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Abstract

Neural implicit surface reconstruction leveraging vol-
ume rendering has led to significant advances in multi-view
reconstruction. However, results for transparent objects
can be very poor, primarily because the rendering function
fails to account for the intricate light transport induced by
refraction and reflection. In this study, we introduce trans-
parent neural surface refinement (TNSR), a novel surface
reconstruction framework that explicitly incorporates phys-
ical refraction and reflection tracing. Beginning with an
initial, approximate surface, our method employs sphere
tracing combined with Snell’s law to cast both reflected and
refracted rays. Central to our proposal is an innovative dif-
ferentiable technique devised to allow signals from the pho-
tometric evidence to propagate back to the surface model
by considering how the surface bends and reflects light
rays. This allows us to connect surface refinement with vol-
ume rendering, enabling end-to-end optimization solely on
multi-view RGB images. In our experiments, TNSR demon-
strates significant improvements in novel view synthesis and
geometry estimation of transparent objects, without prior
knowledge of the refractive index.

1. Introduction
For the task of surface reconstruction from images, the ad-
vent of neural implicit representations has led to significant
advances in capturing complex surfaces with a precision
that extends beyond traditional methods [10, 23, 35, 39, 40].
Despite this progress, most reconstruction methods operate
under the assumption that light propagates in linear paths—
an assumption that holds for a variety of materials but falls
short when dealing with refractive elements such as glass.
In such contexts, light takes non-linear paths, its course al-
tered by the phenomena of refraction and reflection, pre-
senting unique challenges in accurately reconstructing sur-
faces and rendering the view-dependent phenomena intrin-
sic to refractive materials.

The pursuit of reconstructing the 3D geometry of refrac-
tive objects has spurred the development of a variety of
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Figure 1. Comparison of ray-location correspondence versus color
consistency for refining surfaces. Left: Previous methods use a
controlled camera setup [16, 17] to establish ray-location corre-
spondence, refining surfaces when the refractive index is known
via the exact hitting point p of a light ray on a monitor. Right:
Our approach eliminates the need for a controlled camera setup or
a known refractive index. It employs ray tracing with an initial
surface estimate to compute paths of reflected and refracted rays
(rr and rt). Color predictions from the opaque background are
obtained by querying a pre-learned radiance field along these rays.
Integrated with rendering and Fresnel equations, these predictions
yield the ĉ color prediction, compared to the actual color cgt using
a photometric loss. This loss improves ray accuracy and reduces
photometric loss, refining the surface estimate.

methods. To accurately model transparent objects, existing
methods consider the curved light paths caused by refrac-
tion and reflection [1, 15, 24]. For instance, to achieve bet-
ter novel view synthesis, Pan et al. [24] employ the Eikonal
equation [13] to accurately compute these paths with known
refractive indices and object geometries. Li et al. [15] com-
bine rendering with cost volume layers to refine surface
normals for detailed point cloud reconstruction. Further-
more, surface reconstruction of transparent objects benefits
from controlled setups that are adept at capturing complex
light interactions [6, 7, 16, 17, 20, 26, 32, 37]. These se-
tups often employ custom-designed hardware, which are
critical for obtaining ray–location correspondence supervi-
sion [16, 17, 26, 37]. For instance, as illustrated in Fig. 1
(left), when an estimated surface is considered, the calcu-
lated ray hits the monitor at point p′. This point typically
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has a measurable gap from the ground-truth point p, as
determined by the well-controlled camera and background
setup. This gap is then utilized as a form of supervision,
enabling the refinement of the estimated surface to more
closely resemble the real one. However, their applicability
is limited in real-world scenarios where transparent objects
are captured under natural lighting conditions.

