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Abstract

We propose a novel echocardiographical video segmen-
tation model by adapting SAM to medical videos to address
some long-standing challenges in ultrasound video segmen-
tation, including (1) massive speckle noise and artifacts,
(2) extremely ambiguous boundaries, and (3) large vari-
ations of targeting objects across frames. The core tech-
nique of our model is a temporal-aware and noise-resilient
prompting scheme. Specifically, we employ a space-time
memory that contains both spatial and temporal informa-
tion to prompt the segmentation of current frame, and thus
we call the proposed model as MemSAM. In prompting,
the memory carrying temporal cues sequentially prompt the
video segmentation frame by frame. Meanwhile, as the
memory prompt propagates high-level features, it avoids
the issue of misidentification caused by mask propagation
and improves representation consistency. To address the
challenge of speckle noise, we further propose a mem-
ory reinforcement mechanism, which leverages predicted
masks to improve the quality of the memory before stor-
ing it. We extensively evaluate our method on two pub-
lic datasets and demonstrate state-of-the-art performance
compared to existing models. Particularly, our model
achieves comparable performance with fully supervised ap-
proaches with limited annotations. Codes are available at
https://github.com/dengxl0520/MemSAM.

1. Introduction
Cardiovascular diseases are the leading cause of mortality
worldwide according to statistics of the World Health Orga-
nization (WHO) [6]. Echocardiography is an important yet
unique tool for assessing cardiovascular function. Due to its
portability, low cost, and real-time nature, echocardiogra-
phy is commonly used as the first-line examination method
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Figure 1. The challenges of echocardiography video segmenta-
tion: (a) blurred contours, (b) speckle noise, and (c-d) the change
of scale across frames (two frames of the same video).

in clinical practice [1]. However, echocardiography usually
requires manual evaluation by experienced physicians, and
the quality of assessment heavily relies on physicians’ ex-
pertise [17, 19]. To the end, there are often large inter- and
intra-observer differences among manual assessments [16].
In addition, the assessment requires manual tracking of ven-
tricular size, which is laborious, time-consuming, and error-
prone. In this regard, automated assessment approaches are
highly demanded in clinical practice.

Echocardiographic assessment and diagnosis are usually
based on the interpretation of ejection fraction and ventric-
ular volumes [4], which requires accurate segmentation of
key structures from echocardiographic videos such as the
left ventricular endocardium. However, automatic echocar-
diographic segmentation has always been a challenging
task. First, as shown in Figure 1 (a,b), due to limitations
of ultrasound imaging, there are a lot of adverse factors
affecting the quality of echocardiographic videos, such as
low signal-to-noise ratio, speckle noise, edge dropout, and
shadows caused by structures like dense muscle and ribs,
making it difficult to identify the boundaries of key anatom-
ical structures [3, 30]. Second, shape and scale variations
of cardiac structures are large within and between videos
(see Figure 1 (c,d)). Finally, annotation of echocardio-
graphic videos is labor-intensive and time-consuming, and
hence physicians usually only annotate end-systole and end-
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diastole frames. To the end, we have to segment echocar-
diographic videos with limited and sparse annotations.

In recent years, many deep learning methods have been
proposed for echocardiographical video segmentation [32,
33, 35, 36], but they still cannot achieve satisfactory results
due to the low quality of ultrasound videos and limited an-
notations. Recently, a large vision model, Segment Any-
thing Model (SAM) [15] has been proposed and achieved
significant success in many natural image segmentation
tasks. Some researchers have endeavored to adapt it to med-
ical image segmentation tasks in order to take advantage of
SAM’s powerful representation capability to alleviate inad-
equate training samples. However, most of these studies
focus on 2D images and how to adapt SAM for medical
video segmentation remains an unexplored and challenging
task. Applying SAM directly to videos would ignore tem-
poral clues, and may result in temporally inconsistent seg-
mentation [26, 34]. For example, as shown in Figure 1, fast-
changing echocardiographical videos have obvious tempo-
ral discontinuities in the shape and scale of targeting ob-
jects. In addition, ambiguous boundaries caused by massive
speckle noise and artifacts will greatly prohibit SAM from
unleashing its representation capability.

