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Abstract

Even the best current algorithms for estimating body
3D shape and pose yield results that include body self-
intersections. In this paper, we present CLOAF, which
exploits the diffeomorphic nature of Ordinary Differential
Equations to eliminate such self-intersections while still im-
posing body shape constraints. We show that, unlike earlier
approaches to addressing this issue, ours completely elim-
inates the self-intersections without compromising the ac-
curacy of the reconstructions. Being differentiable, CLOAF
can be used to fine-tune pose and shape estimation base-
lines to improve their overall performance and eliminate
self-intersections in their predictions. Furthermore, we
demonstrate how our CLOAF strategy can be applied to
practically any motion field induced by the user. CLOAF
also makes it possible to edit motion to interact with the
environment without worrying about potential collision or
loss of body-shape prior.

1. Introduction

Feed-forward approaches to estimating human body 3D
shape and pose from a single image have become remark-
ably effective [6, 25, 35]. The very recent transformer-based
architecture of [10] embodies the current state-of-the-art.
It is pre-trained on 300 million images and fine-tuned on
most SMPL data sets in existence. However, as good as
these methods have become, they can still produce unreal-
istic poses with substantial self-intersections of body parts,
as illustrated by Fig. 1. This is a serious issue if video-based
motion capture is to be used in fields, such as robotics or re-
alistic animation, where preventing self-intersections is of
utmost importance.

Most current approaches to addressing this issue [4, 13,
24,28] are iterative. They penalize self-intersections explic-
itly by minimizing an interpenetration loss. This requires
explicitly detecting self-intersections and then performing
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Figure 1. Self-intersections in SOTA methods. 7Top rows.
HMR2.0 [10] (first row) and PARE [19] (second row), two of the
best current methods, produce bodies shown in blue with self-
intersections. CLOAF removes them and generates the results
shown in . Bottom row. HMR 2.0 [10] recovers bodies with
self-intersections in 39.2% of frames of the 3DPW-test set. A
recent post-processing method such as [28] brings this down to
9.2%. CLOAF drops this number all the way to zero.

a separate optimization step, which makes the whole pro-
cess non-differentiable and precludes its use during train-
ing. Another approach is to eliminate self-intersections in
the training databases [26]. While all these methods help,
they do not guarantee the absence of self-collisions at infer-
ence time.

In this paper, we propose a different approach. It pre-
vents self-intersections in a differentiable manner and with-
out an explicit detection step. To this end, we rely on the
fact that if the scene flow from one body to another is the
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solution of an Ordinary Differential Equation (ODE), then
there cannot be any self-intersections. Thus, given a volu-
metric representation of body shapes, we formulate an ODE
that models their deformation over time and show how it can
be solved with respect to the parameters of the body model
we use to represent humans. This means that we can pre-
vent self-intersections while imposing the proper geometric
priors on our reconstructions. In other words, our method
is able to map any motion flow, even those that may seem
implausible, to a flow without any self-intersections. None
of the existing methods can achieve this.

In its simplest form, our CoLlisiOn-Aware Flow
(CLOAF) method can be used to interpolate between two
non self-intersecting body representations so that the inter-
mediate body shapes are both realistic and self-intersection
free. It can also be used in a more sophisticated manner to
remove self-intersections from the output of single-frame
pose estimators, such as [10], while remaining as close as
possible to the original poses. Fig. | illustrates this. Be-
cause it is differentiable, CLOAF can also be integrated into
the training pipeline of a deep network to improve its per-
formance. Additionally, we demonstrate how our CLOAF
integration procedure can utilize practically any customized
motion field to move towards a target area and model inter-
actions with surrounding objects.

In short, our contribution is to use the diffeomorphic na-
ture of ODEs to build a flow-based pipeline to compute
human body trajectories without self-intersections. This
is a very generic method and, because it is differentiable,
it can be used in conjunction with any body pose estima-
tion scheme. The code will be made available at https:
//github.com/cvlab-epfl/CLOAF.