In this work, we explore an alternative form of supervi-
sion for surface refinement. Our observation is that the neu-
ral implicit surface (NeuS) model [35] can model the ge-
ometry and radiance of the surrounding environment with
high fidelity, even though it is unable to accurately ren-
der transparent objects. This motivates us to leverage the
learned background model to establish a supervision signal.
As shown in Fig. 1 (right), we employ sphere tracing and
Snell’s Law on an initial object surface to compute the paths
of reflected and refracted rays (rr and rt). We then use a
learned radiance field to render the predicted color ĉ, by in-
tegrating along these rays with the rendering equation and
then combining the reflected and refracted terms with the
Fresnel equations. The rendered color is compared with the
ground-truth color cgt in a photometric color consistency
loss. Optimizing this loss updates the surface estimate to
better redirect the reflected and refracted rays to the correct
locations in the opaque background.

To achieve this, we introduce a differentiable technique
called transparent neural surface refinement (TNSR), which
hinges on backpropagating the color consistency loss to the
weights of the implicit surface network. By framing the
computation of ray–surface intersections as a nested op-
timization problem, Proposition 4.6 of Gould et al. [11]
can be used to analytically derive the required closed-form
gradients. This connects the surface refinement with the
volume rendering, enabling end-to-end training solely on
multi-view RGB images. We combine our approach with
the NeuS model [35] and demonstrate improvements in the
synthesis of novel views and estimation of accurate geome-
tries for transparent objects. Our contributions are:
• a method (TNSR) for reconstructing the geometry of

transparent objects in unconstrained scenes, eliminating
the need for complex camera setups and relying solely on
photometric consistency for surface refinement; and

• a fully differentiable nested optimization strategy for
computing piece-wise linear refracted and reflected rays
that can be used for volume rendering, facilitating the
propagation of a photometric error signal back to the pa-
rameters of the implicit surface network. It thus estab-
lishes a seamless, integrated connection between surface
refinement and volume rendering.

2. Related Work
Neural 3D Reconstruction. Surface reconstruction from
multi-view data remains a pivotal challenge in 3D vision.

Broadly, reconstruction techniques bifurcate into explicit
and implicit methods, contingent upon the surface repre-
sentation. Explicit methods utilize representations like vox-
els [4, 29] and triangular meshes [2, 14], while implicit
methods use neural network-parameterized implicit repre-
sentations and have recently demonstrated notable prowess
at surface reconstruction. Unlike their explicit counterparts,
these representations are continuous, offering adaptive res-
olution capabilities. Prevailing neural implicit approaches
include the occupancy function [18] and the signed dis-
tance function (SDF) [25]. Various methods, such as
DeepSDF [25] and Point2Surf [9], have been introduced
for implicit surface reconstruction from point clouds. In
addition, MeshSDF [28] uses SDFs to create an end-to-
end differentiable surface mesh parameterization, enabling
topology changes within mesh structure. Leveraging neural
implicit fields, reconstruction strategies like IDR [39] har-
ness differentiable ray casting to delineate object surfaces
via the zero-level set of SDF representations. Several hy-
brid approaches, including UNISURF [23], VolSDF [40],
and NeuS [35], propose to combine implicit surface repre-
sentations with volume rendering tehniques [19]. Moreover,
many techniques (e.g., patch-match [8, 10]) have been pro-
posed to improve the NeuS model for surface reconstruc-
tion. However, these methods often presuppose straight-line
light transport based on the emission and absorption model,
which, while suitable for opaque surfaces, does not fully ac-
count for transparent objects where ray paths are altered by
light refraction and reflection.

