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Abstract

Recently, building on the foundation of neural radiance

field, various techniques have emerged to learn unsigned

distance fields (UDF) to reconstruct 3D non-watertight

models from multi-view images. Yet, a central challenge

in UDF-based volume rendering is formulating a proper

way to convert unsigned distance values into volume den-

sity, ensuring that the resulting weight function remains un-

biased and sensitive to occlusions. Falling short on these

requirements often results in incorrect topology or large

reconstruction errors in resulting models. This paper ad-

dresses this challenge by presenting a novel two-stage al-

gorithm, 2S-UDF, for learning a high-quality UDF from

multi-view images. Initially, the method applies an easily

trainable density function that, while slightly biased and

transparent, aids in coarse reconstruction. The subsequent

stage then refines the geometry and appearance of the ob-

ject to achieve a high-quality reconstruction by directly ad-

justing the weight function used in volume rendering to en-

sure that it is unbiased and occlusion-aware. Decoupling

density and weight in two stages makes our training sta-

ble and robust, distinguishing our technique from existing

UDF learning approaches. Evaluations on the DeepFash-

ion3D, DTU, and BlendedMVS datasets validate the ro-

bustness and effectiveness of our proposed approach. In

both quantitative metrics and visual quality, the results in-

dicate our superior performance over other UDF learn-

ing techniques in reconstructing 3D non-watertight models

from multi-view images. Our code is available at https:

//bitbucket.org/jkdeng/2sudf/.

1. Introduction

As the success of neural radiance field (NeRF) [29], numer-

ous volume rendering based 3D modeling methods are pro-
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Figure 1. We learn a UDF from multiview images for non-

watertight model reconstruction. As illustrated in the cross sec-

tions of learned UDFs, our learned UDF approximates to the

ground truth. In contrast, the learned UDF of NeuralUDF [25]

is choppy leading to significant artifacts, e.g., unexpected pit. The

learned UDF of NeUDF [23] is almost closed struggling to gener-

ate open surface.

posed to learn signed distance fields (SDF) for 3D model re-

construction from multi-view images [7, 34, 36, 40]. These

approaches map signed distance value to a density function,

thereby enabling the use of volume rendering to learn an

implicit SDF representation. To calculate pixel colors, they

compute the weighted sum of radiances along each light

ray. Achieving an accurate surface depiction requires the

density function to meet three essential criteria. Firstly, the

weights, which are derived from the density function, must

reach their maximum value when the distance is zero, ensur-

ing unbiasedness. Secondly, as a ray traverses through the

surface, the accumulated density should tend towards infin-

ity, rendering the surface opaque — a property referred to as

occlusion-awareness. Finally, the density function should

be bounded to prevent numerical issues. The popular SDF

approaches, such as NeuS [34] and VolSDF [40], adopt an

S-shaped density function that meets all these requirements.

While SDF-based methods excel at reconstructing wa-

tertight models, they have limitations in representing open

models. This is due to the intrinsic nature of SDF, which

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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differentiates between the interior and exterior of a model,

thus failing to accommodate open boundaries. Recent ad-

vances have attempted to mitigate this constraint by em-

ploying unsigned distance fields (UDF) [23, 25, 27]. Un-

like signed distance fields, UDFs have non-negative dis-

tance values, making them suitable for representing non-

watertight models. However, learning a UDF from multi-

view images is a challenging task since the gradients of the

UDF are unstable due to directional changes near the zero

level-set, making it difficult to train the neural network. An-

other major challenge lies in formulating a UDF-induced

density function that can simultaneously meet the above-

mentioned three requirements. Unlike SDFs, UDFs cannot

distinguish between the front and back of a surface based

on distance values, thus, directly using an S-shaped density

function is off the table. Opting for a bell-shaped density

function brings its own issues. It is impossible for these in-

tegrations to approach infinity, so as to be occlusion-aware,

unless the density becomes boundless at zero distance val-

ues. These conflicting requirements make UDF learning a

non-trivial task, forcing existing methods to sacrifice at least

one of these conditions. As shown in Figure 1, the existing

methods NeuralUDF [25] and NeUDF [23] result in either

choppy or nearly closed UDFs.

