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a) Novel View Synthesis on the D-NeRF Dataset b) Comparison on an Unbiased4D Sequence.
Figure 1. We present Neural Parametric Gaussians (NPGs), a method for monocular non-rigid reconstruction of objects. a) Our method
enables to produce high quality reconstructions in easy settings like the object-level D-NeRF scenes while b) also being able to handle
challenging monocular settings much better than previous work through strong parametric low-rank regularization.

Abstract

Reconstructing dynamic objects from monocular videos
is a severely underconstrained and challenging problem,
and recent work has approached it in various directions.
However, owing to the ill-posed nature of this problem,
there has been no solution that can provide consistent, high-
quality novel views from camera positions that are signifi-
cantly different from the training views. In this work, we
introduce Neural Parametric Gaussians (NPGs) to take on
this challenge by imposing a two-stage approach: first, we
fit a low-rank neural deformation model, which then is used
as regularization for non-rigid reconstruction in the second
stage. The first stage learns the object’s deformations such
that it preserves consistency in novel views. The second
stage obtains high reconstruction quality by optimizing 3D
Gaussians that are driven by the coarse model. To this end,
we introduce a local 3D Gaussian representation, where
temporally shared Gaussians are anchored in and deformed
by local oriented volumes. The resulting combined model
can be rendered as radiance fields, resulting in high-quality
photo-realistic reconstructions of the non-rigidly deforming
objects. We demonstrate that NPGs achieve superior results
compared to previous works, especially in challenging sce-
narios with few multi-view cues.1

1Project Page: https://geometric-rl.mpi-inf.mpg.de/npg/

1. Introduction

Reconstructing 3D objects from 2D observations is a core
problem in computer vision with numerous applications in
several industries, such as the movie and game industry,
AR/VR, and robotics. Tremendous progress has been seen
in static scene reconstruction during the last few years. The
real world is, however, dynamic, and most recorded scenes
are captured in a casual setting, with sparse coverage from
a single camera. Thus, addressing these two aspects during
reconstruction is of fundamental importance.

The success of neural approaches on static scenes has en-
couraged their use for dynamic scene reconstruction from
monocular videos, both in its classical [24, 40, 45] and
hybrid [4, 10, 28] forms. These methods either learn a
per-frame scene representation with limited time consis-
tency [10, 24] or utilize a time-invariant canonical space,
which is used to track the observations at each timestep [41,
45]. However, as pointed out in Gao et al. [12], they are
evaluated on datasets that contain multi-view signals, such
as camera teleportation—i.e., alternating samples from dif-
ferent cameras to construct a temporal sequence—and lim-
ited object motion, and their performance suffers drastically
when evaluated on more realistic monocular sequences.
Such sequences usually contain faster object motion com-
pared to camera motion. Strong regularization is required in
order to propagate information between different timesteps
with the correct data association. As we will demonstrate
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on realistic sequences, current methods fail to provide such
regularization. Traditionally, a possible solution to this has
been to use geometry proxies in different forms [15], such
as the SMPL [30] body model. However, these approaches
require an appropriate model with a priori knowledge.

In this paper, we tackle the problem of template-free dy-
namic object reconstruction from realistic monocular cap-
tures. We propose Neural Parametric Gaussians (NPGs) as
a two-step approach, which first learns the coarse, deform-
ing geometry and then uses it as a proxy for reconstruction.
In the first step, we obtain a coarse neural parametric model
for the observed object at each timestep, generated using a
low-rank decomposition of deformation and a set of point
basis vectors. The basis vectors force the model to share
information between timesteps, thus providing regulariza-
tion for the sparsely observed dynamic regions. In the sec-
ond step, we represent fine-level geometry and appearance
details by initializing and optimizing 3D Gaussians on top
of the coarse point template, inspired by the recent break-
through provided by the 3D Gaussian splatting approach for
static scenes [18]. For handling dynamic objects, we define
Gaussians in oriented local volumes such that they can be
driven by the coarse deformation model from the first stage.
In short, our contributions are:
• A two-stage reconstruction approach that learns coarse

deformation in stage one and uses it as a constraint for
reconstruction in stage two.

• A coarse parametric point model based on a low-rank
deformation that provides regularization and correspon-
dences over time for object reconstruction.

• A 3D Gaussian splatting approach, where Gaussians live
in deforming local volumes, generalizing 3D Gaussians
from static to dynamic scenes efficiently.

• We show that our model improves on the state of the art of
non-rigid novel view synthesis from a monocular camera,
especially in challenging cases with few multi-view cues.