Reconstructing Transparent Objects. In the pursuit of
reconstructing 3D geometries for refractive objects, various
methods have been explored. Controlled setups have proven
effective in capturing complex light interactions, such as
moving point light sources [6, 21], light field probes [36],
and gray-coded patterns [16, 17, 26, 37]. Their specially
designed hardware enables the acquisition of detailed infor-
mation such as ray–location correspondences [16, 26, 37],
providing critical supervision for more accurate modeling.
For example, turntable and gray-coded backgrounds are
used in Li et al. [16] to capture ray–location correspon-
dences. Han et al. [12] reconstruct transparent objects with
unknown refractive indices by immersing them partially in
a liquid to modify incident light paths, then recovering the
object surface through triangulation of these altered paths.
Li et al. [15] assume known environment illumination and
refractive indices. They incorporate rendering and cost
volume layers to model reflection and refraction, optimiz-
ing surface normals for precise point cloud reconstruction.
Other works aim to reconstruct objects inside the refractive
and reflective transparent object [27, 31]. In contrast, this
work presents transparent neural surface refinement, which
does not require a well-controlled camera setup but instead
leverages color consistency to update the implicit surface.
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Novel View Synthesis of Transparent Objects. Novel
view synthesis has increasingly dealt with the simulation
of curved light paths within refractive media [1, 24]. The
approach of Pan et al. [24] involves using the Eikonal equa-
tion [13], assuming the refractive index and object geometry
are known, to calculate how light bends due to refraction.
Bemana et al. [1] proposed a method that does not rely on
a known refractive index, instead applying multi-step ODE
solvers to infer the refractive field. NEMTO [34] introduces
a simplified model for refractive interaction by considering
objects against an infinitely distant background. This ab-
straction permits the use of an MLP to efficiently predict
color along a ray, focusing on the ray’s exit direction. Addi-
tionally, MS-NeRF [41] partitions Euclidean space into vir-
tual sub-spaces to model the light interactions. Unlike these
works, our approach computes the refracted and reflected
rays explicitly via a nested optimization scheme, allowing
it to query a learned model of the surrounding environment
and thereby obtain photometric cues as to the accuracy of
the modeled transparent geometry.

3. Transparent Neural Surface Refinement

Problem Definition. Our goal is to reconstruct the geom-
etry and view-dependent appearance of scenes containing
solid transparent objects, from a set of N images with
known camera poses and intrinsic matrices. The challenge
arises from the unique properties of transparent objects,
which distort appearance through light refraction and reflec-
tion. This distortion deviates from the typical straight-ray
assumption in neural 3D reconstruction models, necessitat-
ing a more nuanced approach to accurately model the inter-
action of light with these objects.

3.1. Revisiting Neural Implicit Surfaces

For the initial stage of surface reconstruction in our pipeline,
we use NeuS [35] as the core model, which effectively com-
bines the capabilities of implicit surface [39] and neural
field [19] approaches. This integration facilitates the learn-
ing of smooth surface geometries, which are helpful for our
subsequent surface refinement processes.

Surface Representation. The geometry is implicitly en-
coded as a Signed Distance Function (SDF), which maps
a spatial position x ∈ R3 to its signed distance from a sur-
face, where negative values indicate points inside a water-
tight surface. This mapping ϕSDF : R3 → R is parameter-
ized by an MLP. The surface is defined by the zero level set
of the SDF, given by S = {x ∈ R3 | ϕSDF(x) = 0}. The
view-dependent appearance is estimated by an MLP param-
eterizing the function ϕcolor : R3×R3×R3×RD → [0, 1]3,
which predicts the color c of a 3D point from its position x,
view direction d, normal n, and geometry feature g.

Volume Rendering. To render a pixel, a ray is cast from
the camera center x0, extending in the direction d through
the pixel center. The color for this pixel is obtained by in-
tegrating the color contributions at sampled points {xi =
x0 + tid | ti > 0} along the ray, given by

ĉ(x0,d) =

N∑
i=1

αici

i−1∏
j=1

(1− αj), (1)

where αi represents the discrete opacity and ci the color at
point xi, respectively. The product term here is the accu-
mulated transmittance up to that point.

