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Figure 1. Generation samples on complex, unseen prompts. Our proposed method, PRDP, achieves stable black-box reward finetuning
for diffusion models for the first time on large-scale prompt datasets, leading to superior generation quality on complex, unseen prompts.
Here, PRDP is finetuned from Stable Diffusion v1.4 on the training set prompts of Pick-a-Pic v1 dataset, using a weighted combination of
rewards: PickScore = 10, HPSv2 = 2, Aesthetic = 0.05. The images within each column are generated using the same random seed.

Abstract

Reward finetuning has emerged as a promising approach
to aligning foundation models with downstream objectives.
Remarkable success has been achieved in the language do-
main by using reinforcement learning (RL) to maximize re-
wards that reflect human preference. However, in the vi-
sion domain, existing RL-based reward finetuning methods
are limited by their instability in large-scale training, ren-
dering them incapable of generalizing to complex, unseen
prompts. In this paper, we propose Proximal Reward Dif-
ference Prediction (PRDP), enabling stable black-box re-
ward finetuning for diffusion models for the first time on
large-scale prompt datasets with over 100K prompts. Our
key innovation is the Reward Difference Prediction (RDP)
objective that has the same optimal solution as the RL ob-
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jective while enjoying better training stability. Specifically,
the RDP objective is a supervised regression objective that
tasks the diffusion model with predicting the reward differ-
ence of generated image pairs from their denoising trajec-
tories. We theoretically prove that the diffusion model that
obtains perfect reward difference prediction is exactly the
maximizer of the RL objective. We further develop an online
algorithm with proximal updates to stably optimize the RDP
objective. In experiments, we demonstrate that PRDP can
match the reward maximization ability of well-established
RL-based methods in small-scale training. Furthermore,
through large-scale training on text prompts from the Hu-
man Preference Dataset v2 and the Pick-a-Pic v1 dataset,
PRDP achieves superior generation quality on a diverse
set of complex, unseen prompts whereas RL-based methods
completely fail.
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1. Introduction
Diffusion models have achieved remarkable success in gen-
erative modeling of continuous data, especially in photore-
alistic text-to-image synthesis [7, 15, 30, 36, 37, 40, 44, 46].
However, the maximum likelihood training objective of dif-
fusion models is often misaligned with their downstream
use cases, such as generating novel compositions of objects
unseen during training, and producing images that are aes-
thetically preferred by humans.

A similar misalignment problem exists in language mod-
els, where exactly matching the model output to the training
distribution tends to yield undesirable model behavior. For
example, the model may output biased, toxic, or harmful
content. A successful solution, called reinforcement learn-
ing from human feedback (RLHF) [2, 31, 47, 61], is to use
reinforcement learning (RL) to finetune the language model
such that it maximizes some reward function that reflects
human preference. Typically, the reward function is defined
by a reward model pretrained from human preference data.

Inspired by the success of RLHF in language models,
researchers have developed several reward models in the vi-
sion domain [22, 23, 53–55] that are similarly trained to be
aligned with human preference. Furthermore, two recent
works, DDPO [4] and DPOK [10], have explored using RL
to finetune diffusion models. They both view the denoising
process as a Markov decision process [9], and apply policy
gradient methods such as PPO [42] to maximize rewards.

However, policy gradients are notoriously prone to high
variance, causing training instability. To reduce variance, a
common approach is to normalize the rewards by subtract-
ing their expected value [48, 51]. DPOK fits a value func-
tion to estimate the expected reward, showing promising re-
sults when trained on ∼200 prompts. Alternatively, DDPO
maintains a separate buffer for each prompt to track the
mean and variance of rewards, demonstrating stable train-
ing on ∼400 prompts and better performance than DPOK.
Nevertheless, we find that DDPO still suffers from training
instability on larger numbers of prompts, depriving it of the
benefits offered by training on large-scale prompt datasets.

In this paper, we propose Proximal Reward Difference
Prediction (PRDP), a scalable reward maximization algo-
rithm that does not rely on policy gradients. To the best of
our knowledge, PRDP is the first method that achieves sta-
ble large-scale finetuning of diffusion models on more than
100K prompts for black-box reward functions.