As designing a UDF-induced density function that si-

multaneously fulfills the three aforementioned conditions

remains an unresolved challenge, we propose a novel ap-

proach that learns a UDF from multi-view images in two

separate stages. In the first stage, we apply an easily train-

able but slightly biased and transparent density function for

coarse reconstruction. Such a UDF, although being approx-

imate, provides an important clue so that we can determine

where to truncate the light rays. This accounts for the occlu-

sion effect, where points behind the surface are not visible

and should not contribute to the output color. With trun-

cated light rays, we are able to derive the weights from

UDF directly bypassing the density function, to further re-

fine the geometry and appearance in the second stage. Our

two-stage learning method, called 2S-UDF, leads to an un-

biased and occlusion-aware weight function. Furthermore,

by sidestepping density function learning in Stage 2, we ef-

fectively bypass the challenges associated with ensuring its

boundedness. This strategy enhances the numerical stability

of our method. Evaluations on benchmark datasets Deep-

Fashion3D [43] and DTU [19] show that 2S-UDF outper-

forms existing UDF learning methods in terms of both re-

construction accuracy and visual quality. Additionally, we

observe that the training stability of 2S-UDF is notably su-

perior compared to other UDF learning neural networks.

2. Related Work

3D Reconstruction from Multi-View Images. Surface re-

construction from multi-view images has been a subject of

study for several decades, and can generally be classified

into two categories: voxel-based and point-based methods.

Voxel-based methods [3, 8, 20, 21, 33] divide the 3D space

into voxels and determine which ones belong to the object.

These methods can be computationally expensive and may

not be suitable for reconstructing complex surfaces. Point-

based methods [13, 31, 38] use structure-from-motion [16]

to calibrate the images and generate a dense point cloud us-

ing multi-view stereo [12]. Finally, surface reconstruction

methods (e.g., [2, 17, 22]) are used to generate a mesh.

Since multi-view stereo requires dense correspondences to

generate a dense point cloud, which are often difficult to

compute, its results often contain various types of artifacts,

such as noise, holes, and incomplete structures.

Neural Volume Rendering. Neural network-based 3D

surface reconstruction has received attention in recent years

with the emergence of neural rendering [29]. Several meth-

ods have been proposed for volume rendering and surface

reconstruction using neural networks. VolSDF [40] uses

the cumulative distribution function of Laplacian distribu-

tion to evaluate the density function from SDF for volume

rendering and surface reconstruction. NeuS [34] adopts an

unbiased density function to the first-order approximation

of SDFs for more accurate reconstruction. SparseNeuS [24]

extends NeuS to use fewer images for reconstruction. HF-

NeuS [36] improves NeuS by proposing a simplified and

unbiased density function and using hierarchical multi-

layer perceptrons (MLPs) for detail reconstruction. Geo-

NeuS [10] incorporates structure-from-motion to add more

constraints. NeuralWarp [7] improves the accuracy by opti-

mizing consistency between warped views of different im-

ages. PET-NeuS [37] further improves the accuracy by in-

troducing tri-planes into the SDF prediction module, incor-

porating with MLP. All these methods learn SDFs, which

can only reconstruct watertight models. Recently, Long et

al. proposed NeuralUDF [25] for learning UDF for recon-

structing open models. It adapts the S-shaped density func-

tion for learning SDF to UDFs by introducing an indicator

function. However, the indicator function is complicated

to learn, and also introduces biases. Liu et al. proposed

NeUDF [23] adopting a bell-shaped density. However, to

make it occlusion-aware, the density has to be unbounded

resulting in an improper integral, which reduces accuracy.

Meng et al. proposed NeAT [27] to learn SDF with valid-

ity so as to reconstruct open models from SDF. However, it

needs foreground masks for data.

3D Reconstruction from Point Clouds. There has been

recent interest in surface representation using signed dis-

tance fields (SDFs) and occupation fields. Several methods

have been proposed for learning SDFs [4, 26, 30, 32, 35],

while occupation fields have been used in methods such as

[5, 28]. However, both SDFs and occupation fields can only

represent watertight models. To represent non-watertight
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models, some methods are proposed to learn UDF from 3D

point clouds [6, 41, 42]. Our proposed method also uses

UDF for non-watertight models representation, but we learn

it directly from multi-view images, which is a challenging

problem.