In this paper, we propose a novel echocardiographical
video segmentation model by adapting SAM to medical
videos, which have some unique characteristics compared
with natural videos. The core technique of our model
is a temporal-aware and noise-resilient prompting scheme.
Specifically, we employ a space-time memory that contains
both spatial and temporal information to prompt the seg-
mentation of current frame, and thus we call the proposed
model as MemSAM. In prompting, the memory carrying
temporal cues sequentially prompt the video segmentation
frame by frame. Meanwhile, as the memory prompt propa-
gates high-level features, it avoids the issue of misidentifica-
tion caused by mask propagation and improves representa-
tion consistency. To address the challenge of speckle noise,
we propose a memory reinforcement mechanism, which
leverages predicted masks to improve the memory quality
before storing it. We build our model on SAMUS [18], a
medical foundation model based on SAM, which enables
our model to be more adaptable to medical data. Finally, we
conducted extensive experiments on two publicly available
datasets. Our contributions can be summarized as follows:

• We propose a novel echocardiography video segmenta-
tion model based on SAM. The core component of our
model is a new prompting approach, which is able to pro-
vide both spatial and temporal cues to improve represen-
tation consistency and segmentation accuracy.

• We further propose the memory reinforcement module to
enhance the memory before storing it, thereby alleviating
the adverse effects of speckle noise and motion artifacts
during the memory prompting.

• We extensively evaluate our method on two public
datasets and demonstrate state-of-the-art performance
compared to existing models. Particularly, our model
achieves comparable performance with fully supervised
approaches with limited annotations.

2. Related Work
2.1. SAM in Medical Image Segmentation

The SAM demonstrates excellent zero-shot generalization
capabilities when applied to natural images [11, 23]. How-
ever, due to the complex shapes, blurred boundaries, and
significant scale variations inherent in medical images, it
still falls short of being directly applicable to medical im-
age segmentation [14]. Some general works have attempted
to adapt SAM from natural images to medical images [42],
such as MedSAM [21], MSA [37] and SAMed [40]. Med-
SAM does not change the SAM network structure, but uses
bounding box prompts more suitable for the medical do-
main, and focuses on fine-tuning the mask decoder. The
purpose of MSA and SAMed is to modify the Image En-
coder to adapt to medical images. MSA realizes this by
adding an adapter to the Image Encoder. SAMed uses a
strategy based on low-rank (LoRA) strategy to fine-tune the
Image Encoder. In more specialized domains, SAMUS [18]
and SonoSAM [28] focused on ultrasound images have also
been proposed. Among them, SAMUS adapts better to ul-
trasound images by adding adapters and additional CNN
branches. SonoSAM uses knowledge distillation to extract
specific knowledge from medical images. However, these
methods are limited to image segmentation and have yet to
be extended to video data, relying heavily on dense annota-
tions and prompts to attain adequate performance. In con-
trast, the aim of this work is to investigate leveraging tem-
poral cues within video to enable model training with only
sparse annotations and minimal prompts.

2.2. SAM in Video Segmentation

Although the extension of SAM to the video domain re-
mains relatively underexplored, some preliminary works
have been proposed to address natural video segmentation
tasks. A common approach involves integrating SAM with
prevalent video segmentation architectures, as exemplified
by SAM-Track [9] and TAM [38]. SAM-Track uses SAM
to obtain keyframe segments as references, then leverages
DeAOT [39] to propagate the reference frames throughout
the video sequence. TAM combines SAM and XMem [7]
by initially generating coarse masks with SAM and weak
prompts, then employing XMem for continued tracking.
When segmentation quality declines, TAM refines the SAM
outputs using XMem’s prediction probabilities and affini-
ties as prompts. More recently, SAM-PT [27] introduced
a unique point-tracking technique to generate masks and
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track objects. However, these methods are only suitable for
relatively simple natural image scenes and are difficult to
apply to medical image segmentation. For example, for
complex, dynamic, and noisy ultrasound images, the in-
termediate features of XMem will carry noise that incor-
rectly prompts SAM. Furthermore, when XMem passes in-
termediate parameters to SAM, converting them to mask
prompts loses the higher-level semantics of the original fea-
tures. Similar to TAM, our method is also based on XMem.
Critically, rather than a naive combination, our method em-
phasizes maintaining semantic consistency during feature
transfer and mitigating pervasive background noise in med-
ical imaging data.