Inspired by the recent success of DPO [35] that converts
the RLHF objective for language models into a supervised
classification objective, we derive for diffusion models a
new supervised regression objective, called Reward Differ-
ence Prediction (RDP), that has the same optimal solution
as the RLHF objective while enjoying better training sta-
bility. Specifically, our RDP objective tasks the diffusion
model with predicting the reward difference of generated

image pairs from their denoising trajectories. We prove that
the diffusion model that obtains perfect reward difference
prediction is exactly the maximizer of the RLHF objective.
We further propose proximal updates and online optimiza-
tion to improve training stability and generation quality.

Our contributions are summarized as follows:
• We propose PRDP, a scalable reward finetuning method

for diffusion models, with a new reward difference pre-
diction objective and its stable optimization algorithm.

• PRDP achieves stable black-box reward maximization for
diffusion models for the first time on large-scale prompt
datasets with over 100K prompts.

• PRDP exhibits superior generation quality and general-
ization to unseen prompts through large-scale training.

2. Preliminaries
In this section, we briefly introduce the generative process
of denoising diffusion probabilistic models (DDPMs) [15,
44, 46]. Given a text prompt c, a text-to-image DDPM πθ

with parameters θ defines a text-conditioned image distri-
bution πθ(x0|c) as follows:

πθ(x0|c) =
∫

πθ(x0:T |c) dx1:T

=

∫
p(xT )

T∏
t=1

πθ(xt−1|xt, c) dx1:T ,

(1)

where x0 is the image, and x1:T are latent variables of the
same dimension as x0. Typically, p(xT ) = N (0, I), and

πθ(xt−1|xt, c) = N (xt−1;µθ(xt, c), σ
2
t I) (2)

is a Gaussian distribution with learnable mean and fixed co-
variance. To generate an image x0 ∼ πθ(x0|c), DDPM
uses ancestral sampling. That is, it samples the full de-
noising trajectory x0:T ∼ πθ(x0:T |c), by first sampling
xT ∼ p(xT ), and then sampling xt−1 ∼ πθ(xt−1|xt, c)
for t = T, . . . , 1. Conversely, given a denoising trajectory
x0:T , we can analytically compute its log-likelihood as

log πθ(x0:T |c) = log p(xT ) +

T∑
t=1

log πθ(xt−1|xt, c) (3)

= −1

2

T∑
t=1

∥xt−1 − µθ(xt, c)∥2
σ2
t

+ C, (4)

where C is a constant independent of θ.

3. Method
3.1. Reward Difference Prediction for

KL-Regularized Reward Maximization

We start derivation from the typical RLHF objective [10]:

max
πθ

Ex0,c[r(x0, c)− βKL[πθ(x0|c)||πref(x0|c)]] . (5)
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Figure 2. PRDP framework. PRDP mitigates the instability of policy gradient methods by converting the RLHF objective to an equivalent
supervised regression objective. Specifically, given a text prompt, PRDP samples two images, and tasks the diffusion model with predicting
the reward difference of these two images from their denoising trajectories. The diffusion model is updated by stochastic gradient descent
on the MSE loss that measures the prediction error. We prove that the MSE loss and the RLHF objective have the same optimal solution.

Here, we seek to finetune the diffusion model πθ by maxi-
mizing a given reward function r(x0, c) with a KL regular-
ization, whose strength is controlled by a hyperparameter
β. The reward function can be a pretrained reward model
(e.g., HPSv2 [53], PickScore [22]) that measures the gen-
eration quality, and the KL regularization discourages πθ

from deviating too far from the pretrained diffusion model
πref (e.g., Stable Diffusion [37]). This helps πθ to pre-
serve the overall generation capability of πref , and keeps
the generated images x0 close to the distribution where the
reward model is accurate. The expectation is taken over text
prompts c ∼ p(c) and images x0 ∼ πθ(x0|c), where p(c)
is a predefined prompt distribution, usually a uniform dis-
tribution over a set of training prompts.

In contrast to language models, the KL regularization
in Eq. (5) cannot be computed analytically, due to the in-
tractable integral defined in Eq. (1). Hence, we instead max-
imize a lower bound of the objective in Eq. (5):

max
πθ

Ex0,c[r(x0, c)− βKL[πθ(x̄|c)||πref(x̄|c)]] , (6)

where x̄ := x0:T is the full denoising trajectory. We provide
the proof of lower bound in Appendix A.1.