3. Method

At the foundation of UDF-based learning approaches is

the task of crafting a density function that converts un-

signed distance values into volume density, ensuring that

the resulting weight function is unbiased and responsive

to occlusions. None of the existing UDF learning meth-

ods [23, 25] can simultaneously meet the three critical re-

quirements, i.e., ensuring the density function is bounded,

and that the weight function remains both unbiased and oc-

clusion aware.

We tackle these challenges by decoupling the density

function and weight function across two stages. In the ini-

tial stage (Section 3.1), we utilize an easy-to-train, bell-

shaped density function (which is inherently bounded) to

learn a coarse UDF. While the resulting weight function is

not theoretically unbiased or occlusion-aware, we can make

it practically usable by choosing a proper parameter. Mov-

ing into the second stage (Section 3.2), we sidestep the den-

sity function entirely, focusing instead on refining the UDF

by directly adjusting the weight function within the neu-

ral volume rendering framework. Specifically, we truncate

light rays after they hit the front side of the object and ob-

tain a weight function that is both unbiased and sensitive to

occlusions, without the overhang of density function bound-

edness concerns. Finally, Section 3.3 presents the training

details.

3.1. Stage 1: Coarse UDF Learning via a Simple
Density Function

We consider the scenario of a single planar plane M and

a single ray-plane intersection. Inspired by HF-NeuS [36],

we propose an easy-to-learn density function σ1 that maps

unsigned distance f to density

  \sigma _1(f(t)) = \frac {cse^{-sf(t)}}{1+e^{-sf(t)}},\;s>0,\;c>0, 


 
       (1)

where c > 0 is a fixed, user-specified parameter and s > 0
is a learnable parameter controlling the width of the bell-

shaped curve. Straightforward calculation shows that the

weight function w1(f(t)) = e−
∫

t

0
σ1(f(u))duσ1(f(t)) is

monotonically decreasing behind the plane M and the max-

imum value occurs at a point t∗ in front of M with an

unsigned distance value of f(t∗) = 1
s
ln c

|cos(θ)| , (c >

| cos(θ)|) or f(t∗) = 0, (0 < c ≤ | cos(θ)|), where θ is

the incident angle between the light ray and the surface nor-

mal. This means that the weight function w1 is not unbi-

ased. Furthermore, the line integral
∫ t

0
σ1(f(u))du does

not approach infinity when a light ray passes through the

front-most layer of the surface, indicating w1 is only par-

tially occlusion-aware.

While the density function σ1 is not perfect in theory,

by selecting an appropriate c, we can practically minimize

bias and enhance opacity. Clearly, a smaller c value de-

creases f(t∗), thereby reducing bias. To gauge the effect of

c on opacity, we now consider the most extreme scenario

where the incident light ray is perpendicular to the planar

surface M, and assume that the intersection point is located

at t = 1. In such a situation, the unsigned distance function

is f(t) = 1 − t for points in front of M. Since σ1 is sym-

metrical on either side of M, the surface transparency is the

square of the transparency of the front side. The theoretic

transparency is,

  \begin {aligned} \left (e^{-\int _0^1\hat {\sigma _1}(f(t))\mathrm {d}t}\right )^2 &= \left [\exp \left (-\int ^1_0\frac {cse^{-s(1-t)}}{1+e^{-s(1-t)}}\mathrm {d} t\right )\right ]^2\\ &=\left (\frac {1+e^{-s}}{2}\right )^{2c}. \end {aligned} 



























 








 







Therefore, we should choose a relatively large c to reduce

transparency. In our implementation, we set the constant

c = 5 based on the typical value of the learned parameter s

which usually ranges between 1000 and 2000. Calculations

of bias and translucency show that this setting offers a good

balance between occlusion-awareness and unbiasedness in

the first stage training. Please refer to the supplementary

material for a detailed analysis.

3.2. Stage 2: UDF Refinement through Weight Ad­
justment

In this stage, we refine the UDF learned in Stage 1 to im-

prove the quality of geometry and appearance. Unlike Stage

1 and all other UDF-learning methods, inspired by [1], we

truncate light rays based on the approximated UDF learned

in Stage 1 and learn the weight function w(t) directly in-

stead of the density function σ(t) to refine the UDF.

Ideally, for a single ray-plane intersection, we want a

bell-shaped function w(t) that attains its maximum at the

points with zero distance values, and satisfies partition of

unity. Therefore, we adopt the derivative of the sigmoid

function as the weight function [1], defined as

  w_2(f(t)) = \frac {se^{-sf(t)}}{(1 + e^{-sf(t)})^2} \cdot |\cos (\theta )|. 