2. Related Work
We look at a brief overview of the recent advances in non-
rigid reconstruction from the perspective of scene represen-
tations, deformation modeling, and supervision, focusing
on monocular and object-level reconstruction methods. For
a more in-depth discussion, please refer to the recent survey
by Yunus et al. [74].

2.1. Neural Rendering of Dynamic Scenes

NeRF [32] has been extended to model dynamic scenes both
using a global MLP representation and as a hybrid repre-
sentation, where neural features are stored at the nodes of
a discrete data structure. These representations capture the
scene dynamics in one of two ways. One approach, dubbed
Space-Time Neural Fields, directly adds an extra time di-
mension to the scene representation to reconstruct the dy-

namic scene from multi-view [1, 21, 23, 26, 42, 50, 59–
61, 63, 70] or monocular [4, 8, 10, 11, 24, 25, 48, 51, 67]
video. Hybrid methods further achieve acceleration by
parameterizing the 4D scene representation using voxel
grids [21, 42, 51, 59–61, 63] or planar factorization [1, 4,
10, 26, 48, 70]. Such methods often rely on estimated depth
maps and pre-computed optical flow for local motion mod-
eling but fail to propagate information globally, required
to render novel views from viewpoints significantly differ-
ent than the observations, making them suitable mostly for
forward-facing videos. Similar to ours, Hexplane [4] shares
information between timesteps by proposing a low-rank
temporal basis for the spatially decomposed volumes. How-
ever, they optimize the basis together with the fine-level ge-
ometry and appearance while our two-stage approach pro-
vides stronger regularization by first obtaining a coarse tem-
plate and then optimizing fine details on top.

The other paradigm, called Deformable NeRFs, intro-
duces a 4D deformation field that maps the observations at
each timestep to a canonical space, i.e. backward warping,
ensuring temporal correspondences in contrast to the previ-
ous paradigm but restricting large deviations and topologi-
cal changes from the canonical field [7, 40, 41, 45, 55, 58].
A few approaches represent the 4D deformation and the
canonical radiance field with a voxel-based hybrid represen-
tation for fast multi-view reconstruction [28, 56]. TiNeu-
Vox [9] further accelerates monocular reconstruction by us-
ing a very light MLP for the backward deformation field,
compensating for compression by enhancing the scene rep-
resentation through temporal embeddings. Backward warp-
ing is not smooth; hence, it has difficulties generalizing
to sparse capture settings for novel view synthesis, where
strong regularization is required. Recently, ForwardFlowD-
NeRF [13] proposed the use of time-dependent voxel fea-
tures in the canonical space for learning a forward deforma-
tion field to each timestep instead of the other way around,
leading the MLP to model motion more smoothly. In con-
trast, our optimized coarse model provides explicit regular-
ization for reconstruction in the second stage.

2.2. Object-level Non-Rigid Reconstruction

Object-level approaches employ masks to separate the dy-
namic object of interest from the background and mostly
focus on surface modeling. Using classical representa-
tions, Shape-from-Template methods [5, 17] rely on pre-
acquired full object templates, while template-free online
methods [2, 6, 27, 34] use RGB-D input to reconstruct
the object’s geometry. A few recent neural rendering ap-
proaches focus on surface modeling of masked objects from
monocular RGB [15] and RGB-D [3] videos by replacing
the density-based representation with SDF modeling from
NeuS [62]. Unbiased4D [15] also utilizes a mesh proxy to
model large deformations. A couple of methods [49, 53]
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employ data-driven category-level priors for shape and ap-
pearance, along with articulation [53] or scene flow [49]
prediction, whereas our template prediction does not rely
on any learned data priors but is purely optimization-based.

Neural Parametric Models utilize an auto-decoded MLP
to learn the articulation space—either represented by scene
flow [33, 38, 39] or volumetric bone transformations as
in BANMO [71]—for a given shape from monocular
videos. Similar to ours, KeypointTransporter [36] recon-
structs coarse 3D point clouds for objects, parameterized
by a low-rank deformation basis. In contrast to such meth-
ods, which focus on coarse geometry only, our approach
focuses on high-quality view synthesis using a deformable
parametric model. A few approaches utilize either skele-
tons [22, 29, 35, 73] or surface templates [14, 43, 68, 77]
from parametric models like SMPL [30] to guide the mo-
tion field and learn the canonical radiance field on top of
such templates. While the template provides motion reg-
ularization, these approaches require a priori information
about what is to be reconstructed, which does not general-
ize to sequences in the wild. Our coarse point template, on
the other hand, is derived solely from the observations.

