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Abstract

In recent decades, the vision community has witnessed
remarkable progress in visual recognition, partially ow-
ing to advancements in dataset benchmarks. Notably, the
established COCO benchmark has propelled the develop-
ment of modern detection and segmentation systems. How-
ever, the COCO segmentation benchmark has seen compar-
atively slow improvement over the last decade. Originally
equipped with coarse polygon annotations for ‘thing’ in-
stances, it gradually incorporated coarse superpixel anno-
tations for ‘stuff’ regions, which were subsequently heuris-
tically amalgamated to yield panoptic segmentation anno-
tations. These annotations, executed by different groups
of raters, have resulted not only in coarse segmentation
masks but also in inconsistencies between segmentation
types. In this study, we undertake a comprehensive reeval-
uation of the COCO segmentation annotations. By enhanc-
ing the annotation quality and expanding the dataset to
encompass 383K images with more than 5.18M panoptic
masks, we introduce COCONut, the COCO Next Universal
segmenTation dataset. COCONut harmonizes segmenta-
tion annotations across semantic, instance, and panoptic
segmentation with meticulously crafted high-quality masks,
and establishes a robust benchmark for all segmentation
tasks. To our knowledge, COCONut stands as the inaugural
large-scale universal segmentation dataset, verified by hu-
man raters. We anticipate that the release of COCONut will
significantly contribute to the community’s ability to assess
the progress of novel neural networks.

1. Introduction
Over the past decades, significant advancements in com-
puter vision have been achieved, partially attributed to the
establishment of comprehensive benchmark datasets. The
COCO dataset [35], in particular, has played a pivotal role
in the development of modern vision models, addressing
a wide range of tasks such as object detection [3, 18, 22,
36, 46, 48, 68], segmentation [5–7, 10, 28, 40, 56–58, 64],
keypoint detection [20, 24, 45, 54], and image caption-
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Figure 1. COCONut Annotation Masks. Comprising images
from COCO and Objects365, COCONut represents a diverse col-
lection annotated with high-quality masks and semantic classes.
Notably, images sourced from Objects365 (marked in blue bound-
aries) contribute to the dataset’s richness by featuring a higher
count of classes and masks per image. Best zoomed-in.

ing [8, 47, 62]. Despite the advent of large-scale neural
network models [4, 14, 39] and extensive datasets [30, 53],
COCO continues to be a primary benchmark across var-
ious tasks, including image-to-text [33, 37, 62] and text-
to-image [51, 63] multi-modal models. It has also been
instrumental in the development of novel models, such as
those fine-tuning on COCO for image captioning [49, 63] or
open-vocabulary recognition [17, 19, 31, 61, 66, 67]. How-
ever, nearly a decade since its introduction, the suitability of
COCO as a benchmark for contemporary models warrants
reconsideration. This is particularly pertinent given the po-
tential nuances and biases embedded within the dataset, re-
flective of the early stages of computer vision research.

COCO’s early design inevitably encompassed certain
annotation biases, including issues like imprecise object
boundaries and incorrect class labels (Fig. 2). While these
limitations were initially acceptable in the nascent stages of
computer vision research (e.g., bounding boxes are invari-
ant to the coarsely annotated masks as long as the extreme
points are the same [44]), the rapid evolution of model ar-
chitectures has led to a performance plateau on the COCO
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Figure 2. Annotation Comparison: We delineate erroneous annotations from COCO using yellow dotted line boxes, juxtaposed with our
COCONut corrected annotations. Common COCO annotation errors include over-annotations (e.g., ‘person crowd’ erroneously extends
into ‘playingfield’), incomplete mask fragments (e.g., ‘table-merged’ and ‘blanket’ are annotated in small isolated segments), missing an-
notations (e.g., ‘tree-merged’ remains unannotated), coarse segmentations (especially noticeable in ‘stuff’ regions annotated by superpixels
and in ‘thing’ regions by loose polygons), and wrong semantic categories (e.g., ‘tree-merged’ is incorrectly tagged as ‘dirt-merged’).

benchmark1. This stagnation suggests a potential overfit-
ting to the dataset’s specific characteristics, raising concerns
about the models’ applicability to real-world data. Fur-
thermore, despite COCO’s diverse annotations supporting
various tasks, its annotation is neither exhaustive nor con-
sistent. This in-exhaustiveness is evident in the segmenta-
tion annotations, where instances of incomplete labeling are
commonplace. Additionally, discrepancies between seman-
tic, instance, and panoptic annotations within the dataset
present challenges in developing a comprehensive segmen-
tation model. Moreover, in the context of the ongoing shift
towards even larger-scale datasets [16, 52], COCO’s repos-
itory of approximately 120K images and 1.3M masks ap-
pears increasingly inadequate. This limitation hampers its
utility in training and evaluating models designed to process
and learn from substantially larger and more varied datasets.