2. Related Work

Feed-Forward Pose and Shape Estimation. While re-
cent approaches to pose and shape estimation from images
have become spectacularly good [6, 10, 19, 25, 26, 35],
they still do not guarantee that the resulting body models
are self-penetration free. The latest transformer-based ar-
chitecture of [10] underwent pre-training using 300 million
images and further refinement on the majority of existing
SMPL datasets, making it the current state-of-the-art. Nev-
ertheless, self-intersections can easily be found in its output,
as shown in Fig. 1.

In part, this is because most current approaches favor the
accuracy of the body reprojection in the image, potentially
at the expense of plausibility, which includes preventing
self-intersection. We are not the first to notice this prob-
lem and attempts have been made to fix it. For example,
the approach of [26] aims to make the self-contacts natural.
To this end, it generates pseudo ground-truth data that fea-
tures them. A feed-forward model trained on such data han-
dles self-contacts better than previous methods. However, it

SOTA method @0 | @100 | @100 (w/ocol.) | P-MPJPE
HMR2.0[10] || 39.2 | 21.6 12.3 543
PARE [19] || 36.1 24.3 11.0 50.9
TUCH [26] || 23.7 11.7 8.6 55.5
EFT [16] 17.8 6.5 45 58.1
SPIN [20] 15.5 5.5 2.8 59.2

Table 1. Collisions in SOTA methods. We report the Col.Rate
across samples of 3DPW-test set with at least one collision (@0),
at least 100 collisions (@100), and at least 100 collisions among
samples of 3DPW-test that do not have collisions.

still produces a significant number of self-intersections, as
shown in Table 1.

Collision-Aware Optimization. Since preventing feed-
forward methods from producing self-intersections is hard,
an alternative is to post-process the results to eliminate
them. For example, in SMPLify [4], limbs are modeled
as ellipsoids and inter-penetrations are explicitly penalized
with the corresponding loss. The more recent SMPLify-
X [28] uses Bounding Volume Hierarchies (BVHs) for
fast collision detection and introduces local conic 3D dis-
tance fields to penalize the penetration [3, 31]. The first
method is simple to use but modeling body parts as el-
lipsoids is an oversimplification that can yield unrealistic
results. The second avoids this problem but the computa-
tion of the BVHs is costly. SMPLify-DC [26] extends SM-
PLify by modeling self-contacts more precisely. Further-
more, PROX [13] introduces inter-penetration constraints
to prevent collisions between bodies and surrounding ob-
jects. COAP [24] suggests using independent body part-
aware volumetric occupancy networks. The self-collision
then can be seen as the intersection between the neighbor-
ing occupancy volumes.

In any event, none of these schemes are differentiable
with respect to the input pose estimate. Hence, they can-
not be incorporated in an end-to-end trainable pipeline.
Additionally, they do not guarantee removal of all self-
intersections because they rely on minimizing a loss. By
contrast, our flow-based approach never produces self-
intersections, is fully differentiable, and can be used during
training.

Motion Field Integration. Central to our work is the
idea of integrating an ODE-based field to prevent self-
intersections.

This concept has been explored since well before the
deep-learning era, especially for shape transfer purposes. In
[33], shape deformations are modeled as local path line in-
tegrations. This enables volume-preserving transformations
between shapes while avoiding self-intersections for practi-
cally any given input transformation. To preserve diffeo-
morphisms, NMF [12] employs a series of learnable ODE
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integrations to morph a spherical mesh into various shapes,
conditioned by a point cloud. It is shown that the gen-
erated meshed objects retain feasible physical properties.
MeshODE [14] and ShapeFlow [15] directly learn the vol-
umetric field between pairs of meshed objects, then trans-
ferring one shape to another without collisions. ODE inte-
gration is also discussed in human motion modeling. Oc-
cFLow [27] models the temporal deformation sequence for
a single human subject using a flow field.