2.3. Point-based Representation and Rendering

A few approaches utilize point-based neural rendering, in-
troduced for static scenes by Point-NeRF [69], for dynamic
avatar modeling from multi-view [57] and monocular [52]
videos. The recent trend has been shifting towards us-
ing purely point-based explicit representations for their ef-
ficiency, showing great results from multi-view input for
dynamic surface modeling [44] and view synthesis using
point-based rasterization [75]. 3D-GS [18], a recent break-
through approach for static scenes, models the scene with
numerous volumetric 3D Gaussians and proposes a Gaus-
sian splatting-based rasterization technique to deliver state-
of-the-art results in terms of view synthesis quality and
rendering speed. Our approach extends the static 3D-GS
method to dynamic objects.

Concurrent Works. In terms of modeling dynamic
scenes with 3D Gaussians, several concurrent works have
appeared on arXiv.org. Dynamic3DGS [31] utilizes dense
multi-view inputs to track the rotation and position of 3D
Gaussians initialized in the first frame across timesteps.
Two similar works, Deformable3DGS [72] and 4DGaus-
sianSplatting [66] introduce a canonical space where 3D
Gaussians are initialized while using a neural deformation
field to track the position, rotation, and scale of each Gaus-
sian across timesteps. 4DGaussianSplatting additionally
represents the deformation field using a decomposed Hex-
plane representation. In contrast, our approach introduces
the 3D Gaussian scene representation specifically to the un-
derconstrained setting of sparse monocular captures, by ini-
tializing the Gaussians from the underlying coarse point

template and using the deformation of the template as a
guide for optimization of the 3D Gaussians. Also, in con-
trast to some works [66, 72], we do not apply MLPs to all
Gaussians in a scene, which leads to better scalability.

3. Method
The presented method is a two-stage approach. First, we
obtain constraints for reconstruction by fitting a neural
parametric point model to monocular video sequences (c.f.
Sec. 3.1). Then, the second stage uses the learned con-
straints from stage 1 to solve the underconstrained task of
monocular, non-rigid reconstruction (c.f. Sec. 3.2). Specifi-
cally, we formulate 3D Gaussians as a function of the under-
lying point template, optimizing the parameters with respect
to local subspaces.

3.1. Coarse Parametric Point Model

The goal of the first stage is to obtain a coarse, non-rigid
point model that follows the movement of the object, given
a sequence of monocular input views {Ii}Ni=1 with masks
{Mi}Ni=1 and camera poses. For real videos the poses are
obtained via COLMAP [46, 47]. We do not make any as-
sumptions of 3D location of the object, but we require the
object to stay in view. Note that, given recent advances in
segmentation, in contrast to previous work, we consider the
mask to be a weak assumption and demonstrate that our
method works with masks obtained from Segment Anything
(SAM) [20] in the supplemental materials.

3.1.1 Representation

We represent our coarse, non-rigid model as a set of points
Pt ∈ RM×3 for t ∈ {1, ..., N}, which are the output of a
low-rank deformation basis

Pt =

K∑

k=1

αt
kBk, (1)

where {Bk ∈ RM×3}Kk=1 is a learnable point basis and
αt
k ∈ R are low-rank coefficients. The latter is produced

by an MLP fθ : Rd → RK , mapping the temporally en-
coded time ϕ(t) ∈ Rd to coefficients over time, following
the ideas of multiple recent works [36, 37, 65]. The basis is
randomly initialized. This representation naturally provides
correspondences over time, as the point cloud is smoothly
deformed between frames. By choosing K, we have con-
trol over the rigidity of the model. Intuitively, each basis
vector can represent the object in a certain pose, and the
linear combination of these shapes defines the extent of de-
formations that can be modeled, thus providing regulariza-
tion. We choose K << T and evaluate different choices in
Sec. 4.2. Additionally, the points are equipped with coarse
colors C ∈ RN×3 and random features E ∈ RN×d for
identification purposes.

10717



Basis Vectors
B ∈ RM×3

Stage 1 Stage 2

...
...

...
...

Coarse Points
P ∈ RM×3

∑

∑

α1
...

αK

α1
...

αK

MLP
fθ

MLP
fθ

ϕ(t = 1)

ϕ(t = N)

P1

PN

t = 1

t = N

Stage 1 Losses

(w,S,R,h)

xN =
∑k

i=1 wi ·VN
i

R̄N = TN ·R

Gaussian
Rasterizer

Densification

(w,S,R,h)

x1 =
∑k

i=1 wi ·V1
i

R̄1 = T1 ·R

Gaussian
Rasterizer

Densification

Stage 2 Losses

t = 1

t = N

...
...

...
...