To modernize COCO segmentation annotations, we pro-
pose the development of a novel, large-scale universal seg-
mentation dataset, dubbed COCONut for the COCONext
Universal segmenTation dataset. Distinct in its approach
to ensuring high-quality annotations, COCONut features
human-verified mask labels for 383K images. Unlike pre-
vious attempts at creating large-scale datasets, which often
compromise on label accuracy for scale [52, 59], our fo-
cus is on maintaining human verification as a standard for

1https://paperswithcode.com/dataset/coco

dataset quality. To realize this ambition, our initial step
involves meticulously developing an assisted-manual an-
notation pipeline tailored for high-quality labeling on the
subset of 118K COCO images, designated as COCONut-S
split. The pipeline benefits from modern neural networks
(bounding box detector [43] and mask segmenter [55, 65]),
allowing our annotation raters to efficiently edit and re-
fine those proposals. Subsequently, to expand the data size
while preserving quality, we develop a data engine, lever-
aging the COCONut-S dataset as a high-quality training
dataet to upgrade the neural networks. The process iter-
atively generates various sizes of COCONut training sets,
yielding COCONut-B (242K images and 2.78M masks),
and COCONut-L (358K images and 4.75M masks).

We adhere to a principle of consistency in an-
notation, aiming to establish a universal segmenta-
tion dataset (i.e., consistent annotations for all panop-
tic/instance/semantic segmentation tasks). Additionally,
COCONut includes a meticulously curated high-quality
validation set, COCONut-val, comprising 5K images care-
fully re-labeled from the COCO validation set, along with
an additional 20K images from Objects365 [53] (thus, to-
tally 25K images and 437K masks).

To summarize, our contributions are threefold:
• We introduce COCONut, a modern, universal segmen-

tation dataset that encompasses about 383K images and
5.18M human-verified segmentation masks. This dataset
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COCONut COCO-17 [35] EntitySeg [41] ADE20K [69] Sama-COCO [70] LVIS [21] Open Images [32] COCO-Stuff [2] PAS-21 [15] PC-59 [42]
# images (train/val/test) 358K / 25K / - 118K / 5K / 41K 10K / 1.5K / -† 20K / 2K / 3K‡ 118K / 5K / - 100K / 20K / 40K 944K / 13K / 40K 118K / 5K / 41K 1.4K / 1.4K / 1.4K 5K / 5K / -
# masks / image 13.2 / 17.4 / - 11.2 / 11.3 / - 16.8 / 16.4 / - 13.4 / 15.1 / - 9.0 / 9.5 / - 12.7 / 12.4 / - 2.8 / 1.8 / 1.8 8.6 / 8.9 / - 2.5 / 2.5/ - 4.9 / 4.8 / -
# masks 4.75M / 437K / - 1.3M / 57K / - 0.17M / 24K / - 0.27M / 30K / - 1.07M / 47K / - 1.27M / 0.24M / - 2.7M / 25K / 74K 1.02M / 44K / - 3.6K / 3.6K / - 24K / 24K / -
# thing classes 80 80 535 115 80 1203 350 - - -
# stuff classes 53 53 109 35 - - - 91 21 59
panoptic segmentation X X X X
instance segmentation X X X 4 X X X
semantic segmentation X 4 X X X X X
object detection X X 4 4 X X X

Table 1. Dataset Comparison: We compare existing segmentation datasets that focus on daily images (street-view images are not our
focus). The definition of ‘thing’ and ‘stuff’ classes are different across datasets, where the ‘stuff’ classes are not annotated with instance
identities. †: EntitySeg dataset comprises 33K images, of which only 11K are equipped with panoptic annotations. ‡: ADE20K test server
only supports semantic segmentation, and its panoptic annotations are derived by merging separately annotated instance and semantic
segmentation maps, introducing minor inconsistencies between segmentation types. 4: task supported, but not typically used.

represents a significant expansion in both scale and qual-
ity of annotations compared to existing datasets. Addi-
tionally, COCONut-val, featuring meticulously curated
high-quality annotations for validation, stands as a novel
and challenging testbed for the research community.