To adapt volume rendering for use with an SDF net-
work, NeuS [35] diverges from NeRF’s approach of pre-
dicting density directly. Instead, NeuS derives an unbiased
and occlusion-aware weighting function. This function is
based on an opacity value computed in closed-form from
the predicted signed distance, given by

αi = max

{
Φs(ϕSDF(xi))− Φs(ϕSDF(xi+1))

Φs(ϕSDF(xi))
, 0

}
, (2)

where Φs(x) = (1 + e−sx)−1 is the sigmoid function, pa-
rameterized by a learnable scalar s. As optimization pro-
gresses, 1/s approaches zero, yielding a steep transition in
the function.

NeuS optimizes a photometric loss function, which com-
pares the predicted color ĉ(x0,d) with the ground-truth
color cgt(x0,d) from the input images,

Lc =
1

|R|
∑

(x0,d)∈R

∥ĉ(x0,d)− cgt(x0,d)∥2 , (3)

where R denotes the set of training rays, and each ray is
represented by its origin x0 and direction d. To regularize
the SDF, an Eikonal loss is applied at the N points sampled
along the ray to encourage a unit-norm SDF gradient,

Le =
1

N

N∑
i=1

(∥∇ϕSDF(xi)∥2 − 1)2. (4)

Surface Normals. For a point x ∈ S on the zero level set,
the surface normal is given by

n(x) =
∇ϕSDF(x)

∥∇ϕSDF(x)∥
. (5)

To promote the smoothness of the reconstructed surface, we
encourage the normals of surface points and their immedi-
ate neighbors to be similar:

Ln =
1

|T |
∑

x∈T ⊂S
∥n(x)− n(x+ ϵ)∥ , (6)

where ϵ is a small random 3D perturbation and T is a set of
surface points. Following Oechsle et al. [23], surface points
are retrieved by root finding along the ray.

The overall loss function of NeuS is

L = Lc + λeLe + λnLn, (7)

with loss coefficients λ.
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Figure 2. Flowchart of neural surface refinement for transparent object modeling. Our framework employs an SDF ϕSDF for the surface
representation and incorporates physical refraction and reflection tracing. It starts with a ray from x0 in direction d0, treating the distance
to the surface intersection as an optimization problem. Based on this, the intersection nodes calculate ray–surface intersections at x1 and
x2. Utilizing Snell’s law, the ray directions d1 and d2 are determined. The outgoing direction, along with intersection point x2, is used
in standard NeuS volume rendering to produce the rendered color ĉ(x2,d2). The reflected color is computed similarly, using the first
intersection point x1 and the reflected direction dr

1, and the two color contributions are combined using the Fresnel equations.

3.2. Surface Refinement

Overview. Our primary objective is to refine the surface
geometry of a transparent object, initialized by an SDF that
was optimized under the assumption that all surfaces were
opaque. Starting from this initial surface representation,
we generate reflected and refracted rays through ray trac-
ing. Existing methods depend on precise camera setups to
obtain ground-truth ray–location correspondences for guid-
ing surface refinement [16, 26, 37]. Additionally, they as-
sume a known refractive index. In comparison, our method
uses NeuS’s ability to precisely learn the geometry and ap-
pearance of opaque background surfaces, in order to define
a color consistency loss for refracting and reflecting rays.
This is achieved by rendering colors using the computed
piecewise-linear rays and the learned radiance field, which
can be compared with the ground-truth color.

3.2.1 Ray Tracing

We consider the light transport of both refraction and reflec-
tion to model transparent objects. As depicted in Fig. 3, we
begin with an estimated surface of the object and apply a
sphere tracing algorithm [39] to locate the first surface in-
tersection point x1. After identifying this point, we apply
Snell’s Law to obtain the paths of light as it reflects off and
refracts through the surface. Given the intersection point
x1, the incoming ray direction d0, and the unit surface nor-
mal n1, the direction of the reflected ray is given by

dr
1 = d0 − 2(nT

1d0)n1, (8)

and the refracted direction is given by

d1=
η

ηt
d0−

(
η

ηt
nT
1d0+

√
1− η2

η2t

(
1− (nT

1d0)2
))

n1, (9)

where ηt denotes the refractive index of the transparent ob-
ject, and η = 1.0003 is that of air.