Figure 2. Overview of our method. We present a two-stage method. In stage 1 (left) we learn a coarse point model, which is parameterized
through low-rank coefficients from an MLP. In stage 2 (right), we optimize 3D Gaussians in local volumes, defined by the point sets. The
figure distinguishes between parts that are shared over time (■), individual for each time step (■), and fixed-function (■). MLP weights
θ, Gaussian interpolation weights w, scales S, rotations R and harmonic coefficients h are shared over time and the deformation is purely
modeled by the low-rank coefficients αi, leading to a different coarse point model for each frame.

3.1.2 Optimization

Given a sequence of input views {Ii}Ni=1 and masks
{Mi}Ni=1, we follow a similar procedure as in KeyTr [36]
and find optimal MLP weights θ̂, a deformation basis
{B̂k}Kk=1 and colors Ĉ as

θ̂, {B̂k}, Ĉt = argmin
θ,{Bk},Ct

(LM + LR + LOF), (2)

with the individual losses being described in the following.
For the loss weights, please refer to the supplementals.

Mask Loss. For each frame i, we sample points Pi
M uni-

formly from the given mask and minimize the Chamfer dis-
tance LM = CD(Pi

M, π(Pi)) to the point model projected
to the image plane by π. We found this to be more efficient
and equally good as a Sinkhorn matching loss [36].

Rigidity Loss. We add a rigidity loss that keeps neigh-
borhood point distances of a frame t similar to that of a
reference frame r:

LR =

M∑

i=2

∑

j∈N (i)

∥∥Pr
i −Pr

j∥2 − ∥Pt
i −Pt

j∥2∥22, (3)

for all t ∈ {1, ..., N}, where N (i) denotes the neighbor-
hood points of point i, given a radius criterion, and r is a
reference frame selected manually from the dataset.

Optical Flow Loss. We use RAFT [54] as an off-the-shelf
optical flow estimator to align point movement between
frames via estimated optical flow, as done by KeyTr [36].
The flow consistency loss between two frames is given as

Lt 7→t+1
OF = ∥Mt ⊙ [R(Pt,E)−RB(Pt+1,E)])∥ϵ (4)

where R(Pt,E) renders the point cloud Pt with random
descriptors E, and RB(Pt+1,E) renders, applies the back-
ward optical flow and bilinear samples the result. ∥x∥ϵ is an
element-wise Huber loss with threshold ϵ = 0.01.

3.2. Neural Parametric Gaussians

Given our parametric point model, we perform a detailed
reconstruction of the monocular sequence by letting the
coarse model drive 3D Gaussians that live in oriented lo-
cal volumes defined by point sets. We first define our local
volumes with Gaussians in Sec. 3.2.1. Then, the rendering
process is described in Sec. 3.2.2, the densification process
in Sec. 3.2.3, and the optimization process in Sec. 3.2.4.

3.2.1 Representation

When defining the local volumes, the goal is to make as few
assumptions about the object as possible and, particularly,
to avoid the assumption of a surface. Thus, we consider
local unstructured point sets as volumes.

Local Volumes. We define an oriented local volume as
(V(i),T(i)), where V(i) ∈ Rk×3 is the point with index
i plus its k − 1 nearest neighbors and T(i) ∈ SO(3) is
the local volume orientation. We choose k = 20 in our
experiments and the local orientation T(i) heuristically by
taking the orientation of the triangle of point i and its closest
2 neighbors. The neighbors defining the triangle are fixed
over time (please refer to the supplemental materials for a
detailed description). Then, the full set of local volumes at
time t is given as

V = {(Vt(i),Tt(i)) | ∀i ∈ {1, ...,M}}. (5)

The set of volumes is fixed over time, however, their point
positions Vt(i) change from frame to frame. Note that the
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absolute orientation of the local volumes is not relevant,
as the rotations R of individual Gaussians can adjust ac-
cordingly (see next paragraph). Importantly, the T(i) are
equivariant to local deformation: if the local point set is ro-
tated, the rotation-defining triangle rotates, resulting in T(i)
changing by the same rotation, as desired.

3D Gaussians. Each local volume can store an arbitrary
number of 3D Gaussians [18], which we denote as Gi. Hav-
ing a different number of Gaussians for each volume allows
the model to adapt to the amount of high-frequency details
in individual object parts. A single Gaussian g ∈ Gi is de-
fined as tuple g = (w,S,R,h), where S, R, and h are scale
matrix, rotation matrix and spherical harmonic coefficients
as in 3D Gaussian splatting [18], respectively. Instead of
representing the 3D Gaussian position in world space, we
represent its position as a set of barycentric interpolation
weights w ∈ Rk applied to the neighboring points V(i).
Before rendering a Gaussian belonging to volume i, we find
the final Gaussian position xt and rotations R̄t at time t:

xt =

k∑

j=1

Softmax(w)j ·Vt(i)j , and R̄t = Tt(i)·R, (6)

via a linear combination of volume-defining points and ro-
tation into the local coordinate frame, respectively. The pro-
cess can be understood as a simplified variant of cage-based
deformation transfer [16]. It is important to note that Gaus-
sian parameters are shared across all t and that temporal
changes are modeled purely by the coarse point set.