• Our study includes an in-depth error analysis of the
COCO dataset’s annotations. This analysis not only re-
veals various inconsistencies and ambiguities in the exist-
ing labels but also informs our approach to refining label
definitions. As a result, COCONut features ground-truth
annotations with enhanced consistency and reduced label
map ambiguity.

• With the COCONut dataset as our foundation, we embark
on a comprehensive analysis. Our experimental results
not only underscore the efficacy of scaling up datasets
with high-quality annotations for both training and vali-
dation sets, but also highlight the superior value of human
annotations compared to pseudo-labels.

2. Related Work

In this work, we focus on segmentation datasets, featur-
ing daily images (Tab. 1). A prime example of this is the
COCO dataset [35], which has been a cornerstone in com-
puter vision for over a decade. Initially, COCO primar-
ily focused on detection and captioning tasks [8]. Subse-
quent efforts have expanded its scope, refining annotations
to support a wider array of tasks. For instance, COCO-
Stuff [2] added semantic masks for 91 ‘stuff’ categories,
later integrated with instance masks to facilitate panop-
tic segmentation [29]. In addition to these expansions,
several initiatives have aimed at enhancing the quality of
COCO’s annotations. The LVIS dataset [21] extends the
number of object categories from 80 to 1,203, providing
more comprehensive annotations for each image. Simi-
larly, Sama-COCO [70] addresses the issue of low-quality
masks in COCO by re-annotating instances at a finer granu-
larity. Beyond the COCO-related datasets, there are other
notable datasets contributing to diverse research scenar-
ios, including ADE20K [69], PASCAL [15], and PASCAL-
Context [42]. While these datasets have significantly ad-
vanced computer vision research, they still fall short in ei-

ther annotation quality or quantity when it comes to meeting
the demands for high-quality large-scale datasets.

In the realm of recent dataset innovations, SA-1B [30]
stands out with its unprecedented scale, comprising 11M
images and 1B masks. However, a critical aspect to con-
sider is the feasibility of human annotation at such an im-
mense scale. Consequently, a vast majority (99.1%) of
SA-1B’s annotations are machine-generated and lack spe-
cific class designations. Additionally, its human annota-
tions are not publicly released. Contrasting with scaling
dataset size, the EntitySeg dataset [41] prioritizes enhanc-
ing annotation quality. This dataset features high-resolution
images accompanied by meticulously curated high-quality
mask annotations. However, the emphasis on the quality
of annotations incurs significant resource demands, which
in turn limits the dataset’s scope. As a result, EntitySeg
encompasses a relatively modest collection of 33K images,
of which only approximately one-third are annotated with
panoptic classes. Along the same direction of scaling up
datasets, we present COCONut, a new large scale dataset
with high quality mask annotations and semantic tags.

3. Constructing the COCONut Dataset
In this section, we first revisit COCO’s class map defini-
tion (Sec. 3.1) and outline our image sources and varied
training data sizes (Sec. 3.2). The construction of CO-
CONut centers on two key objectives: high quality and large
scale. To achieve these, we establish an efficient annotation
pipeline ensuring both mask quality and accurate semantic
tags (Sec. 3.3). This pipeline facilitates scalable dataset ex-
pansion while upholding annotation quality (Sec. 3.4).

3.1. COCO’s Class Map Definition
In alignment with the COCO panoptic set [29], COCONut
encompasses 133 semantic classes, with 80 categorized as
‘thing’ and 53 as ‘stuff.’ Adopting the same COCO class
map ensures backward compatibility, enabling the initial
use of models trained on COCO-related datasets [2, 29, 35,
70] to generate pseudo labels in our annotation pipeline.

Notably, COCONut refines class map definitions com-
pared to COCO, offering greater clarity in our annotation
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Figure 3. Overview of the Proposed Assisted-Manual Annotation Pipeline: To streamline the labor-intensive labeling task, our annota-
tion pipeline encompasses four pivotal stages: (1) machine-generated pseudo labels, (2) human inspection and editing, (3) mask generation
or refinement, and (4) quality verification. Acknowledging the inherent distinctions between ‘thing’ and ‘stuff’ classes, we systemati-
cally address these intricacies at each stage. Stage 1: Machines are employed to generate box and mask proposals for ‘thing’ and ‘stuff’,
respectively. Stage 2: Raters assess the proposal qualities using a meticulously crafted questionnaire. For proposals falling short of re-
quirements, raters can update them by editing boxes or adding positive/negative points for ‘thing’ and ‘stuff’, respectively. Stage 3: We
utilize Box2Mask and Point2Mask modules to generate masks based on the inputs from stage 2. Stage 4: Experts perform a comprehensive
verification of annotation quality, with relabeling done if the quality falls below our stringent standards.

instruction protocol. Building upon COCO’s class map, we
introduce additional definitions and instructions for labeling
segmentation masks. To mitigate the annotation confusion,
we meticulously define label map details and provide clear
instructions to our annotation raters. For comprehensive
definitions and annotation instructions for all 133 classes,
please refer to the supplementary materials.