 
   (2)

with θ being the incident angle between the light ray and

the surface normal.

Intuitively speaking, learning such a weight function w2

in Stage 2 of our UDF method is similar to learning an

S-shaped density function in SDF-based approaches, such

as [36]. As a result, the learning process in Stage 2 is as
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stable as those SDF approaches. Furthermore, it can totally

avoid using the visibility indicator function, which is neces-

sary in NeuralUDF [25].

Calculation shows that the weight w2 attains its maxi-

mum at zero distance values, therefore it is unbiased. How-

ever, if we naively predict the weight function directly, it

will not be occlusion-aware, so we introduce the ray trun-

cation. To make w2 occlusion-aware, we can truncate the

light rays after they pass through the frontmost layer of the

surface, thereby preventing rendering the interior of the ob-

ject. Note that we do not expect the truncation to be exactly

on the frontmost layer of the surface. In fact, as long as it

occurs between the frontmost layer and the second layer, we

consider the truncation valid. This means that the approxi-

mate UDF learned in the first stage, which can capture the

main topological features (such as boundaries) and provide

a fairly good representation of the target object, is sufficient

for us to determine where to cut off the light rays.

In our implementation, we adopt a simple strategy to de-

termine the truncation point for each light ray. Specifically,

the truncation point of ray r is the first sample point along r

such that

• The unsigned distance value at the point is a local max-

ima. To avoid distance vibration interference, it should be

the maximum in a window centered at the point. And

• The accumulated weight up to this point is greater than

δthres.

The accumulated weight threshold δthres is intuitively set

to 0.5. This choice is based on the assumption that if the

Stage 1 training is performed well enough, the accumulated

weights at each sample point along the ray would be ei-

ther 0 (for not reaching a surface) or 1 (for having inter-

sected with a surface). Hence, we intuitively select 0.5 for

δthres because it is the midpoint between 0 and 1. With

the cutoff mechanism, only the first ray-surface intersec-

tion contributes to the color of the ray, effectively achieving

occlusion-awareness. Given these properties, we conclude

that,

Theorem 1 The weight w2 with light cutting off is unbiased

and occlusion-aware.

Figure 2 is an intuitive illustration of our Stage 2 weight

learning and truncation strategy. The UDF maxima point

A in front of the intersection surface would not affect the

cutting point selection as the accumulated weight is below

δthres (0.5). The local maxima B due to UDF oscillation

also would not affect it since it’s not the maximum in a large

enough neighborhood. The light is cut at maxima point C,

and thus the weight of point D is zero without contributions

to the rendering. As illustrated in Figure 2, the cutting pro-

cess is robust against UDF oscillation, open boundaries, and

local maxima in front of the intersection surface.

ray

A

B

C

D

Figure 2. An intuitive illustration of our ray cutting algorithm, best

viewed in color and magnified. A ray shoots from left to right,

approaching the boundary of the first surface, and going through

another two surfaces (gray boxes). The violet solid line represents

the UDF values along the ray; the orange dashed line represents

the corresponding color weight.

3.3. Training

Differentiable UDFs. NeuS uses an MLP network to learn

the signed distance function f , which is a differentiable

function. In contrast, UDF is not differentiable at the zero

level set, making the network difficult to learn the values

and gradients of the UDF close to the zero level set.

Another crucial requirement is to ensure non-negative

values for the computed distances, which seems like a triv-

ial task as one may simply apply absolute value or normal-

ization such as ReLU [11] to the MLP output. However,

applying the absolute value to the distance is not viable due

to its non-differentiability at zero. Similarly, normalizing

the output value using ReLU is not feasible as it is also

non-differentiable at zero and its gradient vanishes for neg-

ative inputs. This can be particularly problematic for learn-

ing UDFs, since when the MLP returns a negative distance

value, the ReLU gradient vanishes, hindering the update of

the distance to a positive value in the subsequent iterations.

We add a softplus [9] function after the output layer of

the MLP [23]. The softplus function is a smooth and dif-

ferentiable approximation of the ReLU function, which is

defined as softplus(x) = 1
β
ln(1 + eβx). Softplus has the

same shape as ReLU, but it is continuous and differentiable

at every point and its gradients do not vanish anywhere. Us-

ing the softplus function allows us to ensure that the output

of the MLP is non-negative and differentiable, making it

suitable for learning the UDF. Similar to NeUDF [23], we

set β = 100 in our experiments.