3.2.2 Rendering

The sets of Gaussians from all volumes in V are ren-
dered using the differentiable rasterizer provided by Kerbl
et al. [18]. It is important to note that, in contrast to concur-
rent works [66, 72], our model does not apply networks to
Gaussians. Since the number of Gaussians within one scene
can become very large, this avoids heavy runtime increases
for larger scenes. We only have a network driving our ini-
tial point template, which has a comparably low number of
points, while Gaussians just follow their local movement
and have directly optimizable parameters that are shared
over the full sequence. Further, given an optimized repre-
sentation, it is straightforward to extract all Gaussians and
store them for real-time rendering.

3.2.3 Gaussian Initialization and Densification

When initializing our model, we fill each volume with a
small number of Gaussians. During training, we apply den-
sification and pruning procedures from Kerbl et al. [18].
Importantly, when splitting a Gaussian, we assign new
Gaussians to the same volume as the original Gaussian and
apply a tiny bit of noise to weights w of both. In practice,

we store all Gaussians in a global list and keep a volume in-
dex for each Gaussian, allowing different amounts of Gaus-
sians for each volume.

3.2.4 Optimization

In stage 2, we mainly optimize the individual Gaussians.
Thus, we find optimal weights ŵ, rotations R̂, scales Ŝ and
spherical harmonic coefficients ĥ as

ŵ, R̂, Ŝ, ĥ = argmin
w,R,S,h

(1− λ)L1 + LD-SSIM, (7)

where the loss functions are l1-distance and a structural
similarity loss, as used by Kerbl et al. [18]. Optionally,
we can finetune all parameters from stage 1 based on these
rendering losses, including a weak regularization to prevent
large changes. While this is not strictly necessary, it slightly
improves the details of the resulting reconstruction.

4. Experiments
In this section, we evaluate our method on synthetic and real
monocular datasets and perform ablation studies to demon-
strate its effectiveness in reconstructing realistically cap-
tured dynamic scenes.

Datasets. First, we evaluate our method on the commonly
used D-NeRF benchmark dataset [45] and show that it
reaches state-of-the-art performance on objects which fit
our setting. Note that the dataset contains unrealistic multi-
view cues, like camera teleportation, which aid the recon-
struction. After that, we provide quantitative, qualitative,
and ablation studies on the more realistically captured Un-
biased4D dataset [15] to demonstrate that our method pro-
vides adequate regularization for this underconstrained set-
ting, where a camera is moving slowly around an object.
We use the Effective Multi-view Factor (EMF) metric from
Gao et al. [12] to determine the amount of multi-view
cues present in datasets. D-NeRF has an EMF ω value of
2135.45, while the average EMF ω of Unbiased4D is 24.93.

Comparison Methods. Existing object-level methods
mostly focus on geometry reconstruction and neglect ap-
pearance. So, we choose state-of-the-art methods for
monocular scene-level reconstruction and use object masks
for comparison. We mainly compare against Hexplane [4],
which uses planar decomposition and information sharing
for the 4D volume, and TiNeuVox-B [9], which utilizes
a voxel-parametrized hybrid field for deformation model-
ing. We use the base version (B) of TiNeuVox, which is a
bit slower but more accurate than the small version. Fur-
ther comparisons are made against HyperNeRF [41], Ner-
fies [40] and D-NeRF [45] to put our performance more in
context. We report the PSNR, SSIM [64], and LPIPS [76]
metrics for all experiments to quantitatively evaluate the
view synthesis quality.
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Jumping Jacks Hell Warrior Hook Stand Up
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

D-NeRF [45] 32.80 0.98 0.03 25.02 0.95 0.06 29.25 0.96 0.11 32.79 0.98 0.02
TiNeuVox [9] 34.23 0.98 0.03 28.17 0.97 0.07 31.45 0.97 0.05 35.43 0.99 0.02
HexPlane [4] 31.65 0.97 0.04 24.24 0.94 0.07 28.71 0.96 0.05 34.36 0.98 0.02
Ours 34.06 0.99 0.03 38.73 0.98 0.04 33.73 0.98 0.03 37.95 0.99 0.02