3.2. Image Sources and Data Splits

The images comprising COCONut are sourced from pub-
lic datasets. Primarily, we aggregate images from the orig-
inal COCO training and validation sets as well as its un-
labeled set. Additionally, we select approximately 136K
images from Objects365 dataset [53], each annotated with
bounding boxes and containing at least one COCO class.
This comprehensive collection results in a total of 358K and
25K images for training and validation, respectively. As
illustrated in Tab. 2, we meticulously define diverse train-
ing datasets for COCONut, spanning from 118K images to
358K images. COCONut-S (small) encompasses the same
images as the original COCO training set, totaling 118K im-
ages. We adopt COCO panoptic [35] and Sama-COCO [70]
masks as our starting point. COCONut-B (base) incorpo-
rates additional images from the COCO unlabeled set, total-
ing 242K images. Finally, with extra 116K images from the
Objects365 dataset, COCONut-L (large) comprises 358K
images. Additionally, COCONut-val contains 5K images
from the COCO validation set along with an additional 20K
Objects365 images.

dataset splits image sources #images #masks #masks/image
COCONut-S COCO training set [35] 118K 1.54M 13.1
COCONut-B + COCO unlabeled set [35] 242K 2.78M 11.5
COCONut-L + subset of Objects365 [53] 358K 4.75M 13.2
relabeled COCO-val COCO validation set [35] 5K 67K 13.4
COCONut-val + subset of Objects365 [53] 25K 437K 17.4

Table 2. Definition of COCONut Dataset Splits: Statistics are
shown accumulatively. Notably, our COCONut-val contains large
#masks/image, preseting a more challenging testbed.

3.3. Assisted-Manual Annotation Pipeline

Annotation Challenges: The task of densely annotat-
ing images with segmentation masks, coupled with their se-
mantic tags (i.e., classes), is exceptionally labor-intensive.
Our preliminary studies reveal that, on average, it takes one
expert rater approximately 5 minutes to annotate a single
mask. Extrapolating this to annotate images at a scale of
10M masks would necessitate 95 years with just one ex-
pert rater. Even with a budget to employ 100 expert raters,
the annotation process would still require about a year to
complete. Given the extensive time and cost involved, this
challenge underscores the need to explore a more effective
and efficient annotation pipeline.

Annotation Pipeline: In response to the challenges, we
introduce the assisted-manual annotation pipeline, utilizing
neural networks to augment human annotators. As illus-
trated in Fig. 3, the pipeline encompasses four key stages:
(1) machine-generated prediction, (2) human inspection and
editing, (3) mask generation or refinement, and (4) quality
verification. Recognizing the inherent differences between
‘thing’ (countable objects) and ‘stuff’ (amorphous regions),
we meticulously address them at every stage.
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Machine-Generated Prediction: In handling ‘thing’
classes, we utilize the bounding box object detector
DETA [43], and for ‘stuff’ classes, we deploy the mask seg-
menter kMaX-DeepLab [65]. This stage yields a set of box
proposals for ‘thing’ and mask proposals for ‘stuff’.

Human Inspection and Editing: With the provided
box and mask proposals, raters meticulously evaluate them
based on a prepared questionnaire (e.g., Is the box/mask
sufficiently accurate? Is the tag correct? Any missing
boxes?) The raters adhere to stringent standards during in-
spection to ensure proposal quality. In cases where propos-
als fall short, raters are directed to perform further editing.
Specifically, for ‘thing’ classes, raters have the flexibility to
add or remove boxes along with their corresponding tags
(i.e., classes). In the case of ‘stuff’ classes, raters can re-
fine masks by clicking positive or negative points, indicat-
ing whether the points belong to the target instance or not.