However, none of these methods exploits any data-driven
prior model. Hence, intermediate shapes are not guaranteed
to be realistic. In essence, we extend these concepts to the
problem of transitioning between human body shapes while
maintaining a valid parametric representation that preserves
realism at every step of the integration.

Inverse Kinematics. One of our main contributions is the
coupling of ODEs with a parametric model. The recovery of
the underlying pose from spatial points resembles an inverse
kinematics (IK) problem. HybriK [21] incorporates an iter-
ative IK module into the image-to-mesh recovery network
to better align the 3D keypoints with a parametric body rep-
resentation. Even though IK is solvable with iterative tech-
niques, it is usually highly restricted by the spatial rig and
the structure of the kinematic chains [1]. Instead of per-
forming exact but sometimes overly rigid IK, [7] proposes
to explicitly optimize the tangent vector using first-order ap-
proximations of the input field. In CLOAF, we project the
input motion onto the most plausible velocity of the para-
metric state. Since we work with velocities instead of dis-
placements, our inverse projection is exact and does not re-
quire iterating. In simple terms, we take the best of both
worlds: integrating the motion flow without penetrations,
while preserving a parametric representation of the body at
every moment.

3. Method

When predicting body shape and pose in terms of a parame-
terized body model such as SMPL [22], the simplest way to
discourage self-intersections is to introduce loss functions
that make them costly [4, 28]. This can be effective but
suffers the same fate as all soft constraints: they can still
be violated. In this work, we exploit diffeomorphism, a
key property of Ordinary Differential Equations (ODEs), to
truly prevent self-intersections.

Motion Flow as an ODE. Let us consider a volume con-
taining a body deforming from a first position By to a sec-
ond one B; between times ¢y and ¢;. Each point in that
volume follows a specific trajectory. Let us assume the ex-
istence of a function f,, such that we can write for every

point x in the volume:

d
d—’t‘ = fo(x.t|Bo,B1) Vito<t<t,, (1)
X(ﬁo) = Xp ,

where x the initial position of x, while the parameters w
control the behavior of f. Then, according to the Picard-
Lindelof theorem [8], the trajectories of two initially dis-
tinct points can never intersect. This requires the right-
hand side of the ODE, the velocity field f, to be Lipschitz
continuous with respect to x, which neural networks sat-
isfy [29, 32].

Given the formulation of Eq. 1, a start position By, and
an end position Bj, computing trajectories for points in the
volume is a classic Cauchy problem that can be solved effi-
ciently using numerical solvers. This means that if we start
from a valid position By, it will remain valid throughout
top < t < t;. In the remainder of this section and the exper-
iment section, we show that the function f,, exists and can
be learned from data.

Introducing a Body Model. The function f, of Eq. |
could be implemented by a neural network with weights
w. Then, given N pairs of start and end positions
{(B§,Bi),1 < i < N}, the weights could be learned
so that the final body positions obtained by solving the
ODE starting from B} are as close as possible to Bi. This
amounts to minimizing

> IBiL, = Bil?, )

with respect to w, where Bj_,; is the body position in the
coordinate space estimated at time ¢1, starting from By at ¢.
Hereafter, we omit the explicit dependency of the results of
the integration on w for notational simplicity.

However, without any body shape prior, the intermedi-
ate body positions would be completely unrealistic [15, 27].
Thus, we propose to incorporate a body model, specifically
the SMPL model [22], in this formalism. To this end, we
reformulate Eq. 1 in terms of the parameters O of the body
model, rather than the points x as follows.