Upon establishing the refracted direction d1, sphere trac-
ing is again employed to ascertain the second intersection
point x2. From there, we apply Snell’s Law again to com-
pute the final outgoing direction d2. For computational ef-
ficiency, we only consider light paths with one reflection
and (up to) two refractions, though the algorithm can be
extended to accommodate additional reflections and refrac-
tions with only minor modifications.

Color Rendering. For transparent objects, the final radi-
ance is a combination of the radiance of the reflected ray
{x1 + tdr

1 | t > 0} and the radiance of the outgoing re-
fracted ray {x2 + td2 | t > 0}. We employ the Fresnel
equations [3] to determine how much of the incident radi-
ance at the surface point comes from reflection as compared
to refractive transmission:

Fr=
1

2

(
ηdT

0n1−ηtd
T
1n1

ηdT
0n1+ηtdT

1n1

)2
+
1

2

(
ηtd

T
0n1−ηdT

1n1

ηtdT
0n1+ηdT

1n1

)2
. (10)

With the Fresnel reflectance Fr, the final radiance for a cam-
era ray (x0,d0) is given by

ĉ(x0,d0) = Frĉ(x1,d
r
1) + (1− Fr)ĉ(x2,d2), (11)

where ĉ(x1,d
r
1) and ĉ(x2,d2), computed using Eq. 1, rep-

resent the rendered colors obtained from the reflected and
refracted rays, respectively.

Searching for Refractive Index. We start with NeuS-
initialized surface geometry, optimized assuming full opac-
ity. We find the refractive index that maximizes the PSNR
of novel views (Eq. 11). This process requires no ex-
tra training; it merely renders images using the pre-trained
NeuS model while varying the refractive index (see Fig.7).
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3.2.2 Differentiable Refinement

Consider the optimization problem that finds the distance to
the first surface intersection (zero level crossing) along the
ray from xi with direction di,

δi(θ,xi,di) ∈ argminδ⩾ϵ δ (12)

subject to ϕSDF(xi + δdi;θ) = 0,

and further than a small positive constant ϵ to avoid trivial
solutions. Assuming δi exists, and noting that the inequality
δ ⩾ ϵ is inactive, then by Proposition 4.6 from Gould et al.
[11] we can compute the derivatives as

dδi
dθ

= − 1

nT
i+1di

∂

∂θ
ϕSDF(xi+1;θ) (13)

dδi
dxi

= − ni+1

nT
i+1di

(14)

dδi
ddi

= − δini+1

nT
i+1di

, (15)

where the intersection point is xi+1 = xi + δidi and its
normal vector is ni+1 = d

dxϕSDF(xi+1). This amounts to
implicit differentiation of ϕSDF = 0. The full derivation and
6-line code implementation is provided in the appendix.

These derivatives work for any number of sequential re-
fractions, where the next direction vector is computed by
Snell’s Law (Eq. 9), and subsequent intersection points
x now depend on the previous intersection points. This
can be implemented in PyTorch by defining an Autograd
function, which allows PyTorch to handle backpropagation
through the SDF parameters. After obtaining the inter-
section point xj and direction vector dj upon exiting the
refractive medium, the color is integrated along this new
outgoing ray (xj ,dj) and is compared to the ground-truth
color. The error signal is propagated back to the SDF net-
work parameters θ via the derivatives defined above.

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate our method on both real-world and
synthetic datasets. For the real-world datasets, we use Glass
and Ball from Bemana et al. [1] and follow their dataset split
to report results. We use the camera poses provided by [1],
which are computed with COLMAP.