Loss functions. Following NeuralUDF [25], we adopt

an iso-surface regularizer to penalize the UDF values of the

non-surface points from being zero, therefore encouraging

smooth and clean UDFs. The regularization loss is defined

as [25]

  \mathcal {L}_{reg}=\frac {1}{MN} \sum _{i, k}\exp {\left (-\tau \cdot f(t_{i,k})\right )}, 








  

where τ is a constant scalar that scales the learned UDF
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values, M is the total number of sampled rays per training

iteration, and N is the number of sampled points on a single

ray. τ is set to 5.0 in the first stage and 50.0 in the second

stage.

The value of s, which is learnable in our method, sig-

nificantly affects the quality of the reconstruction. When

s is small, it introduces a larger bias and leads to a more

blurred output. We observe that s typically converges to a

relatively large value between 1000 and 2000, leading to vi-

sually pleasing results. However, in rare cases when s stops

increasing during training, we apply a penalty to force it to

increase. The penalty is defined as follows

  \mathcal {L}_{s} = \frac {1}{M} \sum _{i, k} \frac {1}{s_{i, k}}, 













where M is the number of rays during a training epoch.

This term Ls aggregates the reciprocals of all s values used

for the point ti,k on ray ri. Intuitively speaking, it encour-

ages a larger s during the early stage of training. In our

implementation, we make this term optional since s gener-

ally increases with a decreasing rate during training, and the

penalty term is only necessary in rare cases when s stops at

a relatively low value.

As in other SDF- and UDF-based methods [25, 34, 36],

we adopt color loss and Eikonal loss in our approach.

Specifically, the color loss Lcolor is the L1 loss between the

predicted color and the ground truth color of a single pixel

as used in [34]. The Eikonal loss Leik is used to regularize

the learned distance field to have a unit gradient [14]. Users

may also choose to adopt object masks for supervision as

introduced in other SDF- and UDF-based methods [25, 34].

Putting it all together, we define the combined loss function

as a weighted sum,

  \mathcal {L} = \mathcal {L}_{color} + \lambda _1 \mathcal {L}_{eik} + \lambda _2 \mathcal {L}_{reg} + \lambda _3 \mathcal {L}_{s} \left (+\lambda _m \mathcal {L}_{mask}\right ),         

where λ1, λ2, λ3 and the optional λm are hyperparameters

that control the weight of each loss term.

4. Experiments

Datasets. To evaluate our method, we use three datasets:

DeepFashion3D [43], DTU [19] and BlendedMVS [39].

The DeepFashion3D dataset consists of clothing models,

which are open models with boundaries. As only 3D points

are available, we render 72 images of resolution 1024 ×
1024 with a white background from different viewpoints

for each model. In addition to DeepFashion3D images ren-

dered by us most of which are texture-less, we also take the

image data from NeuralUDF [25] most of which are texture-

rich into our experiments. We call them DF3D#Ours and

DF3D#NeuralUDF, respectively. The DTU dataset consists

of models captured in a studio, all of which are watertight.

We use this dataset to validate that our method also works

well for watertight models. These datasets have been widely

used in previous works such as [34, 36, 40]. In our experi-

ments, open models such as in DeepFashion3D are trained

without mask supervision; DTU is trained with mask super-

vision.

Baselines. To validate the effectiveness of our method,

we compare it with state-of-the-art UDF learning methods:

NeuralUDF [25], NeUDF [23] and NeAT [27]; and SDF

learning methods: VolSDF [40] and NeuS [34].