Mask Generation or Refinement: Utilizing the pro-
vided boxes and masks from the preceding stage, we em-
ploy the Box2Mask and Point2Mask modules to generate
segmentation masks for ‘thing’ and ‘stuff’ classes, respec-
tively. The Box2Mask module extends kMaX-DeepLab,
resulting in the box-kMaX model, which generates masks
based on provided bounding boxes. This model incorpo-
rates additional box queries in conjunction with the original
object queries. The added box queries function similarly to
the original object queries, except that they are initialized
using features pooled from the backbone within the box re-
gions (original object queries are randomly initialized). As
shown in Fig. 4, leveraging object-aware box queries en-
ables box-kMaX to effectively segment ‘thing’ objects with
the provided bounding boxes. The Point2Mask module
utilizes the interactive segmenter CFR [55], taking posi-
tive/negative points as input and optionally any initial mask
(from either kMaX-DeepLab or the previous round’s output
mask). This stage allows us to amass a collection of masks
generated from boxes and refined by points.

It is worth noting that there are other interactive seg-
menters that are also capable of generating masks using box
and point as inputs (e.g., SAM [30], SAM-HQ[27]). How-
ever, our analyses (in Sec. 4) indicate that the tools we have
developed suffice for our raters to produce high-quality an-
notations. The primary focus of our work is to conduct a
comprehensive analysis between the original COCO dataset
and our newly annotated COCONut. Improving interactive
segmenters lies outside the scope of this study.

Quality Verification by Experts: Armed with the
amassed masks from the preceding stage, we task expert
raters with quality verification. Unlike the general human
raters in stage 2, our expert raters boast extensive expe-
rience in dense pixel labeling (5 years of proficiency in
Photoshop). To manage the extensive volume of annotated
masks with only two experts, we opt for a random sam-
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Figure 4. Mask Prediction Comparison: In contrast to kMaX-
DeepLab, box-kMaX (Box2Mask module) leverages box queries,
initialized with features pooled from the backbone within the box
regions, enabling more accurate segmentation of ‘thing’ objects.
Notably, kMaX-DeepLab falls short in capturing the challenging
‘baseball bat’ and the heavily occluded ‘person’ in the figure.

pling of 50%. The experts meticulously assess these masks,
along with their associated tags, using the same carefully
crafted questionnaire as in the previous stage. Furthermore,
recognizing the Box2Mask module’s reliance on provided
bounding boxes, we additionally instruct experts to verify
the accuracy of box proposals, selecting 30% samples for a
thorough quality check. Should any fall short of our strin-
gent requirements, they undergo relabeling using the time-
intensive Photoshop tool to ensure high annotation quality.

3.4. Data Engine for Scaling Up Dataset Size
Overview: With the streamlined assisted-manual annota-

tion pipeline in place, we build a data engine to facilitate the
dataset expansion. Our data engine capitalizes on the anno-
tation pipeline to accumulate extensive, high-quality anno-
tations, subsequently enhancing the training of new neural
networks for improved pseudo-label generation. This posi-
tive feedback loop is iteratively applied multiple times.

Data Engine: Machines play a crucial role in generating
box/mask proposals (stage 1) and refined masks (stage 3) in
the assisted-manual annotation pipeline. Initially, publicly
available pre-trained neural networks are employed to pro-
duce proposals. Specifically, DETA [43] (utilizing a Swin-
L backbone [38] trained with Objects365 [53] and COCO
detection set [35]) and kMaX-DeepLab [65] (featuring a
ConvNeXt-L backbone [39] trained with COCO panoptic
set [29]) are utilized to generate box and mask proposals
for ‘thing’ and ‘stuff’, respectively. The Point2Mask mod-
ule (built upon CFR [55]) remains fixed throughout the CO-
CONut construction, while the Box2Mask module (box-
kMaX, a variant of kMaX-DeepLab using box queries) is
trained on COCO panoptic set. The annotation pipeline
initially produces the COCONut-S dataset split. Subse-
quently, COCONut-S is used to re-train kMaX-DeepLab
and box-kMaX, enhancing mask proposals for ‘stuff’ and
Box2Mask capabilities, respectively. Notably, DETA and
the Point2Mask module are not re-trained, as DETA is al-
ready pre-trained on a substantial dataset, and CFR exhibits
robust generalizability. The upgraded neural networks yield
improved proposals and mask generations, enhancing the
assisted-manual annotation pipeline and leading to the cre-
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(a) annotation comparison for ‘thing’ (b) annotation comparison for ‘stuff’

Figure 5. Annotation Comparison: We show annotations obtained by COCO, COCONut (Box2Mask for ‘thing’ in (a) or Point2Mask for
‘stuff’ in (b)), and our expert rater. COCONut’s annotation exhibits sharper boundaries, closely resembling expert results, as evident from
higher IoU values. The blue and red regions correspond to extra and missing regions, respectively, compared to the expert mask.