While it is possible to apply REINFORCE [51] or more
advanced policy gradient methods [4, 10, 42] to optimize
Eq. (6), we empirically find they are hard to scale to large
numbers of prompts due to training instability. Inspired by
DPO [35], we propose to reformulate Eq. (6) into a super-
vised learning objective, allowing stable training on more
than 100K prompts.

First, we derive the optimal solution to Eq. (6) as:

πθ⋆(x̄|c) = 1

Z(c)
πref(x̄|c) exp

(
1

β
r(x0, c)

)
, (7)

where Z(c) =
∫
πref(x̄|c)exp(r(x0, c)/β)dx̄ is the parti-

tion function. Proof can be found in Appendix A.2. Since

Z(c) is intractable, Eq. (7) cannot be directly used to com-
pute πθ⋆ . However, it reveals that πθ⋆ must satisfy

log
πθ⋆(x̄|c)
πref(x̄|c)

=
1

β
r(x0, c)− logZ(c) (8)

for all x̄ and c. This allows us to cancel the logZ(c) term
by considering two denoising trajectories x̄a and x̄b that
correspond to the same text prompt c:

log
πθ⋆(x̄a|c)
πref(x̄a|c) − log

πθ⋆(x̄b|c)
πref(x̄b|c) =

r(xa
0 , c)− r(xb

0, c)

β
.

(9)

Define

r̂θ(x̄, c) := log
πθ(x̄|c)
πref(x̄|c)

, (10)

∆r̂θ(x̄
a, x̄b, c) := r̂θ(x̄

a, c)− r̂θ(x̄
b, c), (11)

∆r(xa
0 ,x

b
0, c) := r(xa

0 , c)− r(xb
0, c), (12)

then Eq. (9) becomes

∆r̂θ⋆(x̄a, x̄b, c) = ∆r(xa
0 ,x

b
0, c)/β. (13)

This motivates us to optimize πθ by minimizing the follow-
ing mean squared error (MSE) loss:

L(θ) = Ex̄a,x̄b,c [lθ(x̄
a, x̄b, c)] (14)

:= Ex̄a,x̄b,c

∥∥∆r̂θ(x̄
a, x̄b, c)−∆r(xa

0 ,x
b
0, c)/β

∥∥2 .
We call L(θ) the Reward Difference Prediction (RDP) ob-
jective, since we learn πθ by predicting the reward differ-
ence ∆r(xa

0 ,x
b
0, c) instead of directly maximizing the re-

ward. An illustration is provided in Fig. 2. We further show
in Appendix A.3 that

πθ = πθ⋆ ⇐⇒ L(θ) = 0. (15)
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Training w/o Proximal Updates Training w/ Proximal Updates

Figure 3. Effect of proximal updates. We show generation samples during the PRDP training process. Here, we use the small-scale setup
described in Sec. 4.1 and HPSv2 as the reward model. All samples use the same prompt “A painting of a deer” and the same random seed.
(Left) Without proximal updates, training is quite unstable, and the generation quickly becomes meaningless noise. (Right) With proximal
updates, the training stability is remarkably improved.

Algorithm 1 PRDP Training
Require: pretrained diffusion model πref , training prompt distri-

bution p(c), reward model r(x0, c), training epochs E, gradi-
ent updates K per epoch, prompt batch size N , image batch
size B per prompt

1: πθ ← πref ▷ Initialization
2: for epoch e = 1, . . . , E do
3: πθold ← πθ ▷ Model snapshot

4: {cn}Nn=1
iid∼ p(c) ▷ Sample text prompts

5: for each text prompt cn do
6: {x̄n,i}Bi=1

iid∼ πθold(x̄|c
n) ▷ Denoising trajectories

7: end for
8: Obtain rewards r(xn,i

0 , cn) for all n, i
9: for gradient step k = 1, . . . ,K do

10: L(θ)← 1

N(B2)

∑N
n=1

∑
1≤i<j≤B lθ(x̄

n,i, x̄n,j , cn)

11: Update model parameters θ by gradient descent
12: end for
13: end for

3.2. Online Optimization

To estimate the expectation in L(θ), we need samples of de-
noising trajectories x̄a and x̄b that correspond to the same
prompt c. A straightforward approach, as similarly done in
DPO, is to sample x̄a, x̄b iid∼ πref(x̄|c). This can be im-
plemented as uniform sampling from a fixed offline dataset
generated by the pretrained model πref .