When using the SMPL model, each 3D point x on the
body surface is parameterized by the underlying SMPL vec-
tor © € R®. For each one, we can write

x(t) = x(6(1)) ,
dx dx dO do
Tdt dodt  Cdt’
where J € R3* is the Jacobian of the SMPL transforma-
tion x(©), computed given the body state O(¢). Injecting
this into the time derivative of Eq. 1 yields
doe

JE = fu(x,t[60,01) . 4

3)
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Figure 2. Method overview. CLOAF integrates from an initial body pose without self-intersections towards a target one that may feature

some.

involves sampling points from the body surface, calculating approximate spatial velocities, correcting these

velocities in the parametric space, and performing an integration step using the ODE solver. When the integration is complete, the body
shape is without self-intersections and its pose is taken to be the corrected pose and the output of our method.

Since the number of points .S from the SMPL mesh can be
taken to be much larger than the dimension of ©, writing
Eq. 4 for each point produces an over-constrained system
of linear equations. It can be solved in the least-squares
sense, which yields

do

= To
dt J fw(th‘('—)Ov@l) )

®)

where X € R3S is the vector formed by concatenating
the coordinates of all S points and J© = (J7J)~1J7 is
the Moore-Penrose pseudo-inverse of J € R3%*9, This
computation is akin to solving an inverse kinematic prob-
lem[2,7, 11].

We can now reformulate the ODE of Eq. 1 in terms of the
parameters © of the SMPL model using Eq. 3. It becomes

dO®
o =J11.(X(0),1160,01) ©
G(to) = 90 )

where ©( parameterizes the initial body pose, ©; the fi-
nal one, and f,, approximates ‘%. Solving Eq. 6 yields an
evolution in the SMPL parameter space instead of the coor-
dinate space of Eq. 1. Thus, it enforces the learned shape
prior.

To train the network, we learn its weights w by adapting
the training scheme introduced above as follows. Given N

pairs of start and end poses {(©},0%),1 < i < N}, the

weights are learned so that the final body positions corre-
sponding to the parameters obtained by solving the ODE
starting from the initial O} are as close as possible to the
body positions corresponding to the target parameters ©°.
Hence, we reformulate Eq, 2 in terms of ©, which induces
body points x using Eq. 3. This amounts to minimizing

Z 1x(0%_,1) — x(O))]?, 7

with respect to w, where ©f ., is the body position in the
parametric space estimated at time ¢, starting from Qg at
to.

Points Sampling. Solving Eq. 6 requires multiple com-
putations of the Jacobian, which means performing both
the forward and backward pass of the SMPL transforma-
tion. On modern GPUs, this can be efficiently parallelized.
In practice, we found that S = 1000 points is sufficient to
cover the full body shape and compute meaningful Jaco-
bians. We ablate the sampling number S in Sec. 4.5.

In [26], it was pointed out that some regions of the body,
such as the crotch or the armpits, are more prone to natu-
ral self-intersections. Furthermore, it was shown that the
SMPL blending parameters do not adequately compensate
for that, being insufficiently precise [4, 28]. Hence, we ex-
clude these areas from the sampling procedure.

Network Architecture and Training. The input vector
to the motion field network f,, consists of the points x and
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the trajectory description {t, tg, t1, ©¢, ©1}. Specific input
strategies are discussed in the following paragraph. All in-
put values are extended with Fourier features [30] to bet-
ter accommodate to slight variations in the input signal, the
number of frequencies is ny = 20. Regarding the model,
we use a variant of the ShapeFlow network architecture [15]
to implement f,,. It relies on a 6-layer MLP, where the out-
put of each layer (except the last) is concatenated with an
input vector. Note that such architecture is Lipschitz contin-
uous, as required by the theory, because all the constituent
layers are Lipschitz.

To solve ODEs, we use NeuralODE [5] with the adaptive
Dormand-Prince solver. For all computations in this paper,
we use one Tensor Core GPU NVidia A100.

As our training data, we use the AMASS dataset [23] that
contains pose sequences stored in the SMPL format. During
training, we sample pairs of poses and integrate between
them. In our experiments, we found that using the absolute
time ¢ as input does not provide any sufficient information to
the model, preventing robust convergence. Instead, we use
the “time left” variable, At = ¢; — ¢; this is crucial to give
the model a sense of speed, and it significantly improves
convergence.