2.3. Space-Time Memory Methods

Mainstream video temporal modeling methods include
multi-frame aggregation and space-time memory networks.
Multi-frame aggregation learns temporal features by ag-
gregating semantic information from adjacent frames. In
comparison, space-time memory models video temporal in-
formation by propagating semantic information along the
temporal dimensions. Although multi-frame aggregation
is widely used, its GPU memory requirement increases
rapidly with video length, limiting its application in long
video processing. In contrast, space-time memory net-
works can significantly reduce memory consumption while
ensuring temporal modeling, making them more suitable
for extension to areas like medical video analysis. Space-
time memory networks (STM) were first proposed by Oh
et al. [24] for video object segmentation tasks. Subsequent
methods including STCN [8], XMem [7], and XMem++ [2]
have demonstrated immense potential for general video seg-
mentation. However, these methods require an annotated
reference keyframe for the videos to be segmented, which
is difficult for our task.

3. Method

SAM is a powerful prompt-based segmentation framework
that utilizes prompts to track targets to segment after learn-
ing good representations [31, 41]. How to properly prompt
is an issue worth studying. Existing SAM and its vari-
ants perform well on image segmentation, including nat-
ural and medical images. However, they cannot utilize
temporal clues in videos when directly migrated to video
segmentation, ignoring the spatio-temporal consistency in
videos. Moreover, applying them directly to videos would
require prompting every frame, which is inelegant and re-
dundant for video segmentation. We aim to design a mem-
ory prompting method to extend the SAM framework and
avoid prompting every frame in a video. Meanwhile, an-
notating every frame in a video is also extremely difficult,
especially for echocardiograms where it is hard to acquire

Figure 2. The workflow of MemSAM, in which only the first
frame of the video uses the simplest positive point prompt (red
arrow), and subsequent frames use memory prompts (yellow ar-
row). Finally, the loss is calculated for the Prediction and Ground
Truth of the supervised frame.

abundant annotations. Therefore, a method that can accom-
plish semi-supervised tasks is needed.

Therefore, we propose MemSAM for solving semi-
supervised problems with fewer annotations and prompts
in echocardiography. The proposed MemSAM framework
processes videos in a sequential frame-by-frame manner, as
illustrated in Figure 2. Each input video of length T frames
is fed into the MemSAM model one frame at a time. Ini-
tially, randomly sampled points in the foreground are pro-
vided as prompts for the first frame to guide the model.
For subsequent frames, MemSAM relies solely on mem-
ory prompts rather than external prompts. After prediction
by MemSAM, the prediction of supervised frames will cal-
culate loss with the Ground Truth.

3.1. Overview

Figure 3 shows more details inside the MemSAM frame-
work. The MemSAM mainly consists of two components,
the SAM component and the Memory component. The
SAM component adopts an architecture identical to the
original SAM, composed of an image encoder, a prompt
encoder, and a mask decoder. The image encoder employs
the Vision Transformer (ViT) [12] as the backbone to en-
code input images into image embedding Ei. The prompt
encoder ingests external prompts, such as point prompts,
and encodes them into a c-dimensional embedding. Subse-
quently, the mask decoder integrates the image and prompt
embeddings to predict segmentation masks.

Among them, image embedding is mapped to the mem-
ory feature space through the projection layer, and then
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Figure 3. Overview of our MemSAM, which consists of SAM and Memory. The input image is first encoded into an image embedding by
the image encoder of SAM. After obtaining the point prompt and memory prompt, the mask is output from the mask decoder.

we perform memory reading to obtain the memory prompt
from multiple feature memory (sensory memory, working
memory, and long-term memory) and provide it to the mask
decoder. Finally, after passing the memory reinforcement
and memory encoder, the memory will be updated. Detailed
information on important components is provided below.

3.2. Memory Reading

The Memory Reading block in Figure 4 shows the process
of generating memory embedding Em from image embed-
ding Ei, which is input to the mask decoder as a memory
prompt. The image embedding Et

i of frame t is projected
through a projection layer to generate the query qt. This
query qt is then used to perform an affinity query against
the memory keys and values to obtain the readout features
F t. The process can be formulated as:

F t = vt−1 ·W (kt−1, qt) (1)

where kt−1 = kt−1
w ⊕ kt−1

lt and vt−1 = vt−1
w ⊕ vt−1

lt .
The ⊕ denotes concatenation and superscripts ‘w’ and
‘lt’ denote working and long-term memory respectively.
The W (kt−1, qt) represents the affinity matrix between the
query qt and the memory key kt−1, and it captures the cor-
relation between qt and kt−1. It can be obtained by com-
puting the similarities between qt and kt−1, followed by
normalization. The specific computation process can be for-
mulated as follows:

W (kt−1, qt) = softmax(S(kt−1, qt)) (2)

where S is the similarity calculation. In order to encode the
confidence level of memory elements and focus on more
important channels, we adopt anisotropic L2 similarity [7]
as the similarity function. Finally, the readout feature F t is
fused with the sensory memory ht−1 and Et

i to obtain the
memory embedding Et

m, which is formulated as:

Et
m = Fusion(Et

i , F
t ⊕ ht−1) (3)

3.3. Memory Reinforcement

Compared with natural images, ultrasound images contain
more complex noise, which means the image embedding
generated by the image encoder will inevitably carry noise.
If the noisy features are updated to the memory without any
processing, it may lead to the accumulation and propagation
of errors. To mitigate the influence of noise on memory up-
dates, we employ a Memory Reinforcement module to en-
hance the discriminability of the feature representations in
memory. As shown in the memory reinforcement in Fig-
ure 4, we reinforce the memory with the segmentation re-
sults before the memory update, aiming to emphasize fore-
ground features and reduce the impact of background noise.

Specifically, for the probability map P t ∈ RB×1×H×W

output by the mask decoder, we first downsample it into
a P t

d ∈ RB×1×h×w of the same size as the image feature
Et

i ∈ RB×C×h×w, and then concat it with Et
i along the

channel dimension to obtain F t ∈ RB×(C+1)×h×w. We
use a convolutional layer Conv3×3 with a convolution ker-
nel size of 3× 3 to process F , in order to limit the receptive
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Figure 4. More details of Memory Reading and Memory Reinforcement. The Memory Update process is represented briefly.

field of each pixel. This process generates a local atten-
tion weight feature F t

w ∈ RB×Cmid×h×w. Then we use a
Conv1×1 convolution layer to change the number of chan-
nels of F t

w to obtain F t
w ∈ RB×C×h×w, and finally calcu-

late the output features:

F t
o = P t

d ⊙ softmax(F t
w) (4)

where ⊙ represents the element-wise product. Fo will fi-
nally be inserted into the Working Memory value. Through
this mechanism, we use segmentation results to maintain
foreground features, weaken the impact of background
noise on memory updates, and enhance the distinguishabil-
ity of feature expressions in memory.

3.4. Memory Update

The memory to be updated includes memory bank and sen-
sory memory. memory bank further consists of working
memory and long-term memory, where long-term memory
is only utilized for long videos and is omitted here. The
sensory memory ht is updated by:

ht = GRU(ht−1 ⊕ Et
m) (5)

where GRU is Gated Recurrent Unit [10]. The key ktw and
value vtw of working memory are updated as follows:

ktw = qt, vtw = vt−1
w ⊕ F t

o (6)

4. Experiment
4.1. Datasets and Evaluation Metrics

We evaluated our approach on two widely used publicly
available echocardiography datasets, CAMUS [16] and
EchoNet-Dynamic [25].

CAMUS Dataset contains 500 cases, which include 2D
apical two-chamber and apical four-chamber view video.
CAMUS provides annotations across all frames.

EchoNet-Dynamic Dataset contains 10,030 2D apical
two-chamber view videos. Each video provides the area of
the left ventricle in the form of an integral. Only label end-
systolic and end-diastolic phases.

To comprehensively assess the effectiveness of our
method in semi-supervised video segmentation, the CA-
MUS dataset was adapted into two variants: CAMUS-Full
and CAMUS-Semi. CAMUS-Full utilizes annotations for
all frames during training, whereas CAMUS-Semi only
uses annotations for the end-diastolic (ED) and end-systolic
(ES) frames. During testing, both datasets were evaluated
using complete annotations. We uniformly sampled videos
from the dataset, cropping them to 10 frames each. The
cropping ensured that the ED frame is the first frame, the
ES frame is the last frame, and the resolution is resized to
256×256. For the CAMUS dataset, we divided it into train-
ing, validation, and test sets in a ratio of 7:1:2, while we
used the original split for the EchoNet-Dynamic dataset.

We employed widely used metrics such as mean Dice
coefficient (mDice) and mean Intersection over Union
(mIoU) for segmentation evaluation, along with Hausdorff
Distance-95% (HD95) and Average Symmetric Surface
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Method
CAMUS-Semi EchoNet-Dynamic

mDice ↑ mIoU ↑ HD95 ↓ ASSD ↓ mDice ↑ mIoU ↑ HD95 ↓ ASSD ↓

UNet [29] 90.13 82.36 5.77 2.35 91.36 83.27 4.98 3.01
SwinUNet [5] 88.84 80.33 6.10 2.60 87.79 80.14 6.61 5.71
H2Former [13] 91.31 84.30 5.27 2.05 90.21 82.46 5.12 3.78