‘thing’ ‘stuff’
expert-1 vs. expert-2 98.1% 97.3%
raters vs. experts 96.3% 96.7%

(a) Annotation Agreement

‘thing’ ‘stuff’
purely-manual 10 min 5 min
assisted-manual 10 sec 42 sec

(b) Annotation Speed

Table 3. Annotation Analysis: (a) Our two experts and raters
demonstrate a high level of agreement in their annotations. (b)
The assisted-manual pipeline expedites the annotation.

ation of COCONut-B. This process is iterated to generate
the final COCONut-L, which also benefits from the ground-
truth boxes provided by Objects365.

4. Annotation and Data Engine Analysis
In this section, we scrutinize the annotations produced
through our proposed assisted-manual annotation pipeline
(Sec. 4.1). Subsequently, we delve into the analysis of the
improvement brought by our data engine (Sec. 4.2).

4.1. Annotation Analysis
Assisted-Manual vs. Purely-Manual: We conduct a

thorough comparison in this study between annotations
generated by our assisted-manual and purely-manual anno-
tation pipelines. Our assessment is based on two metrics:
annotation quality and processing speed.

The purely-manual annotation pipeline involves two in-
house experts, each with over 5 years of experience using
Photoshop for labeling dense segmentation maps. They re-
ceived detailed instructions based on our annotation guide-
lines and subsequently served as tutorial training mentors
for our annotation raters. Additionally, they played a cru-
cial role in the quality verification of masks during stage 4.

To conduct the “agreement” experiments, we randomly
selected 1000 segmentation masks and tasked our two in-

constructed dataset mean median
COCONut-S 78% 75%
COCONut-B 51% 55%
COCONut-L 43% 45%

(a) Non-Pass Rate in Stage 2

constructed dataset mean median
COCONut-S 2.4 2
COCONut-B 0.8 1
COCONut-L 0.5 1

(b) #Rounds of Relabeling in Stage 4

Table 4. Data Engine Analysis: During the creation of the cur-
rent dataset split, the mask proposals stem from models trained on
datasets from preceding stages, such as COCONut-S utilizing pro-
posal models from COCO, and so forth.

house experts with annotating each mask. An “agree-
ment” was achieved when both annotations exhibited an
IoU (Intersection-over-Union) greater than 95%. As pre-
sented in Tab. 3a, our experts consistently demonstrated
a high level of agreement in annotating both ‘thing’ and
‘stuff’ masks. Comparatively, minor disparities were ob-
served in the annotations provided by our raters, highlight-
ing their proficiency. Additionally, Tab. 3b showcases the
annotation speed. The assisted-manual pipeline notably ac-
celerates the annotation process by editing boxes and points,
particularly beneficial for ‘thing’ annotations. Annotating
‘stuff’, however, involves additional time due to revising
the coarse superpixel annotations by COCO. Finally, Fig. 5
presents annotation examples from COCO, our experts, and
COCONut (our raters with the assisted-manual pipeline),
underscoring the high-quality masks produced.

4.2. Data Engine Analysis
The data engine enhances neural networks using annotated
high-quality data, resulting in improved pseudo masks and
decreased workload for human raters. To measure its im-
pact, we present non-pass rates in stage 2 human inspection.
These rates indicate the percentage of machine-generated
proposals that failed our questionnaire’s standards and re-
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(a) category distribution for ‘thing’ (c) mask distribution for ‘thing’ (d) mask distribution for ‘stuff’(b) category distribution for ‘stuff’

Figure 6. Dataset Statistics: In subfigures (a) and (b), depicting category distributions for ‘thing’ and ‘stuff’, COCONut consistently
displays a higher number of masks across all categories compared to COCO. Subfigures (c) and (d) show mask distribution for ‘thing’ and
‘stuff’, respectively, demonstrating that COCONut contains a greater number of images with a higher density of masks per image.

TP FP FN

Figure 7. Top 5 Disagreed Categories Between COCO-val and
relabeled COCO-val: COCO-val is treated as the prediction,
while relabeled COCO-val serves as ground truth. The compar-
ison showcases True Positive (TP), False Positive (FP), and False
Negative (FN) rates for both ’thing’ (left) and ’stuff’ (right).

PQ SQ RQ PQbdry SQbdry RQbdr

all 67.1 86.2 77.4 59.2 79.4 74.5
thing 65.0 86.0 75.2 58.6 80.7 72.4
stuff 70.2 86.5 80.8 60.1 77.3 77.6

Table 5. Quantitative Comparison Between COCO-val and re-
labeled COCO-val: COCO-val serves as the prediction, contrast-
ing with relabeled COCO-val as the ground-truth.

quired further editing. Tab. 4a demonstrates that including
more high-quality training data improves non-pass rates,
signifying enhanced proposal quality. Furthermore, Tab. 4b
showcases the number of relabeling rounds in stage 4 ex-
pert verification, reflecting additional iterations required for
annotations failing expert verification. Consistently, we ob-
served reduced relabeling rounds with increased inclusion
of high-quality training data.