Mutant T-Rex Lego Average
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

D-NeRF [45] 31.29 0.97 0.02 31.75 0.97 0.03 21.64 0.83 0.16 29.22 0.95 0.06
TiNeuVox [9] 33.61 0.98 0.03 32.70 0.98 0.03 25.02 0.92 0.07 31.52 0.97 0.04
HexPlane [4] 33.79 0.98 0.03 30.67 0.98 0.03 25.22 0.94 0.04 29.81 0.96 0.04
Ours 35.82 0.99 0.02 32.35 0.98 0.02 24.82 0.93 0.05 33.92 0.98 0.03

Table 1. Novel view synthesis on the synthetic D-NeRF dataset. We evaluate our method quantitatively on scenes from the synthetic D-
NeRF dataset, which fit our object-centric setting. It can be seen that our NPGs reach state-of-the-art performance. Even if the differences
in metrics are small, the qualitatively results in Fig. 3 show clear differences in level of detail and correspondences. The Lego and T-Rex
sequences pose a special challenge to our object-level method, as they contain a large static ground plane. We obtain results on these
sequences by obtaining masks for dynamic objects only via Segment-Anything [20], as detailed in the supplementary materials.

Implementation Details. For stage one optimization, we
use a learning rate of 0.0005 with a cosine annealing sched-
uler and warm-up, a batch size of 10, the Adam opti-
mizer [19] and optimize for a total of 100k iterations. We
employ 1500 points to model the coarse object geometry
and a 6-layer MLP to obtain the coefficients for the defor-
mation basis. In stage two, we mainly adopt the learning
rate schedule from 3DGS [18]. The LR for interpolation
weights w is the same as the default learning rate for point
position as used in 3DGS, while we adapt the learning rate
of the Gaussian scale to 0.0005 to match the smaller scenes.
We train for a total of 70k iterations and use an exponential
learning rate scheduler for the Gaussian scales, with a very
high rate initially and a gradual decay to 0.0005 in the end.
For finetuning stage 1, we use a learning rate of 0.0001.

4.1. Results and Comparison

Comparison on D-NeRF Dataset. The D-NeRF
dataset [45] is a monocular dataset with 360 views of syn-
thetic objects. It provides eight sequences with 200 training
views and 20 test views. The sequences contain teleporting
camera motion, which provides multi-view cues for the
reconstruction, relaxing the difficulty for the dataset [12].
We compare renderings with resolution 400 × 400 as done
by previous work and provide results on the full resolution
of 800 × 800 in the supplemental materials. Although
D-NeRF is not our target setting because of strong multi-
view cues, it provides verification that our method can
reconstruct highly detailed objects from high-quality obser-
vations. We provide quantitative results for scenes that fit
our object-level setting in Tab. 1. The results show that our
method slightly outperforms the previous state-of-the-art
approaches. A qualitative comparison is shown in Fig. 3
and the quality of our optimized templates can be seen in
the bottom row on Fig. 4. Since strong regularization is
not required for these sequences, most of the gains come

Method PSNR↑ SSIM↑ LPIPS↓

Nerfies [40] 17.36 0.87 0.13
HyperNeRF [41] 18.56 0.88 0.12
TiNeuVox [9] 15.92 0.848 0.155
HexPlane [4] 16.327 0.85 0.16
Ours 22.348 0.905 0.095

Table 2. Novel view synthesis on the Unbiased4D dataset. We
clearly outperform previous methods on this challenging dataset,
where the amount of multi-view cues is very low.

from improved details in representation. However, as seen
in the second example, there are also some cases where
our method prevents inconsistencies in geometry, where
previous methods fail to do so. It should also be noted
that HexPlane and TiNeuVox are capable of representing
high-quality details in theory and that blurriness is a result
of non-rigid deformation. This suggests that our method
deals better with representing high-frequency details under
deformation, even with stronger regularization.

Comparison on Unbiased4D Dataset. To evaluate real-
istically captured sequences that require strong regulariza-
tion, we utilize the monocular dataset provided by Unbi-
ased4D [15]. The original paper required geometry proxies
to successfully reconstruct the sequences. It provides five
sequences of both synthetic and real objects, each providing
150 training views. We use masks for us and all baselines
to ensure a fair comparison. Only one of the sequences,
the synthetic cactus, provides ground truth novel views for
evaluating reconstruction quality quantitatively. We show
the results in Tab. 2. It can be seen that we outperform
all previous methods. The reasons for this can be seen in
Fig. 6. While previous methods fail to capture the geometry
correctly, NPGs keep it intact over the sequence and suc-
cessfully fit details. The coarse point model learned in the
first stage successfully serves as a proxy for reconstruction
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Hexplane TiNeuVox Ours Groundtruth

Figure 3. Qualitative comparison on novel views of the D-NeRF
dataset. We can see that our method produces more detailed re-
construction than previous work. Also, even with multi-view cues
in D-NeRF, previous methods fail to always keep correct corre-
spondences, as seen in the second example around the feet. In
contrast, our NPGs keeps the shape coherent at all times and cap-
tures high frequency details under deformation.

in the second stage, resolving ambiguities. The smoothness
of our motion modelling can be seen in Fig. 4. It is appar-
ent that, in contrast to baselines, our model performs correct
tracking, which is important for consistent reconstruction.