At each step, the field f,, is computed at .S points x from
the body surface, using Eq. 3. Following [36], points are
sampled uniformly from the mesh surface. Finally, the mo-
tion field network can be written as

fw = fw(X|6(t),61,At) ) (8)

where all points x are stacked together and concatenated
with the current pose ©(t), the target pose ©; and the time
gap At that are the same for a given body.

In our experiments, we found that the flow model trained
from scratch is prone to produce unrealistic velocity values.
To avoid this, we scale the output predictions by the ex-
pected speed averaged across all the points, we see that it
substantially stabilizes the training and converges faster to
plausible fields.

Solving Eq. 6 is a two-step operation: field estimation
followed by parametric re-projection, with the latter tak-
ing time. We found that replacing ©(t) by its approxi-
mation computed via linear interpolation O(t) = ©q +
(01 — O) significantly stabilizes the training, makes
it much faster, and does not bring any detrimental effect at
inference time. This means that the model implicitly learns
a linear interpolation in the parametric space through inte-
gration in the coordinate space, where non self-intersection
is preserved.

When integrating the field for one pair of poses we in-
duce the loss only for the ending point of the trajectory,
©1, as shown in Eq. 7. We found that the model is prone
to get stuck and not move towards the target, especially in
the first stages of training. To address this, we extend the

aforementioned approximation and compute the following
“trajectory” loss for every ith pair of poses:

M
. 1 ~
L;raj = M Z ||@0Htm - X(@(tm))Hz s )]

m=0

where ¢, = to + §;(t1 — to), M is the number of steps
in the integration, and ©¢_,¢, is the body position in the
parametric space estimated at time t,,, starting from Qg at
to. Such loss significantly helps the model to stay on the
trajectory and not diverge from the target.

4. Experiments

4.1. Datasets and Metrics
Datasets. To train the motion field network, we utilize the

AMASS dataset [23], which contains more than 40 hours of
motion sequences in the common SMPL body representa-
tion. To evaluate the baseline methods and our approach,
we use the 3DPW [34] dataset. It contains 60 video se-
quences of various activities in the wild. All samples have a
ground-truth in the SMPL format as well. We use the com-
mon train/test split, the training part is used for unsuper-
vised fine-tuning (Sec. 4.3), while the test set is a common
benchmark and is used in all our experiments for evaluation.
The COCOggr [16] pseudo ground-truth dataset of in-the-
wild images is used for supervised part of the EFT baseline
training in Sec. 4.3.

Metrics. To evaluate the 3D pose, we use the standard 3D
Mean-Per-Joint Position Error (MPJPE, mm) and its Pro-
crustes Aligned version (P-MPJPE, mm). To assess the
smoothness of the motion, we compute the acceleration er-
ror (Accel.Err, mm,/s?) between the predicted and ground-
truth 3D keypoints. This metric has been used in previous
works [6, 17, 18] to quantify the trade-off between 3D pose
accuracy and motion consistency. Since our main goal is
to eliminate self-intersections, we also report the collision
rate (Col.Rate@C, %) computed on the 3DPW-test [34] set.
It reflects the proportion of samples across the dataset that
have more than C' vertices inside the body.

4.2. Eliminating Self-Intersections

As shown in Table 1, self-collisions are prevalent in the out-
put of some of the best current techniques. CLOAF can be
used to remove them.