5. Dataset Statistics
Class and Mask Distribution: Fig. 6 depicts the cate-

gory and mask distribution within COCONut. Panels (a)
and (b) demonstrate that COCONut surpasses COCO in the
number of masks across all categories. Additionally, pan-
els (c) and (d) feature histograms depicting the frequency
of ‘masks per image’. These histograms highlight a notable
trend in COCONut, indicating a higher prevalence of im-
ages with denser mask annotations compared to COCO.

COCO-val vs. relabeled COCO-val: We conducted a
comparative analysis between the original COCO-val anno-
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Figure 8. Mask and Class Frequency Distribution: COCONut-
val introduces a more challenging testbed compared to the original
COCO-val. It features a greater number of images that contain
higher quantities of both masks and distinct categories per image.

tations and our relabeled COCO-val. Exploiting the Panop-
tic Quality (PQ) metric, we employed its True Positive (TP),
False Positive (FP), and False Negative (FN) rates to as-
sess each category. TP signifies agreement between anno-
tations, while FP and FN highlight additional or missing
masks, respectively. In Fig. 7, we present the top 5 cate-
gories displaying discrepancies for both ‘thing’ and ‘stuff’.
All these categories exhibit notably low TP rates, indicat-
ing substantial differences between COCO-val and our rela-
beled version. In ‘thing’ categories, high FN rates (around
0.8) are observed for ‘banana’, ‘carrot’, and ‘apple’, sug-
gesting numerous missing masks. Conversely, ‘stuff’ cate-
gories exhibit high FP rates for ‘blanket’ and ‘pillow’, indi-
cating numerous small isolated masks, echoing our earlier
findings regarding ‘bed’ and ‘blanket’ conflicts, as depicted
in Fig. 2 (row 3). Finally, Tab. 5 provides a quantitative
analysis comparing COCO-val and our relabeled COCO-
val. The results emphasize the notable divergence between
the two sets, underscoring our dedicated efforts to improve
the annotation quality of validation set. The discrepancy is
particularly evident in boundary metrics [11]. Notably, the
divergence in stuff SQbdry reflects our enhancements to the
original ‘stuff’ annotations by superpixels [1, 2].

COCONut-val (a new challenging testbed): To aug-
ment our relabeled COCO-val, we introduced an addi-
tional 20K annotated images from Objects365, forming
COCONut-val. Fig. 8 illustrates 2D histograms comparing
COCO-val and COCONut-val, where we count the num-
ber of images w.r.t. their #masks and #categories per im-
age. The figure showcases that COCO-val annotations are
concentrated around a smaller number of masks and cate-
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COCO-val relabeled COCO-val COCONut-val
backbone training set PQ APmask mIoU PQ APmask mIoU PQ APmask mIoU

ResNet50

COCO 53.3 39.6 61.7 55.1 40.6 63.9 53.1 37.1 62.5
COCONut-S 51.7 37.5 59.4 58.9 44.4 64.4 56.7 41.2 63.6
COCONut-B 53.4 39.3 62.6 60.2 45.2 65.7 58.1 42.9 64.7
COCONut-L 54.1 40.2 63.1 60.7 45.8 66.1 60.7 44.8 68.3

ConvNeXt-L

COCO 57.9 45.0 66.9 60.4 46.4 69.9 58.3 44.1 66.4
COCONut-S 55.9 41.9 66.1 64.4 50.8 71.4 59.4 45.7 67.8
COCONut-B 57.8 44.8 66.6 64.9 51.2 71.8 61.3 46.5 69.5
COCONut-L 58.1 45.3 67.3 65.1 51.4 71.9 62.7 47.6 70.6

Table 6. Training Data and Backbones: The evaluations are con-
ducted on three different validation sets: original COCO-val, rela-
beled COCO-val (by our raters), and COCONut-val.

gories, whereas COCONut-val demonstrates a broader dis-
tribution, with more images having over 30 masks. On av-
erage, COCONut-val boasts 17.4 masks per image, signifi-
cantly exceeding COCO-val’s average of 11.3 masks.