Rendering speed Due to the efficient Gaussian splatting
rasterizer and no MLPs applied per Gaussian, NPGs have
very competitive rendering times. On an NVidia A40, we
render a frame in approximately 0.05s (20fps) in 400×400
image resolution. In comparison, TiNeuVox requires 2.15s

Figure 4. Point trajectory visualization. Our coarse paramet-
ric model automatically provides point trajectories, which in turn
demonstrates the quality and smoothness of our optimized tem-
plates here. Top Row: Synthetic Cactus, Real Cactus and Syn-
thetic Human sequences from the Unbiased4D dataset. Bottom
Row: Jumping Jack, Stand Up and Hook sequences from the D-
NeRF dataset. Note that the human on the top right is sliding with
constant speed in this sequence, which is visible in the trajectories.

Figure 5. Rendered depth from optimized NPGs. We render
depth maps from optimized models, showing consistent geometry.

Method PSNR↑ SSIM↑ LPIPS↓

Ours w/o Rigidity Loss 20.73 0.89 0.11
Ours w/o Template Fine Tuning 20.92 0.89 0.097
Ours (K = 100) 21.80 0.89 0.10
Ours (K = 10) 16.63 0.86 0.14
Ours (K = 2) 15.67 0.87 0.15
Ours (K = 25) 22.348 0.905 0.095

Table 3. Ablation study on the synthetic cactus sequence from
Unbiased4D dataset. The first two rows show the analysis for
coarse parametric model optimization while the next three rows
demonstrate the effect of deformation basis size K.

per frame and Hexplane 0.94s per frame. Our rendering
speed can be further increased by extracting the Gaussian
representation explicitly and utilizing the real-time render-
ing of 3D Gaussian splatting [18].

10721



Novel View 1

Nerfies HyperNeRF Hexplane TiNeuVox Ours Input

Novel View 2

Nerfies HyperNeRF Hexplane TiNeuVox Ours Input

Figure 6. Qualitative comparison on the Unbiased4D dataset. The Unbiased4D dataset is a challenging monocular video dataset where
the amount of multi-view cues is very low. We show two different novel views for each scene. It can be seen that previous methods fail to
correctly reconstruct the objects, while our NPGs keep the coarse geometry intact and provide novel views with high frequency details. On
the most right, we show the input view for the given timeframe. Our method provides consistent reconstructions of far away novel views.

Basis Size K

w\o LR w\o finet. 2 10 100 Ours (25)
Ground
Truth

Figure 7. Qualitative ablation study on the Unbiased4D
dataset. We show ablation on a novel view of the synthetic cactus
sequence at a particular timestep. The regularization provided by
our low-rank deformation basis can be clearly seen with respect to
the ground truth novel view on the right.

4.2. Ablation Study

Coarse Parametric Model Optimization. We provide
ablation for two aspects of our coarse parametric point
model optimization quantitatively in Tab. 3 and qualitatively
in Fig. 7. First, we show the effect of utilizing the rigid-
ity loss during stage 1 optimization, which helps keep the
template consistent across timesteps. Next, we demonstrate
the effect of fine-tuning stage 1 parameters during stage 2
optimization, which, while not necessary, improves the ac-
curacy of the template nonetheless.

Deformation Basis Rigidity. We compare the effect of
different regularization strengths provided by the low-rank
deformation basis in Tab. 3 and Fig. 7, by controlling the ba-
sis size K. A smaller basis size over-regularizes the recon-
struction, restricting non-rigid deformations, while a larger
basis makes the model overfit to the observations more, hin-
dering novel view synthesis. We find the optimal size to be
25 for the synthetic cactus sequence.

Input Ours Hexplane TiNeuVox Input Ours Hexplane TiNeuVox

Figure 8. Failure case of a flat template and wrong deformation.