For the synthetic datasets, we create four transparent ob-
jects (Kitty [38], Optical Ball, Bottle, and Ellipsoid). We
use Blender with the physically-based rendering engine Cy-
cles to generate photorealistic images. The material of the
objects is set by Principled BSDF to appear as glass with
various refractive indices. Note that we do not assume that
the surrounding environment is infinitely far away, unlike
many existing works [33, 34, 43]. Instead, we use near-
object background panels to mimic real-world conditions
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Figure 3. Ray tracing with a transparent object. Start with sphere
tracing to locate the first intersection x1 of the ray with the signed
distance function ϕSDF. Using n1, Snell’s law finds dr

1 and d1.
Tracing further yields the second intersection x2 and computes
the exiting direction d2. For transparency, the camera ray (x0,d0)
combines radiance from the reflected ray (x1,d

r
1) and the exiting

refracted ray (x2,d2).

closely. For each object, we generate a total of 250 images,
distributed as 150 for training, 50 for validation, and 50 for
testing. The camera views are randomly sampled on a full
sphere of radius 4. The resolution of images is 800 × 800.
Sample images from each scene are shown in Fig. 5.

Implementation Details and Compared Methods. For
novel view synthesis, we compare our proposed approach to
three NeRF methods: TensoRF [5], Instant-NGP [22], and
Nerfacto [30]. Moreover, we also include three refraction-
specific methods for comparison: MS-NeRF [41], Sam-
pleNeRFRO [24], and Eikonal Fields [1]. We do not com-
pare with NEMTO [34], since it assumes a known back-
ground or environment map at an infinite distance, and so
cannot be used with real data. We use the publicly avail-
able implementations to run each method on all datasets.
We do not include SampleNeRFRO [24] for comparison,
as it assumes that the true geometry of transparent ob-
jects is known. For geometry reconstruction, we include
UNISURF [23], VolSDF [40], and NeuS [35] for compar-
ison. We use the implementation provided by SDFStu-
dio [42] to run all the experiments. We build our method
upon NeuS and adopt its default hyper-parameters for con-
sistency: λe is set at 0.1 and λn is set at 0.005 in Eq. 7.

Evaluation Metrics. To assess the reconstructed geometry,
we utilize the chamfer-L1 distance as defined in [18] (lower
values correlate with better geometric accuracy). The back-
ground does not constitute part of the ground-truth surface;
consequently, we exclude the background when comput-
ing this metric. To evaluate the novel view synthesis re-
sults, we employ three visual quality metrics: peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM),
and learned perceptual image patch similarity (LPIPS). A
higher value of PSNR and SSIM indicates better visual
quality, while a lower value of LPIPS signifies better per-
ceptual similarity to the ground truth.

20272



Model
Ball [1] Glass [1] Optical Ball Bottle Kitty Ellipsoid

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

TensoRF [5] 21.41 0.735 0.187 20.49 0.695 0.226 22.42 0.806 0.327 20.76 0.786 0.267 19.37 0.782 0.384 22.45 0.850 0.195

Instant-NGP [22] 21.56 0.790 0.121 21.42 0.748 0.148 20.93 0.800 0.330 20.48 0.784 0.296 19.51 0.783 0.362 23.61 0.886 0.146

Nerfacto [30] 21.67 0.797 0.113 22.14 0.774 0.121 20.73 0.794 0.300 20.94 0.828 0.196 19.14 0.782 0.309 23.39 0.894 0.128

MS-NeRF [41] 22.35 0.810 0.105 21.83 0.781 0.119 21.36 0.822 0.281 21.35 0.856 0.161 19.57 0.800 0.240 23.01 0.906 0.110

Eikonal Fields [1] 21.64 0.699 0.217 20.92 0.663 0.262 13.17 0.511 0.507 13.82 0.404 0.485 13.82 0.649 0.529 13.76 0.617 0.521

NeuS [35] 22.24 0.780 0.129 21.95 0.754 0.136 22.84 0.812 0.249 21.13 0.859 0.166 19.43 0.805 0.271 23.36 0.894 0.128