4.1. Comparisons on Open Models

Method #1 #2 #3 #4 #5 #6 #7 #8 #9 Mean

NeuS 6.69 13.50 10.32 15.01 8.99 12.92 12.94 9.93 9.49 11.09

VolSDF 6.36 9.44 11.87 16.03 10.78 14.91 15.06 11.34 8.96 11.64

NeAT 10.54 13.89 7.30 13.12 13.18 12.44 8.22 10.30 11.33 11.15

NeuralUDF 6.07 11.58 7.68 10.96 11.16 9.76 6.98 6.13 6.41 8.53

NeUDF 4.39 8.29 4.94 19.56 7.52 8.18 3.81 3.81 5.76 7.36

Ours 4.55 5.77 4.27 7.43 6.59 4.77 2.88 3.21 5.73 5.02

Method LS-C0 SS-D0 LS-D0 NS-D1 LS-C1 Skirt1 SS-C0 Mean

NeuS 3.18 4.82 5.71 2.21 3.60 2.44 5.13 3.87

VolSDF 5.92 4.79 5.96 4.36 8.73 7.74 8.84 6.62

NeAT 3.06 4.33 5.92 3.52 8.84 3.91 4.30 4.84

NeuralUDF 1.92 2.05 4.11 1.50 2.47 2.16 2.15 2.34

NeUDF 1.95 2.93 N.A. 1.48 2.66 2.74 1.77 2.26

Ours 1.92 1.97 2.46 1.47 2.14 1.84 1.91 1.96

Table 1. Chamfer distances (×10
−3) on DF3D#Ours (top) and

DF3D#NeuralUDF (bottom). NeAT requires mask supervision

and others do not need.

We evaluate our method and compare it with baselines

using the garments from DeepFashion3D [43], where the

models have multiple open boundaries. VolSDF and NeuS

always close the boundaries since they learn SDFs.

NeuralUDF, NeUDF and NeAT are designed to learn

non-watertight models. NeAT learns SDFs for open mod-

els, and requires mask supervision to produce reasonable

results, but other methods do not require mask supervision

for DeepFashion3D. The released codebase of NeuralUDF

indicates that it also has a two-stage training process. We

evaluate the results of NeuralUDF at the end of both stages,

and present whichever is better.

In contrast, NeuralUDF, NeUDF and our method learn

UDFs, which can generate open models. Table 1 shows

the Chamfer distances of the results on DeepFashion3D.

Some of the Chamfer distances of the compared methods

are large because the open holes are closed or the model is

over-smoothed, resulting in significant errors.

As demonstrated in Figure 3, we test various types of

garments, some of which have rich textures, while oth-

ers are nearly a single color. Learning UDFs for texture-

less models is more challenging since various regions of a

model are ambiguous without clear color differences. How-

ever, our 2S-UDF generates satisfactory results even with-

out masks. Though with mask supervision, the results of
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Ref. Img. GT Ours VolSDF NeuS NeAT NeuralUDF NeUDF

#2

#3

#4

LS-D0 N.A.

Figure 3. Visual comparisons on selected models of the DeepFashion3D [43] dataset. The surfaces produced by NeuS and VolSDF

are closed watertight models, thereby post-processing is required to remove the unnecessary parts. NeAT can produce open models by

learning an SDF and predicting which surfaces in the extracted meshes should be removed, but it needs mask for supervision. NeuralUDF

can generate open surfaces, but struggles with textureless inputs, leading to double-layered regions and large reconstruction errors. NeUDF

generally performs well, but its training is unstable and may stumble on less distinguished, darker models like LS-D0. In contrast, our

2S-UDF consistently delivers effective reconstructions of non-watertight models. See the supplementary material for additional results.

GT Ours NeuralUDF NeUDF

#2

#3

#4

LS-D0 N.A.

Figure 4. Visualization of the learned UDFs on cross sections.

Compared with the ground truth, our method can learn a UDFs

that most closely resemble the ground truth, among our method,

NeuralUDF, and NeUDF. NeAT is omitted in this visualization,

because it learns SDFs in lieu of UDFs. Note that for LS-D0,

NeUDF completely collapses without a reasonable UDF learned.

NeAT [27] are over-smoothed, missing details, resulting in

large Chamfer distance errors. NeuralUDF [25] is unable

to properly reconstruct textureless models on most mod-

els, possibly due to their complex density function which

is difficult to converge. Some of the NeUDF [23] models

become watertight. To analyze the reasons, we illustrate

these UDFs cross sections in Figure 4. To compute the

ground truth UDFs, we sample 30,000 points from every

input point model and compute the distances to the near-

est sample point for every point in a 3D grid of resolution

512×512×512. All other UDFs are extracted by querying

the distance neural network in a 3D grid of the same reso-

lution. Our learned UDFs resemble the ground truth with

little difference. While, the UDFs of NeuralUDF deviate

from the ground truth significantly explaining its difficulty

to converge. The UDFs of NeUDF are better, but the dis-

tances approach to zero around open holes. As a result, it

is challenging and tricky to generate non-watertight models

and some of them are even closed. NeAT learns SDF, so we

do not show their distance fields.