However, the offline dataset lacks sufficient coverage of
samples from πθ(x̄|c) that keeps updating, leading to sub-
optimal generation quality. Therefore, we propose an online
optimization procedure, inspired by online RL algorithms.
Specifically, we sample x̄a, x̄b iid∼ πθold(x̄|c), where θold is
a snapshot of the diffusion model parameters θ, and we set
θold ← θ every K gradient updates. In practice, we use
πθold to generate a batch of denoising trajectories, and then
use all pairs of denoising trajectories in the batch to com-
pute the loss L(θ). Details are provided in Algorithm 1. We
will show in Sec. 4.3 that online optimization significantly
improves generation quality.

3.3. Proximal Updates for Stable Training

We find in our experiments that directly optimizing Eq. (14)
is prone to training instability, as illustrated in Fig. 3 (Left).
This is likely due to excessively large model updates during
training. To resolve this issue, we propose proximal updates
that remove the incentive for moving πθ too far away from
πθold . Inspired by PPO [42], we achieve this by clipping the
log probability ratio log(πθ(x̄|c)/πθold(x̄|c)) to be within
a small interval [−ϵ′, ϵ′]. This can be implemented by clip-
ping the r̂θ(x̄, c) as r̂clipθ (x̄, c) :=

clip (r̂θ(x̄, c), r̂θold(x̄, c)− ϵ′, r̂θold(x̄, c) + ϵ′) , (16)

because log(πθ(x̄|c)/πθold(x̄|c)) = r̂θ(x̄, c) − r̂θold(x̄, c).
We then use r̂clipθ (x̄, c) to compute the clipped MSE loss
lclipθ (x̄a, x̄b, c) :=∥∥∥∆r̂clipθ (x̄a, x̄b, c)−∆r(xa

0 ,x
b
0, c)/β

∥∥∥2 , (17)

where ∆r̂clipθ (x̄a, x̄b, c) := r̂clipθ (x̄a, c)− r̂clipθ (x̄b, c). Sim-
ilar to PPO [42], our final loss is the maximum of the
clipped and unclipped MSE loss:

lθ(x̄
a, x̄b, c)← max(lθ(x̄

a, x̄b, c), lclipθ (x̄a, x̄b, c)). (18)

This ensures that we minimize an upper bound of the origi-
nal loss, making the optimization problem well-defined.

In practice, the clipping in Eq. (16) is decomposed and
applied at each denoising step t. First, r̂θ(x̄, c) can be de-
composed as r̂θ(x̄, c) =

∑T
t=1 r̂θ,t(x̄, c), where

r̂θ,t(x̄, c) := log(πθ(xt−1|xt, c)/πref(xt−1|xt, c)) . (19)

We apply clipping to each r̂θ,t(x̄, c) as r̂clipθ,t (x̄, c) :=

clip (r̂θ,t(x̄, c), r̂θold,t(x̄, c)− ϵ, r̂θold,t(x̄, c) + ϵ) , (20)

where ϵ is the stepwise clipping range. Finally, we replace
Eq. (16) with

r̂clipθ (x̄, c) :=

T∑
t=1

r̂clipθ,t (x̄, c). (21)

As shown in Fig. 3 (Right), our proposed proximal updates
can remarkably improve optimization stability.
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Figure 4. Generation samples from small-scale training. DDPO and PRDP are finetuned from Stable Diffusion v1.4 on 45 prompts
consisting of common animal names, with HPSv2 (Left) and PickScore (Right) as the reward model. Samples within each column use the
same random seed. The prompt template is “A painting of a ⟨animal⟩”, where the ⟨animal⟩ is listed on top of each column. All prompts
are seen during training. Both DDPO and PRDP significantly improve the generation quality, with PRDP being slightly better.