NeuS+Ref. 21.15 0.773 0.128 20.15 0.745 0.141 22.57 0.815 0.127 22.59 0.854 0.115 18.76 0.805 0.170 25.21 0.902 0.073

Ours 21.80 0.785 0.105 21.30 0.754 0.120 24.07 0.826 0.112 23.20 0.866 0.084 19.61 0.812 0.163 25.24 0.915 0.061

Table 1. Quantitative evaluation on the test set of six real datasets of refractive objects. We provide a comprehensive analysis of performance
metrics on the test set, encompassing PSNR (↑), SSIM (↑), and LPIPS (↓), across various NeRF models: TensoRF [5], Instant-NGP [22],
Nerfacto [30], MS-NeRF [41], Eikonal Fields [1], and ours. “NeuS+Ref.” denotes rendering scenes using refracted and reflected rays
analytically calculated based on surfaces learned by NeuS.
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Figure 4. Refractive index estimation. We accurately search the
index on Optical Ball with the NeuS+Ref. model, identifying the
precise ground-truth index (in this case, 1.45).

4.2. Evaluation Results

Effectiveness of Refractive Index Search. In Fig. 4, we
showcase the effectiveness of our index search method on
the Optical Ball using the NeuS+Ref. model. By accurately
identifying the ground-truth index (1.45), we eliminate the
need for assuming a known refractive index. Additionally,
we plot the sensitivity of the PSNR to the refractive index.

Novel View Synthesis. We provide a quantitative compar-
ison of our method against existing models in Tab. 1, evalu-
ating the performance across six transparent objects. Com-
pared with the NeuS+Ref. baseline, our method gains con-
sistent improvements across the six datasets. This indicates
that our TNSR method is effective at refining the initial sur-
face of NeuS. Moreover, we observe that our method gains
improvements over other baseline methods with respect to
the LPIPS metric on Ball and Glass, albeit with a marginal
reduction in PSNR and SSIM, these metrics being biased to-
wards blurry results. We speculate that because our method
does not consider the radiance of the ray segment inside the
object, it yields sharper results than models like NeuS and

Model ↓ Chamfer L1(×10−3)
Optical Ball Bottle Kitty Ellipsoid

Nerfacto [30] 99.67 56.37 31.79 5.16

UNISURF [23] 2.08 33.10 – 1.24
VolSDF [40] 1.98 32.01 – 1.15
NeuS [35] 1.96 31.05 19.28 1.05

Ours 1.91 29.54 18.05 0.80

Table 2. Quantitative evaluation on extracted meshes of syn-
thetic datasets. We quantitatively compare the quality of recon-
structed geometries by measuring the chamfer L1 distance be-
tween ground-truth meshes and extracted meshes.

Nerfacto. Moreover, while Eikonal Fields achieves compet-
itive results on Glass and Ball, it is not effective on others.

We present a qualitative evaluation of our method against
other methods in Fig. 5. NeuS accurately models envi-
ronments but struggles with light interactions, resulting in
noisy views of transparent objects, which appear blurry and
foggy. By rendering scenes with refracted and reflected
rays, NeuS+Ref. offers smoother visuals but still experi-
ences jitter in object regions due to initial surface inaccu-
racies. MS-NeRF displays smooth outcomes in Glass and
Bottle, but its performance is inconsistent in others. Eikonal
Fields, despite delivering high-quality outcomes on Ball
and Glass, fails to effectively estimate the refractive field in
other scenarios, resulting in noisy outputs. In contrast, our
method enhances the estimated surface of NeuS and accu-
rately captures refraction and reflection, yielding more con-
vincing and visually appealing renders.