As illustrated in Figure 5, perhaps due to the absolute

of an MLP for UDF representation, NeuralUDF possibly

generates two layers of zero level-sets on both sides of the

surface resulting in double-layered regions after Stage 1

learning. However, in its Stage 2 refinement, the surface is

crushed into pieces and the Chamfer distance errors surge

suddenly.

In Figure 6, we conduct additional experiments on some

open model dataset provided by NeUDF [23]. For the rack

model, the thin structures reconstructed by NeuralUDF [25]

and NeUDF [23] seem eroded, but ours don’t. The thin

structures reconstructed by NeAT [27] is the closest to the

reference image, but the surface is dented inward with

visible artifacts due to imperfect SDF validity learning.
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Figure 5. Plots of the Chamfer distance throughout the training

process. Our method consistently reduces CD across both stages.

In contrast, NeuralUDF, which also adopts a two-stage learning

strategy, exhibits instability and yields a fragmented output fol-

lowing the second stage. The first-stage output of NeuralUDF,

however, contains double-layered regions as marked above. In this

figure, both methods start their stage 2 training at 250k iterations.

Method 37 55 65 69 97 105 106 114 118 122 Mean

NeuralUDF 1.18 0.44 0.66 0.67 0.94 0.95 0.57 0.37 0.56 0.55 0.69

NeAT 1.18 0.47 0.82 0.84 1.09 0.75 0.76 0.38 0.56 0.55 0.74

NeUDF 0.90 0.65 0.73 0.97 1.07 0.63 0.94 0.59 0.72 0.62 0.78

Ours 0.89 0.55 0.68 0.88 1.15 0.70 0.74 0.41 0.61 0.51 0.71

Table 2. Chamfer distances on DTU dataset.

The plant model does not have an object mask, making

NeAT [27] impractical for training. NeuralUDF [25] com-

pletely fails to reconstruct a reasonable surface. Between

our method and NeUDF [23] which can reconstruct a sensi-

ble model, the flower pot region marked in red is missing in

NeUDF but not in ours. These show our method’s ability to

reconstruct non-watertight models more robustly compared

to other methods.

Ref. Ours NeUDF NeuralUDF NeAT

ra
ck

p
la

n
t

N.A.

Figure 6. Qualitative comparisons with NeAT [27], Neu-

ralUDF [25] and NeUDF [23] on some example data released by

NeUDF [23]. Note that NeAT cannot reconstruct “plant” dataset

because the ground truth mask for “plant” is unavailable.

4.2. Comparisons on Watertight Models

Other methods can also be used as the first stage of our 2S-

UDF. We use NeUDF for the first stage training on the DTU

dataset [19]. As detailed in Table 2, we compare the Cham-

fer distances of the reconstruction results with NeuralUDF,

55 65 118 122
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Figure 7. Qualitative comparisons with NeAT, NeuralUDF and

NeUDF on the DTU [19] dataset and close-up comparisons against

NeUDF. Our method can reconstruct surfaces closer to the ground

truth point clouds in various places such as the marked region, gen-

erally improving the reconstruction accuracy of NeUDF by around

10%, on a par with NeuralUDF and NeAT at the bottom two rows.

NeAT and NeUDF without our second-stage training. SDFs

generally excel at learning watertight models, and it is worth

pointing out that NeuralUDF takes the absolute value of the

output of MLP as the UDF value of a given point. Therefore

for closed models, they can easily learn an SDF and take its

absolute value to produce a UDF. NeAT, on the other hand,

explicitly learns an SDF. NeUDF and our method truly learn

UDFs. While UDF learning is much more complicated than

SDF learning because the UDF gradient nearby 0 is blurry

and the gradient is not available at 0, our method still im-

proves the reconstruction quality of NeUDF by around 10%

as shown in Figure 7. We further provide a close-up view of

specific parts of the models for detailed comparisons in Fig-

ure 7. These local callouts exhibit the ground truth points

located on both sides of our surfaces, whereas most of the

points are only on one side of the surfaces of NeUDF. These

illustrate our reconstructed surfaces are closer to the ground

truth points and thus improving the resulting quality over

NeUDF, on a par with NeuralUDF and NeAT.