Let © be the body shape estimate produced by a neural
network, which can contain self-intersections such as those
depicted by Fig. 1. To eliminate them in any given frame of
a video sequence, we start from a body shape estimate O
that does not contain any and solve the ODE of Eq. 6 with
the target shape ©; being ©. Body shapes along the result-
ing trajectory are guaranteed to be self-intersection-free and
we take the final one to be our refined estimate. Note that
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method MPIJPE | P-MPJPE | Accel.Err | Col.Rate@0
HMR2.0 [10] 82.0 52.7 16.1 39.2%
Opt.Cones [28] 81.3 52.4 14.3 9.2%
Opt.Cones™ [28] 82.5 53.3 16.4 9.1%
Opt.Contact [26] 81.7 53.1 14.9 8.6%
COAP [24] 81.9 52.8 14.5 5.7%
CLOAF 82.3 53.2 9.4 0.0%

Table 2. Comparison against collision penalizing techniques.
Our method yields smoother motion flow compared to previous
approaches and guarantees collision-free predictions. In terms of
pose estimation metrics, it is on par with existing methods. The
“t> symbol denotes that the method uses previous frames for ini-
tialization, as we do. We use 3DPW-test [34] for evaluation.

method P-MPJPE Col.Rate
EFT [16] (baseline) 58.1 6.5
+CLOAF (post-proc.) 57.9 0.0
Opt.Cones [28] 57.5 6.1
CLOAF (no diff) 57.8 6.3
CLOAF (diff) 55.4 34

Table 3. Using the differentiability of CLOAF to fine-tune a
network. This is less efficient to remove self-intersections than
using CLOAF to post-process but better than the comparable base-
lines. Fine-tuning with differentiable CLOAF significantly im-
proves the accuracy of the model. We use the 3DPW-test set [34]
for evaluation.

for this to work properly ©¢ must be self-intersection-free.
As we work with complete video sequences, when process-
ing a frame, we take the corrected pose in the previous one
to be ©¢. In the case when we do not have access to se-
quences, we can use different strategies that we discuss in
Section 4.5.

In Table 2, we compare our results against those of the
baselines. For fairness, we test the baseline of [28] ini-
tialized using both, the original approach (the body esti-
mate from the current frame) and ours (the body estimated
from the neighboring frame). While the optimization-based
methods and their soft constraints cannot completely elimi-
nate the self-intersections, ours does while at the same time
providing poses that are temporally more consistent. This is
achieved at the cost of a very slight drop in reconstruction
accuracy, which is not clearly significant because there are
some self-intersections in the so-called ground-truth data.
Fixing such errors, while actually correct, makes our results
appear to be further from the ground-truth than some incor-
rect ones.

4.3. Self-Intersection-Aware Fine-Tuning

CLOAF is differentiable with respect to the corrupted input
poses. Therefore, it can be added at the end of any pose and
shape estimation network to fine-tune it in an end-to-end
manner to reduce its self-intersection rates.

We demonstrate this using the EFT pose and shape
estimation model [16] parameterized by 2. Its predic-

tions X can have self-intersections. We can remove
them by computing CLOAF (Xq). The differentiability of
CLOAF allows us to introduce the loss Lejoat = ||%Xa —
CLOAF(xq)||, whose computation does not require any
new annotations. We then use the 3DPW training set [34]
to refine the network weights by minimizing a composite
loss that is the sum of L.jo,¢ and the usual supervised loss.

In Table 3, we compare our approach to two baselines.
The first is designed for comparison against a traditional
optimization method [28]. In this scenario, the network is
fine-tuned using the loss L = ||xq —X||, where X is the self-
intersection-free result of the optimization method. Since it
is not differentiable', the gradient of the collision correcting
operation cannot be used, which hurts performance. The
second baseline involves CLOAF but with the gradient de-
tached when computing L, meaning that the right term of
the loss is only used in the computation of the loss, but no
gradient from the ODE solver is used.

All three fine-tuning strategies help reduce the self-
intersection rate, but our approach (CLOAF (diff)) signifi-
cantly outperforms the optimization-based method in both
self-intersection rate and P-MPJPE. Our ablated method
with the detached gradient (CLOAF (no diff)) is compara-
ble to the optimization-based method. This confirms that
the benefit of our approach lies in its differentiability.