Surface Reconstruction. First, our quantitative analysis in
Tab. 2 evaluates the geometry enhancement from our trans-
parent neural surface refinement. We compare with three
SDF-based methods (UNISURF [23], VolSDF [40], and
NeuS [35]), alongside Nerfacto [30], which exports meshes
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Figure 5. Qualitative comparison of novel view synthesis on transparent objects. Visual results are displayed across six distinct refractive
datasets showcasing ground-truth novel views alongside renders from multiple methods, including our method, NeuS+Ref., NeuS [35],
Eikonal Field [1], and MSNeRF [41]. Each row corresponds to a different transparent dataset. Our method is effective in handling refraction
effects, leading to smoother and clearer outcomes in novel view synthesis compared to other models.

using Poisson surface reconstruction. Results indicate our
method’s superiority with a lower chamfer L1 distance. For
Kitty’s complex shape, both VolSDF and UNISURF fail
in surface reconstruction. Additionally, Nerfacto exhibits
higher chamfer L1 distance, implying inferior reconstruc-

tion. In contrast, our method, compared to NeuS, achieves
lower chamfer L1 distance, showcasing its effectiveness.
Second, qualitative comparison in Fig. 6 highlights differ-
ences between our method, NeuS, and Nerfacto. Nerfacto
struggles with transparent objects, resulting in noisy sur-
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Figure 6. Visualization of 3D shape reconstruction across four
refractive objects. We compare our method with NeuS [35], Ner-
facto [30], and the ground-truth surfaces. The results indicate that
our method produces smoother reconstructions of transparent ob-
jects, while NeuS’s reconstructions have rough artifacts and Ner-
facto’s reconstructions have many holes.

faces. Conversely, our method offers smoother reconstruc-
tions compared to NeuS, suggesting improved modeling.

However, it is important to acknowledge that while our
approach improves geometry, it has its limitations. Partic-
ularly in areas with multiple light refractions, like the ears
of Kitty, our method yields imperfect results. Extending
our optimization approach to handle multiple refractions is
likely to address these issues.

Robustness to Index of Refraction (IoR). To demonstrate
the robustness of our method, we further conduct tests on
Optical Ball with IoRs of 2.4 and 1.3. As shown in Fig. 7,
we observe that our method works well on these refractive
materials, producing visually plausible novel view results.
For instance, at an IoR of 2.4, our method is effective in
managing strong reflections as well as modeling light re-
fraction, when compared to NeuS+Ref and NeuS.

5. Conclusion
In this work, we introduce Transparent Neural Surface Re-
finement (TNSR), specifically designed to model the optical
properties of transparent objects. TNSR integrates physical
refraction and reflection tracing into the reconstruction pro-
cess, effectively addressing the challenges posed by tradi-
tional volume rendering techniques in handling transparen-

IO
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.4

IO
R
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.3

Ground truth NeuS+Ref.Ours NeuS

Figure 7. Qualitative comparison of novel view synthesis for trans-
parent media with different refractive indices. We display two
views for each method and show that our approach achieves more
plausible results that closely align with ground truth, regardless of
the material’s optical properties.

cies. Central to TNSR is its use of a differentiable tech-
nique that analytically computes gradients at ray–surface in-
tersections, seamlessly linking surface refinement with vol-
ume rendering. This enables end-to-end training using only
multi-view RGB images. Our experiments with TNSR have
shown significant improvements in both novel view synthe-
sis and the geometric accuracy of the modeled transparent
objects, highlighting the efficacy of TNSR.

Limitations and Future Directions. Transparent neural
surface refinement shows promise but has limitations. First,
we only consider light paths with (up to) two refractions
and one explicit reflection. While this already gives dra-
matically improved results, extending our approach to an
arbitrary number of refractions would potentially help with
complex objects. Our proposed nested optimization can
naturally extend to additional bounces, which we will ex-
plore in future work. Second, our approach assumes that
the scene is composed of fully transparent or opaque ob-
jects and cannot model translucent objects. In future work,
we intend to extend our approach to handle translucent ob-
jects by allowing the radiance of the ray segment inside the
object to contribute to the total radiance.
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