6. Discussion
In light of the COCONut dataset, we undertake a meticu-
lous analysis to address the following inquiries. We employ
kMaX-DeepLab [65] throughout the experiments, bench-
marked with several training and validation sets.

COCO encompasses only 133 semantic classes. Is an
extensive collection of human annotations truly neces-
sary? We approach this query from two vantage points: the
training and validation sets. Tab. 6 showcases consistent im-
provements across various backbones (ResNet50 [23] and
ConvNeXt-L [39]) and three evaluated validation sets (mea-
sured in PQ, AP, and mIoU) as the training set size in-
creases from COCONut-S to COCONut-L. Interestingly,
relying solely on the original small-scale COCO training
set yields unsatisfactory performance on both relabeled
COCO-val and COCONut-val sets, emphasizing the need
for more human annotations in training. Despite annota-
tion biases between COCO and COCONut (Fig. 9), training
with COCONut-B achieves performance akin to the original
COCO training set on the COCO validation set, hinting that
a larger training corpus might mitigate inter-dataset biases.

Shifting our focus from the training set to the valida-
tion set, the results in Tab. 6 indicate performance saturation
on both COCO-val and relabeled COCO-val as the training
set expands from COCONut-B to COCONut-L. This sat-
uration phenomenon in COCO-val, consisting of only 5K
images, is also observed in the literature2, suggesting its
inadequacy in evaluating modern segmenters. Conversely,
the newly introduced COCONut-val, comprising 25K im-
ages with denser mask annotations, significantly improves
benchmarking for models trained with varied data amounts.
This outcome underscores the significance of incorporating
more human-annotated, challenging validation images for
robust model assessment. Therefore, the inclusion of addi-
tional human-annotated images is pivotal for both training

2https://paperswithcode.com/dataset/coco

COCO-val relabeled COCO-val COCONut-val
backbone training set PQ APmask mIoU PQ APmask mIoU PQ APmask mIoU

ConvNeXt-L

COCO 57.9 45.0 66.9 60.4 46.4 69.9 58.3 44.1 66.4
COCO-BM 58.0 44.9 67.1 60.7 46.3 70.5 58.5 44.2 66.4

COCONut-S 55.9 41.9 66.1 64.4 50.8 71.4 59.4 45.7 67.8
COCONut-BM 56.2 41.8 66.3 64.5 50.9 71.4 59.5 45.3 67.7
COCONut-B 57.8 44.8 66.6 64.9 51.2 71.8 61.3 46.5 69.5

Table 7. Pseudo-Labels vs. Human Labels: COCO-BM com-
prises the original COCO training set plus the machine pseudo-
labeled COCO unlabeled set. COCONut-BM contains COCONut-
S and machine pseudo-labeled COCO unlabeled set (in contrast to
the fully human-labeled COCONut-B).

COCO-trained prediction COCONut-trained prediction

!"#$%&'

!"#$%&'

Figure 9. Influence of Training Data on Predictions: We present
predictions from two models: one trained on original COCO (left)
and the other on COCONut (right). The COCO-trained model pre-
dicts a small isolated mask, influenced by the biases inherent in the
COCO coarse annotations (see Fig. 2, row 3). Best zoomed-in.

and validation, significantly impacting the performance of
modern segmentation models.

Are pseudo-labels a cost-effective alternative to hu-
man annotations? While expanding datasets using
machine-generated pseudo-labels seems promising for scal-
ing models trained on large-scale data, its effectiveness re-
mains uncertain. To address this, we conducted experiments
outlined in Tab. 7. Initially, leveraging a checkpoint (row 1:
57.9% PQ on COCO-val), we generated pseudo-labels for
the COCO unlabeled set, augmenting the original COCO
training set to create the COCO-BM dataset. Surprisingly,
training on COCO-BM resulted in only a marginal 0.1% PQ
improvement on COCO-val, consistent across all tested val-
idation sets (1st and 2nd rows in the table).

We hypothesized that the annotation quality of the pre-
trained dataset might influence pseudo-label quality. To in-
vestigate, we then utilized a different checkpoint (row 3:
64.4% PQ on relabeled COCO-val) to generate new pseudo-
labels for the COCO unlabeled set. Combining these with
COCONut-S produced the COCONut-BM dataset, yet still
yielded a mere 0.1% PQ improvement on the relabeled
COCO-val. Notably, employing the fully human-labeled
COCONut-B resulted in the most significant improvements
(last row in the table). Our findings suggest limited benefits
from incorporating pseudo-labels. Training with pseudo-
labels seems akin to distilling knowledge from a pre-trained
network [26], offering minimal additional information for
training new models.
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