4. Experiments
In our experiments, we first verify on a set of 45 prompts
that PRDP can match the reward maximization ability of
DDPO [4], which is based on the well-established PPO [42]
algorithm. We then conduct a large-scale training on more
than 100K prompts from the training set of HPDv2 [53],
showing that PRDP can successfully handle large-scale
training whereas DDPO fails. We further perform a large-
scale multi-reward finetuning on the training set prompts of
Pick-a-Pic v1 dataset [22], highlighting the superior genera-
tion quality of PRDP on complex, unseen prompts. Finally,
we showcase the advantages of our algorithm design, such
as online optimization and KL regularization.

4.1. Experimental Setup

To perform reward finetuning, we need a pretrained diffu-
sion model, a pretrained reward model, and a training set of
prompts. For all experiments, we use Stable Diffusion (SD)
v1.4 [37] as the pretrained diffusion model, and finetune the
full UNet weights. For sampling, during both training and
evaluation, we use the DDPM sampler [15] with 50 denois-
ing steps and a classifier-free guidance [14] scale of 5.0.

Small-scale setup. We use a set of 45 prompts, with the
template “A painting of a ⟨animal⟩”, where the ⟨animal⟩ is
taken from the list of common animal names used in DDPO.

Table 1. Reward score comparison on small-scale training.

SD v1.4 DDPO PRDP

HPSv2 0.2855 0.3398 0.3471

PickScore 0.2179 0.2664 0.2700

We conduct reward finetuning separately for two recently
proposed reward models, HPSv2 [53] and PickScore [22].
We train for 100 epochs, where in each epoch, we sample
32 prompts and 16 images per prompt. The evaluation uses
the same set of prompts as training. We report reward scores
averaged over 256 random samples per prompt.

Large-scale setup. Following DRaFT [6], we use more
than 100K prompts from the training set of HPDv2, and
finetune for HPSv2 and PickScore separately. We train for
1000 epochs. In each epoch, we sample 64 prompts and 8
images per prompt. We evaluate the finetuned model on 500
randomly sampled training prompts, as well as a variety of
unseen prompts, including 500 prompts from the Pick-a-Pic
v1 test set, and 800 prompts from each of the four bench-
mark categories of HPDv2, namely animation, concept art,
painting, and photo. We report reward scores averaged over
64 random samples per prompt.

Large-scale multi-reward setup. We mostly follow the

7427



cinematic still of 
highly reflective 
stainless steel 
train in the desert, 
at sunset

Reward Model: HPSv2

The image is a 
wooden sculpture of 
a cute robot with cat 
ears, displayed in a 
contemporary art 
gallery.

A chibi frog 
character surfing 
at the beach.

An anthropomorphic 
frog wizard wearing a 
cape and holding a 
wand.

Digital art of a cherry 
tree overlooking a 
valley with a waterfall 
at sunset.

A monkey in a blue 
top hat painted in 
oil by Vincent van 
Gogh in the 1800s.

Reward Model: PickScore

St
ab

le
Di

ff
us

io
n

DD
PO

PR
DP

Figure 5. Generation samples from large-scale training. DDPO and PRDP are finetuned from Stable Diffusion v1.4 on over 100K
prompts from the training set of HPDv2, with HPSv2 (Left) and PickScore (Right) as the reward model. Samples within each column
are generated from the prompt shown on top, using the same random seed. All prompts are unseen during training. PRDP significantly
improves the generation quality over Stable Diffusion, whereas DDPO fails to generate reasonable results.

large-scale setup, except that we use the training set prompts
of Pick-a-Pic v1 dataset, and a weighted combination of re-
wards: PickScore = 10, HPSv2 = 2, Aesthetic = 0.05,
where Aesthetic is the LAION aesthetic score.

Baselines. DDPO [4] and DPOK [10] are the two most
recent RL finetuning methods for black-box rewards. Since
DDPO has demonstrated better performance than DPOK,
we mainly compare to DDPO. To ensure a fair comparison,
we train DDPO and PRDP for the same number of epochs,
with the same number of reward queries per epoch. We also
use the same random seeds to sample images for evaluation.

4.2. Main Results

Small-scale finetuning. We show generation samples from
small-scale finetuning in Fig. 4 and reward scores in Tab. 1.
Both DDPO and PRDP can significantly improve the gen-
eration quality over Stable Diffusion, with more vivid col-
ors and details. Quantitatively, PRDP achieves slightly bet-
ter reward scores than DDPO. This verifies that PRDP can
match the reward maximization ability of well-established
policy gradient methods.

