed modules. We
also point out the limitations of our model in the qualitative
analysis, which can be studied and improved in the future
work.
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