4.4. Simplified Motion Fields

So far, we have trained the motion field network f,, of Eq. 8
to produce realistic motion fields and have constrained the
trajectories to go from a start pose towards a final one. How-
ever, there are scenarios in which someone might wish to
use simpler fields described by rough displacements that are
defined only locally. A simple example is a piecewise field
that “moves the left arm up”. It can be defined by a vec-
tor f(x) # 0 around the left arm and zero elsewhere, as
illustrated by the gold ovals in Fig. 3. Such a field does not
satisfy the Picard-Lindeof theorem, which we relied in the
derivation of Egs. | and 6. Nevertheless, it can be approx-
imated by one that does. Specifically, as in [33], we blend
the inner and outer regions in a Lipschitz-continuous way.
To this end, we use a Bézier blending function

4
4 T — Tin

b(r) Pz:% apo (TOUt - Tin) , (10)

where Bg are the Bernstein polynomials [9], 7, and 7oy are

the thresholds for the inner and outer regions, respectively,

and «,, are the blending coefficients, ag = a1 = s = 0

and a3 = ay = 1. Then, the blended field is split into three

Tt should be noted that here we refer to the approach of [28], which is
based on iterative optimization. Its final output is not differentiable with
respect to the initial pose, while CLOAF’s estimate is.
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Figure 3. Moving towards a target. CLOAF can be used to integrate practically any field, even those that are induced locally. Here the
motion is set by the source region on the body (gold oval around the left arm) and the target point (blue dot). The field comprises the
direction towards the target point (blue arrows) and adapts during the integration. In the top row, the source region is smaller than in the
bottow row, which affects the behavior of the field and induces different motion.

regions as follows:

F(x) 7(x) < Tin
fo=¢fx)-1=-b)4+0-b 1y <7rx) <reg (A1)
0 r(X) > Tou

This blended field can be handled by CLOAF. We follow
the same procedure as in Sec. 3, but instead of using the
neural network to estimate the motion field, we use f;.

We provide two examples in Fig. 3. In both cases, we
start with the same body posture, and the goal is to move the
left arm towards the blue dot, but we change the size of the
non-zero component of the field (gold ovals). The smaller
the region, the less realistic the motion is, since fewer body
parameters are affected.

Another potential application of such customized inte-
gration is the interaction with objects. The subject must
be able to move in the field, while not going through ob-
jects. This can be achieved by modeling the space inside
the object as a region of zero field. When blending during
integration, the moving points get stuck in the non-moving
area, preventing further penetration.

We illustrate this in the example in Fig. 4. The target
point for both hands is located in front of the face (red dot).
As in the previous experiment, the field exists only for se-
lected areas of the arms (gold ovals). During integration, the
local fields of the hands are blended with the zero field of
the box, and the hands stop at the surface of the box (green
body on the right). If no constraints are imposed on the field
(gold body in the middle), both hands successfully reach the
target point.

Figure 4. Interacting with the objects. One can build a blended
field (Eq. 11), where non-zero component (defined at arms, gold
ovals) induces the motion, while zero component impedes it. Start-
ing from the same posture (blue body on the left), the motion to-
wards the target (red dot in front of the face) is computed without
any constraints (gold body in the middle) and with zeroing out the
field inside the red box (green body on the right). The blending
with the area empty from the field successfully prevents penetra-
tions inside the area. Without constraints, both hands reach the
target point.