Limitations. We tackle the highly ill-posed problem of
reconstructing non-rigid objects from monocular videos.
Thus, there are limitations depending on the complexity of
sequences, e.g., w.r.t. camera movement, lighting, speed
and extent of deformations. Fig. 8, for example, shows re-
sults where the template collapsed to a flat surface, which
we attribute to the camera being very static.

5. Conclusion
We introduce Neural Parametric Gaussians, a high-fidelity
view synthesis approach for objects captured with monoc-
ular camera. Our two-stage optimization obtains a coarse
parametric point model based on a low-rank deformation
basis, providing strong regularization for consistent novel-
view synthesis from sparse observations, while the use of
3D Gaussians in conjunction with the template enables
modeling fine geometric and appearance details efficiently.
NPG is the first approach that employs the regularization
power of neural parametric models for high-quality novel
view synthesis. We demonstrated that, in contrast to pre-
vious work in monocular non-rigid reconstruction, we can
achieve consistent models in challenging settings.
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Jürgen Gall, Angjoo Kanazawa, and Christoph Lassner.
Tava: Template-free animatable volumetric actors. In Euro-
pean Conhference on Computer Vision (ECCV), pages 419–
436. Springer, 2022. 3

[23] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon
Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
Steven Lovegrove, Michael Goesele, Richard Newcombe,
et al. Neural 3d video synthesis from multi-view video.
In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5521–5531, 2022. 2

[24] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of dy-
namic scenes. In Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 6498–6508, 2021. 1, 2

[25] Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker,
and Noah Snavely. Dynibar: Neural dynamic image-based
rendering. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4273–4284, 2023. 2

[26] Haotong Lin, Sida Peng, Zhen Xu, Tao Xie, Xingyi He, Hu-
jun Bao, and Xiaowei Zhou. High-fidelity and real-time
novel view synthesis for dynamic scenes. In ACM SIG-
GRAPH, 2023. 2

10723



[27] Wenbin Lin, Chengwei Zheng, Jun-Hai Yong, and Feng
Xu. Occlusionfusion: Occlusion-aware motion estimation
for real-time dynamic 3d reconstruction. In Conference on
Computer Vision and Pattern Recognition (CVPR), pages
1736–1745, 2022. 2

[28] Jia-Wei Liu, Yan-Pei Cao, Weijia Mao, Wenqiao Zhang,
David Junhao Zhang, Jussi Keppo, Ying Shan, Xiaohu Qie,
and Mike Zheng Shou. Devrf: Fast deformable voxel radi-
ance fields for dynamic scenes. In Int. Conference on Neural
Information Processing Systems (NeurIPS), pages 36762–
36775, 2022. 1, 2

[29] Jia-Wei Liu, Yan-Pei Cao, Tianyuan Yang, Eric Zhongcong
Xu, Jussi Keppo, Ying Shan, Xiaohu Qie, and Mike Zheng
Shou. Hosnerf: Dynamic human-object-scene neural radi-
ance fields from a single video. arXiv pre-print, 2023. 3

[30] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J. Black. SMPL: A skinned multi-
person linear model. pages 248:1–248:16. ACM, 2015. 2,
3

[31] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3d gaussians: Tracking by persis-
tent dynamic view synthesis. In Int. Conference on Computer
Vision (ICCV) Workshop, 2023. 3

[32] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European Conhference on Computer Vision
(ECCV), 2020. 2

[33] Mirgahney Mohamed and Lourdes Agapito. Gnpm:
Geometric-aware neural parametric models. In Int. Confer-
ence on 3D Vision, pages 166–175. IEEE, 2022. 3

[34] Richard A Newcombe, Dieter Fox, and Steven M Seitz.
Dynamicfusion: Reconstruction and tracking of non-rigid
scenes in real-time. In Conference on Computer Vision and
Pattern Recognition (CVPR), pages 343–352, 2015. 2

[35] Atsuhiro Noguchi, Xiao Sun, Stephen Lin, and Tatsuya
Harada. Unsupervised learning of efficient geometry-aware
neural articulated representations. In European Conhfer-
ence on Computer Vision (ECCV), pages 597–614. Springer,
2022. 3

[36] David Novotny, Ignacio Rocco, Samarth Sinha, Alexan-
dre Carlier, Gael Kerchenbaum, Roman Shapovalov, Nikita
Smetanin, Natalia Neverova, Benjamin Graham, and Andrea
Vedaldi. Keytr: Keypoint transporter for 3d reconstruction
of deformable objects in videos. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2022. 3, 4

[37] Pablo Palafox, Aljaz Bozic, Justus Thies, Matthias Nießner,
and Angela Dai. Neural parametric models for 3d de-
formable shapes. In Int. Conference on Computer Vision
(ICCV), 2021. 3
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