MedSAM [21] 85.42 75.14 8.42 3.34 86.47 79.19 7.97 4.88
MSA [37] 88.03 78.98 7.53 2.85 87.91 78.34 6.67 4.34

SAMed [40] 87.45 78.14 9.17 3.10 86.35 78.96 7.12 4.59
SonoSAM [28] 89.80 81.79 6.60 2.45 89.61 82.33 6.58 3.80
SAMUS [18] 91.11 83.94 5.08 2.07 91.79 84.32 5.35 3.22

MemSAM 93.31±3.04 87.61±5.12 3.82±1.80 1.57±0.72 92.78±3.38 85.89±5.12 4.57±2.34 2.71±0.78

Table 1. Segmentation performance of the proposed method with state-of-the-art methods on the CAMUS-Semi and EchoNet-Dynamic
datasets. HD95 and ASSD are measured in millimeters (mm) in CAMUS-Semi, while in pixels in EchoNet-Dynamic. Our results are
expressed as mean ± standard deviation.

Figure 5. Segmentation performance of the proposed method with
state-of-the-art methods on the CAMUS-Semi and CAMUS-Full
datasets.

Distance (ASSD). The standard deviations of these metrics
were also reported. In addition, we also report three statis-
tical metrics of Left Ventricular Ejection Fraction (LVEF ).
We estimate the prediction LVEF according to Simpson’s
biplane method of disks (SMOD), which is provided in the
CAMUS dataset. Note that different implementation meth-
ods will have a significant impact on the final LVEF results.
SMOD estimates LVEF from end diastole and end systole
time instances from apical two and four chambers views.
Compared with Simpson’s single plane rule, SMOD’s esti-
mation solution is more accurate and reliable. For the pre-
diction and ground truth LVEF , we calculate the pearson
correlation coefficient (corr), mean bias (bias), and stan-
dard error (std).

4.2. Implementation Details

For the SAM component, we utilize SAMUS [18], which is
suitable for ultrasound images and has a more friendly de-
ployment cost. Only the layers of the image encoder were

Method
CAMUS-Semi

corr (%) ↑ bias ↓ std ↓

UNet [29] 67.15 11.65 9.39
SwinUNet [5] 59.41 6.90 9.06
H2Former [13] 58.61 0.69 7.49

MedSAM [21] 41.63 11.22 11.19
MSA [37] 31.00 13.25 14.96

SAMed [40] 28.22 13.34 12.24
SonoSAM [28] 56.18 11.83 9.12
SAMUS [18] 67.55 7.02 9.16

MemSAM 78.92 4.86 11.10

Table 2. Clinical metrics comparison against different state-of-the-
art methods on the CAMUS-Semi datasets.

trained, while the remaining components inherited param-
eters from the original SAM and were frozen. We trained
for 100 epochs on the CAMUS dataset and 50 epochs on
EchoNet-Dynamic. The base learning rate was set to 1e−4,
and optimization was performed using the AdamW opti-
mizer [20]. The same loss functions (dice loss [22] and
binary cross-entropy loss) as SAMUS were utilized. Dur-
ing the training phase, we applied gamma enhancement,
random scale, random rotation, and random contrast with
a probability of 0.5 each.

4.3. Comparison with State-of-the-art Methods

We extensively selected different types of comparison
methods, including traditional image segmentation mod-
els and medical foundation models. The three traditional
image segmentation models are respectively the CNN-
based UNet [29], Transformer-based SwinUNet [5], and
CNN-Transformer hybrid H2Former [13]. The medical-
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Figure 6. Visual comparison with state-of-the-art methods on the CAMUS-Semi test set. Green, red, and yellow regions represent the
ground truth, prediction, and overlapping regions, respectively.

Setting mDice mIoU HD95 ASSD

All components 93.31 87.61 3.82 1.57
no point prompt 93.17 87.38 4.55 1.66
no memory prompt 91.11 83.94 5.08 2.07
no memory reinforce 92.86 86.83 4.03 1.67

Table 3. Ablation study on different components of MemSAM on
the CAMUS-Semi dataset.

adapted SAM models include MedSAM [21], MSA [37],
SAMed [40], SonoSAM [28], and SAMUS [18]. Among
them, SonoSAM and SAMUS focus on ultrasound images.
Quantitative comparison. The quantitative comparison re-
sults are shown in Table 1. Among these state-of-the-art
methods, H2Former and SAMUS perform relatively well on
the two datasets, benefiting from the CNN-Transformer ar-
chitecture and ultrasound image optimization, respectively.
However, without utilizing the temporal attributes of videos
under scarce annotations, these models still lag our ap-
proach. The experiments validate that our method achieves
state-of-the-art performance given limited annotations.