Large-scale finetuning. We present generation samples

from large-scale finetuning in Fig. 5 and reward scores in
Tab. 2. We observe that Stable Diffusion generates images
with relevant content but low quality. Meanwhile, DDPO
fails to give reasonable results. It generates irrelevant, low
quality images or even meaningless noise, leading to lower
reward scores than Stable Diffusion. This is due to the in-
stability of DDPO in large-scale training, which we further
investigate in Appendix B. In contrast, PRDP maintains sta-
bility in the large-scale setup, and significantly improves the
generation quality on both seen and unseen prompts.

Large-scale multi-reward finetuning. We provide gen-
eration samples in Figs. 1 and 11 to 15, and reward scores
in Tab. 3, showing the superior generation quality of PRDP
on a diverse set of complex, unseen prompts.

4.3. Effect of Online Optimization

In this section, we show that online optimization has a great
advantage over offline optimization. To ensure a fair com-
parison, we use the same number of reward queries and gra-
dient updates for both methods. Specifically, following the
small-scale setup, for online training, we use 100 epochs,
where each epoch makes 512 queries to the reward model.
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Table 2. Reward score comparison on large-scale training.

Reward
Model Method

Seen Prompts Unseen Prompts

HPD v2
Training Set

Pick-a-Pic v1
Test Set

HPD v2
Animation

HPD v2
Concept Art

HPD v2
Painting

HPD v2
Photo

HPSv2
SD v1.4 0.2685 0.2665 0.2737 0.2656 0.2654 0.2750
DDPO 0.2464 0.2501 0.2673 0.2558 0.2570 0.2093
PRDP 0.3175 0.3050 0.3223 0.3175 0.3172 0.3159

PickScore
SD v1.4 0.2092 0.2082 0.2111 0.2062 0.2059 0.2172
DDPO 0.2032 0.1992 0.2077 0.2125 0.2124 0.1780
PRDP 0.2424 0.2344 0.2450 0.2441 0.2448 0.2387

Online Optimization for PickScoreOnline Optimization for HPSv2

Figure 6. Effect of online optimization. We show generation samples during the PRDP training process, with HPSv2 (Left) and PickScore
(Right) as the reward model. We follow the small-scale training setup. The prompts for the first and the second rows are “A painting of
a squirrel” and “A painting of a bird”, respectively. Samples within each row use the same random seed. It can be observed that online
optimization continually improves the generation quality.

For offline training, we sample 51200 images from the pre-
trained Stable Diffusion, obtain their rewards, and then per-
form the same total number of gradient updates as in online
training. We show generation samples during the online op-
timization process in Fig. 6, and quantitative comparisons in
Fig. 7. We observe that online optimization continually im-
proves the generation quality, achieving significantly better
reward scores than offline optimization.

4.4. Effect of KL Regularization

A common limitation of reward finetuning is reward hack-
ing, where the finetuned diffusion model exploits inaccura-
cies in the reward model, and produces undesired images
with high reward scores. In this section, we show that the
KL regularization in our PRDP formulation can help allevi-
ate this issue. For this purpose, we use the LAION aesthetic
predictor as the reward model. It only takes images as input,
and can be exploited by disregarding text-image alignment.
We follow the small-scale setup, except that we train for
250 epochs and directly use the 45 common animal names
as prompts. As demonstrated in Fig. 8, DDPO, without KL
regularization, is prone to reward hacking. It completely ig-

0 20 40 60 80 100
Online Training Epochs

0.28

0.30

0.32

0.34

0.36
HPSv2

Offline
Online

0 20 40 60 80 100
Online Training Epochs

0.20

0.22

0.24

0.26

0.28
PickScore

Figure 7. Comparison of online and offline optimization. We
evaluate the reward scores of model checkpoints during online op-
timization and the final model obtained by offline optimization.
We follow the small-scale training setup, and optimize the models
for HPSv2 and PickScore separately. Online optimization matches
the performance of offline optimization in ∼10 epochs, and keeps
improving the reward score afterwards.

nores the text prompts and generates similar images for all
prompts. In contrast, PRDP with β = 10 can successfully
preserve the text-image alignment while improving the aes-
thetic quality. More analysis can be found in Appendix C.
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Figure 8. Effect of KL regularization. We show generation sam-
ples from DDPO and PRDP when optimizing the LAION aesthetic
score. We use the small-scale training setup, except that we train
for 250 epochs. Samples within each column are generated from
the prompt shown on top, using the same random seed. DDPO,
without KL regularization, over-optimizes the reward, generating
similar images for all prompts. In contrast, PRDP, formulated with
KL regularization, successfully preserves text-image alignment.