4.5. Ablation Study

Picking the Initial Body Posture. Recall from Sec-
tion 4.2 that, when solving our ODE, we took the initial
body position to be the corrected one in the previous frame.
We refer to this strategy as Successive Frames. This works
well for video sequences but there are cases where this
would be impractical, for example when dealing with single
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method MPJPE | P-MPJPE | Accel.Err
HMR2.0 [10] 82.0 52.7 16.1
Jitter 81.6 52.6 159
Key Poses 82.9 53.6 16.4
Successive Frames 82.3 53.2 9.4

Table 4. Picking the initial body posture. All variations of
CLOAF produce 0.0% collision rate. The Jitter strategy improves
position error, while Successive Frames variant better preserves
the overall motion smoothness. Experiments are performed on
3DPW-test set [34].

images. We have therefore explored two alternatives.

e Jitter. Having localized the self-intersections, we can de-
termine what part of the body and group of limbs are re-
sponsible for them. A straightforward solution is then to
randomly jitter these parameters until a body without self-
intersection is obtained. This method is simple yet proves
to be highly effective in most cases.

* Keyposes. We first precompute a dictionary of poses
with no self-intersections. To this end, we subsample the
AMASS [23] pose dataset and cluster the poses using K-
means with the keypoint distance as metric. We then take
the closest neighbors to the K cluster centers as keyposes.
Finally, given a body we wish to correct, we take the clos-
est keypose to be our starting point. We found K = 128
to be sufficient to find a suitable keypose shape in most
cases.

In Table 4, we compare these different ways to initial-
ize the CLOAF process on the same video sequences of
3DPW-test set [34]. Successive Frames denotes the ap-
proach of Section 4.2, which is clearly best at preserving
a smooth natural motion. However, the Jitter technique
yields slightly more accurate pose estimates, even surpass-
ing those of the baselines as reported in Table 2. The Key-
poses approach performs worse than the others because it
requires integration from the relatively distant body shapes.
Yet, there may be some rare cases when it is the only usable,
for example, when there is no neighboring frame without
self-intersections and jitter in the parametric space does not
yield a valid body shape.

Choosing Optimal Sampling. As discussed above, one
step of CLOAF includes the Jacobian computation with the
following solving the over-constrained system of equations.
It brings in a natural tradeoff between time and accuracy,
since the more points we sample, the more time is spent on
the Jacobian computation, but the more accurate the result
is. We explore the effect of the number of points S used to
sample from the body shape following Eq. 5.

We show the results in Fig. 5. The running time is the
time spent only on the Jacobian computation, as all other
steps are negligible. To estimate the accuracy of the CLOAF
step, we develop a simple yet effective metric. We sam-
ple an SMPL vector ©¢ and add a random noise O of the
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Figure 5. Ablation on Points Sampling. The Jacobian computa-

tion injects a tradeoff between the accuracy and the running time.

Using too many points S for the evaluation slows down the cal-

culations, while less do not provide enough accuracy. We choose

S = 1000 as the best tradeoft.

known amount (we use ||00] = 1072) to obtain the sec-
ond posture 1 = O + JO. For a pair of bodies and the
sampling number S, one can compute the distance between
the bodies in the coordinate space f € R3%. As the linear
approximation of the SMPL transformation holds for such
a small 60, solving 60 = JTf must give a solution that is
close to the “ground-truth” §©. A more elaborate reasoning
behind the linear assumption we make is discussed in the
supplementary material. We define the relative error as

160 — 60|

RE(50) = | i (12)

We choose S = 1000 as a good tradeoff between the accu-
racy and the time and use it in all our experiments.

5. Conclusion

We have presented an approach to reliably eliminating self-
intersection from body shape and pose estimation by solv-
ing an ODE while imposing a body shape prior. Unlike
methods that rely on minimizing a loss function, ours guar-
antees the complete disappearance of all self-intersections.
Furthermore, it is differentiable, which means that it can
be integrated into a deep learning training pipeline. We
have shown how to exploit the differentiability of CLOAF
to fine-tune networks and improve their performance while
decreasing the amount of self-intersections they produce.
Last but not least, we have demonstrated how our CLOAF
strategy can be applied to practically any customized mo-
tion field, for example, enabling body interaction with the
environment.

In future work, we will extend CLOAF to motion gener-
ation and exploit existing motion priors.
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