To further evaluate our method, we compared it un-
der the same setting on CAMUS-Semi and CAMUS-Full
datasets. The results are shown in Figure 5. It can be
seen that conventional methods like UNet and H2Former,
and ultrasound-specialized methods like SonoSAM and
SAMUS, recover decent results given full annotations.
Although our approach has marginal gains from semi-
supervised to fully-supervised settings, it still outperforms
other competitors under both. Notably, the medical foun-
dation models require per-frame prompts under full super-

vision, while we only require a point prompt. The experi-
ments validate that our method achieves comparable perfor-
mance to full annotations with sparse labels, using far fewer
external prompts.

Our method’s comparison with state-of-the-art methods
in LVEF estimation is shown in Table 2. Under limited an-
notations, previous state-of-the-art methods have not been
satisfactory in terms of the corr. This underperformance
of state-of-the-art methods is attributable to two factors.
Firstly, the segmentation accuracy of state-of-the-art meth-
ods themselves remains insufficient. Secondly, the SMOD
estimation solution demands high segmentation quality, re-
quiring both two-chamber and four-chamber views to yield
accurate quantification for robust LVEF evaluation.
Qualitative comparison. We present visualizations for
some challenging cases. As shown in Figure 6, the images
in rows 1-2 contain speckle noise around the left ventri-
cle, which misleads some conventional and medical founda-
tion models to incorrectly identify them as ventricle edges.
Rows 3-4 contain instances with severely blurred bound-
aries, where almost all competitors over-segment beyond
the true ventricular boundary, while our method precisely
delineates the boundary. These visualizations demonstrate
that our method robustly handles poor image quality cases.

4.4. Ablation Studies

To evaluate each component of MemSAM, we performed
ablation studies on the CAMUS-Semi dataset.
Effectiveness of each component. We conducted abla-
tion experiments on the main components of MemSAM to
analyze the contribution of each component to our frame-
work. We experimented with no point prompts, no memory
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Figure 7. Feature visualization before and after memory reinforce-
ment. After memory reinforcement, the model pays more attention
to the ventricular area.

prompts, and no memory reinforcement. The experimental
results are shown in the Table 3. Removing point prompts
incurred only a minor performance decline. The location
of the left ventricle in echocardiograms is relatively fixed,
so even lacking initial frame point prompts does not greatly
affect performance. Omitting memory prompts degraded
performance to the SAMUS baseline. Disabling memory
reinforcement resulted in a 0.45% mean Dice reduction. We
visualized the memory embeddings before and after mem-
ory reinforcement. As shown in Figure 7, before reinforce-
ment, the model attends not only to the ventricle location
(deep red regions) but also to other areas (light yellow re-
gions), which can cause incorrect activation and accumulate
errors. After reinforcement, there is a greater focus on the
ventricular regions, resulting in more precise segmentation.

Impact of different numbers of point prompts. To inves-
tigate the impact of different numbers of point prompts, we
conducted ablation studies evaluating our proposed method
with 1, 2, 3, 5, and 10 randomly sampled point prompts.
Each prompt configuration was evaluated over three tri-
als with different random seeds. The experimental results
in Figure 8 demonstrate the robustness of our proposed
method to numbers of randomly sampled point prompts,
as evidenced by minimal variation in model performance.
Since our prompt encoder is frozen, and we only use point
prompts in the first frame, changes in the number of point
prompts have little impact on our proposed method (only

Figure 8. Ablation study of point prompts.

Figure 9. Failure cases on the CAMUS (a-c) and EchoNet-
Dynamic (d-f) test sets.

affecting the prediction of the first frame). The experimen-
tal results show that our method requires very few point
prompts to perform effectively.

5. Conclusion
In this paper, we propose a novel semi-supervised video
segmentation framework for echocardiography video seg-
mentation, aiming to effectively extend SAM to the video
domain and achieve comparable performance to full super-
vision with limited annotations and prompting.

However, as shown in Figure 9, our method results in
the entire video sequence being unable to be accurately seg-
mented when the initial frame image is extremely poor. Fu-
ture research could investigate techniques to achieve more
robust initialization and test the effectiveness of our ap-
proach in more domains, and could further explore ways
to reduce computational cost and lightweight the model.
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