4.3. Ablation Studies

In this section, we present main ablation studies. We refer

interested readers to the supplementary material for addi-

tional ablation studies.

Effect of the two-stage training. We conduct an ablation
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Method #1 #7 #8 LS-D0

S1 & S2 4.55 2.88 3.21 2.46

S1 7.22 2.46 3.38 6.04

S2 5.75 4.00 5.96 3.65

Method NS-D1 LS-C1 DTU 114 DTU 122

S1 & S2 1.47 2.14 0.41 0.51

S1 1.46 6.23 0.59 0.62

S2 1.64 2.98 0.63 0.60

Table 3. Chamfer distances of models learned by both Stage 1 and

2 (S1 & S2), only Stage 1 (S1) and only Stage 2 (S2) on selected

datasets. Models learned by two stages yield similar Chamfer dis-

tances, but when trained with only Stage 1 or Stage 2, the Chamfer

distances generally become significantly higher.

study on the effect of the two-stage learning. We compare

the Chamfer distances among both two stages, only Stage

1 and only Stage 2 training, shown in Table 3. Our results

show that two-stage training improves the Chamfer distance

(lower is better) compared to training with only Stage 1 or

2, under most circumstances.

It should be noted that training by the second stage from

scratch is also capable of generating a generally reasonable

result. However, the Chamfer distances, as shown in Ta-

ble 3, indicate that its learning ability is limited. Therefore,

the second refinement learning stage should cooperate with

the first coarse learning stage to generate the best results.

Choice of accumulated weight threshold δthres. In Stage

2, being a ray truncate point requires the accumulated

weight up until that point to be greater than δthres, where

we intuitively select δthres = 0.5. Figure 8 shows the re-

construction results for other choices of δthres, namely 0.3

and 0.7, respectively. We observe that all threshold choices

successfully reconstruct the model. Setting the threshold

δthres up to 0.7 produces visually similar results. Setting

the threshold δthres down to 0.3 also works fine gener-

ally despite that it may introduce more holes to the recon-

structed meshes. We deduce that setting a lower threshold

increases the possibility that a ray may be truncated prema-

turely, leading to less desirable results. Nevertheless, we

still have a considerable range of δthres from 0.3 to 0.7

without major result regression, indicating that our Stage

2 training exhibits robustness against δthres.

4.4. Limitations

Since the light is cut off after going through a layer of sur-

face, our method relinquishes the ability to model planes

with transparency. Occasionally, due to learning uncer-

tainty, the Chamfer distance may increase slightly in the

second stage, but the difference is quite small without vi-

sual impact. Overall, the two-stage learning improves the

quality significantly. For watertight models, SDF learning

is more suitable than UDF learning, since UDF learning is

δthres = 0.3 δthres = 0.5 δthres = 0.7

Figure 8. Qualitative comparisons on different choices of accu-

mulated weight δthres. Setting a higher threshold works well few

little visual differences; Setting a lower threshold generally works

fine, but may introduce more holes in reconstructed meshes.

more complicated than SDF learning. We still advise us-

ing SDF learning, e.g., NeuS [34], HF-NeuS [36] or PET-

NeuS [37], for watertight model reconstruction. Also, the

mesh extraction of MeshUDF [15] tends to generate holes

and “staircase” artifacts affecting the mesh reconstruction

quality. Adopting a more robust extraction method, e.g.,

DoubleCoverUDF [18], could alleviate the problem, but we

use MeshUDF here for all methods for a fair comparison.

5. Conclusions

Overall, 2S-UDF offers a promising approach to the prob-

lem of reconstructing both open and watertight models from

multi-view images. Its advantages over existing methods lie

in the use of a simple and more accurate density function,

and a smooth differentiable UDF representation, so that the

learned UDF approximates the ground truth as much as pos-

sible. A two-stage learning strategy further eliminates bias

and improves UDF accuracy. Results from our experiments

on the DeepFashion3D, DTU and BlendedMVS datasets

demonstrate the effectiveness of our method, particularly

in learning smooth and stably open UDFs revealing the ro-

bustness of 2S-UDF. Moreover, our method does not rely

on object masks for open model reconstruction, making it

more practical in real-world applications.
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