5. Related Work

Diffusion models. As a new class of generative models,
diffusion models [15, 44, 46] have achieved remarkable suc-
cess in a wide variety of data modalities, including images
[7, 17, 30, 36, 37, 39–41], videos [16, 43], audios [25], 3D
shapes [13, 32, 57, 60], and robotic trajectories [1, 5, 18]. To
facilitate control over the content and style of generation, re-
cent works have investigated finetuning diffusion models on
various conditioning signals [11, 19, 20, 27, 28, 38, 45, 58].
However, it remains challenging to adapt diffusion models
to downstream use cases that are misaligned with the train-
ing objective, such as generating novel compositions of ob-
jects unseen during training, and producing images that are
aesthetically preferred by humans. Although classifier guid-
ance [7] can help mitigate this issue, the classifier requires
noisy images as input, making it hard to use off-the-shelf
classifiers such as object detectors and aesthetic predictors
for guidance. In contrast, we finetune the diffusion model to
maximize rewards that reflect downstream objectives. Our
method can work with generic off-the-shelf reward models
that take clean images as input.

Language model learning from human feedback. The
maximum likelihood training objective for language models
tends to yield undesirable model behavior, due to the poten-
tially biased, toxic, or harmful content in the training data.
Reinforcement learning from human feedback (RLHF) has
recently emerged as a successful remedy [2, 3, 12, 26, 29,
31, 47, 52, 61]. Typically, a reward model is first trained
from human preference data (e.g., rankings of outputs from

a pretrained language model). Then, the language model is
finetuned by online RL algorithms (e.g., PPO [42]) to max-
imize the score given by the reward model. More recently,
DPO [35] proposes a supervised learning method that di-
rectly optimizes the language model from preference data,
skipping the reward model training and avoiding the insta-
bility of RL algorithms. Our method is inspired by DPO
and PPO, but designed specifically for diffusion models.

Reward finetuning for diffusion models. Inspired by
the success of RLHF in the language domain, researchers
have developed several reward models in the vision domain
[21–24, 34, 53–56]. Moreover, recent works have explored
using these reward models to improve the generation quality
of diffusion models. A simple approach, called supervised
finetuning [23, 54], is to finetune the diffusion model to-
ward high-reward samples from an offline dataset. Its major
drawback is that the generation quality is limited by the of-
fline dataset. For further improvement, RAFT [8] proposes
an online variant that iteratively re-generates the dataset. A
more direct method for online optimization is to backprop-
agate the reward function gradient through the denoising
process [6, 33, 49, 55]. However, this only works for dif-
ferentiable rewards. For generic rewards, DDPO [4] and
DPOK [10] propose RL finetuning. While they have shown
promising results on small prompt sets, they are unstable
in large-scale training. Our work addresses the training in-
stability issue, achieving stable reward finetuning on large-
scale prompt datasets for generic rewards. Concurrent with
our work, Diffusion-DPO [50] adapts DPO to efficiently
align diffusion models from large-scale offline preference
data, and [59] proposes to stabilize large-scale RL finetun-
ing by combining the diffusion model pretraining loss.

6. Conclusion
This paper presents PRDP, the first black-box reward fine-
tuning method for diffusion models that is stable on large-
scale prompt datasets with over 100K prompts. We achieve
this by converting the RLHF objective to an equivalent su-
pervised regression objective and developing its stable opti-
mization algorithm. Our large-scale experiments highlight
the superior generation quality of PRDP on complex, un-
seen prompts, which is beyond the capability of existing RL
finetuning methods. We also demonstrate that the KL reg-
ularization in the PRDP formulation can help alleviate the
common issue of reward hacking. We hope that our work
can inspire future research on large-scale reward finetuning
for diffusion models.
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