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Figure 1. We present RAM-Avatar, a real-time photo-realistic human avatar learning method based on monocular videos, which not only
achieves high-fidelity rendering with full-body control including the face and hands but also supports real-time animation.

Abstract

This paper focuses on advancing the applicability of hu-
man avatar learning methods by proposing RAM-Avatar,
which learns a Real-time, photo-realistic Avatar that sup-
ports full-body control from Monocular videos. To achieve
this goal, RAM-Avatar leverages two statistical templates
responsible for modeling the facial expression and hand
gesture variations, while a sparsely computed dual atten-
tion module is introduced upon another body template to
facilitate high-fidelity texture rendering for the torsos and
limbs. Building on this foundation, we deploy a lightweight
yet powerful StyleUnet along with a temporal-aware dis-
criminator to achieve real-time realistic rendering. To en-
able robust animation for out-of-distribution poses, we pro-
pose a Motion Distribution Align module to compensate for
the discrepancies between the training and testing motion
distribution. Results and extensive experiments conducted
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in various experimental settings demonstrate the superior-
ity of our proposed method, and a real-time live system is
proposed to further push research into applications. The
training and testing code will be released for research pur-
poses.

1. Introduction

The automatic learning of animatable, high-quality human
avatars from videos holds significant value in diverse appli-
cations, including movie production, human-computer in-
teraction, and immersive telepresence. Intuitively, an ideal
human avatar modeling method should exhibit: 1) the abil-
ity to support real-time, high-resolution, photo-realistic an-
imation with minimal data capture effort; 2) the capability
to model not only the torsos and limbs but also achieve fine-
grained control of the face and hands.

The ambition to achieve this goal has led to an in-
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tensive exploration of neural radiance fields (NeRF) [45]
for acquiring a 3D neural representation of human avatars
[5, 21, 23, 38, 39, 49, 57, 66, 68, 69]. These techniques,
however, typically rely on multi-view data and struggle
to achieve photo-realistic real-time rendering, which lim-
its their widespread application. By leveraging the power
of generative adversarial networks (GANs) [17, 32, 33], re-
searchers have proposed several effective image-to-image
translation approaches to reconstruct human avatars from
monocular videos and achieve photo-realistic rendering
[31, 51, 72]. Despite their advancements, these methods
tend to generate blurry results when driven by poses that
are different from the training ones. Moreover, most meth-
ods only model the torsos and the limbs and leave the fine-
grained body parts like the face and hands ignored. The
lack of attention to these body parts significantly impairs
their expressive ability and realistic appearance.

To overcome the aforementioned limitations, we in-
troduce RAM-Avatar, a neural texture [62] based image-
to-image translation framework which learns Real-time,
photo-realistic Avatar supports full-body control from
Monocular videos. RAM-Avatar comprises three essential
components that collaborate to model the subtle yet impor-
tant details of the face and hands, achieve high-fidelity tex-
ture rendering for the torsos and limbs, and improve ani-
mate robustness and generalization, respectively.

Firstly, to faithfully reproduce the facial expressions and
hand gestures, we integrate two sophisticated statistical
templates: FaceVerse [64] for facial dynamics and MANO
[53] for hand articulations. Leveraging these, we deploy
convolutional neural networks to distill characteristic fea-
tures from the facial expression manifold of FaceVerse. It
is an optimal strategy since the face has limited shape varia-
tion and contains many subtle details. Additionally, we find
that a hand skeleton map indicating the hand key point lo-
cations is crucial for deriving more photo-realistic and dis-
tinct finger rendering results. Diverging from prior work
[31, 51] that adopt a basic U-net architecture for render-
ing, our method incorporates a more powerful and com-
putationally efficient variant, Style-Unet [65], which al-
lows us to achieve superior results by leveraging the rich,
high-level information present in our input priors. How-
ever, initial iterations revealed two primary shortcomings: a
deficiency for temporal inconsistencies and unrealistic ani-
mations, stemming from ignoring temporal integration and
misalignment of the body templates; and a limitation in the
robustness and stability of animation results, bound by the
scope of training data and thus struggling with poses beyond
the training distribution.

To compensate for the first deficiency, our system em-
beds a dual attention module upon the body feature map
rasterized from the body template. The dual attention mod-
ule can be divided into spatial and temporal parts, where the

key insight is to enhance the differentiation between areas
proximal to the body template and those further away while
integrating motion trends to capture temporal variations. To
facilitate real-time animation, we decouple the dense calcu-
lations inherent in the attention mechanism [63] into a se-
ries of sparse operations [26]. In this way, we augment the
high-level texture information and improve the consistency
of body feature maps without compromising computational
efficiency.

In response to the second shortcoming, we innovate with
a Motion Distribution Align (MDA) module, which is de-
signed to transfer out-of-distribution poses to the target
avatar pose distribution at test time. To implement this mod-
ule, we employ a two-stage training process. First, a vari-
ational auto-encoder (VAE) [34] is trained on a large-scale
pose dataset to establish a robust latent representation of hu-
man motions. Following this, a conditional decoder [56] is
trained exclusively on the pose data of the target avatar. The
MDA module, by conditioning on previous poses, consis-
tently adjusts the out-of-distribution pose to align with the
avatar pose distribution, where the robust encoder ensures
the maintenance of semantic integrity, and the distribution-
specific decoder ensures the semantic content will be prop-
erly translated into the target pose distribution. The inte-
gration of the MDA module thus empowers our system to
reliably animate out-of-distribution poses while preserving
the inherent human motion semantics.

Compared to existing human avatar approaches, our
method excels in multiple key aspects, including anima-
tion speed, visual fidelity, fine-grained controllability and
robustness. We believe our pipeline and results will serve as
a catalyst for further research in similar domains. In sum-
mary, our contributions can be summarized as:
• A real-time animatable monocular framework that sup-

ports photo-realistic full-body animation, including body
poses, hand gestures, and facial expressions.

• A dual attention module that facilitates stable realistic
clothed body details by considering the geometric mis-
alignment of body template and motion trend.

• A motion distribution alignment module, which bridges
the domain gap between out-of-distribution poses and
avatar pose domain to improve robustness.

2. Related Works
Human Avatars Reconstructing photo-realistic animat-
able human avatars is one of the most popular research top-
ics in computer vision. Benefiting from the high-quality
data captured by the dense array of cameras, researchers
have successfully reconstructed fine-grained human avatars
by fusing observations from dense views [11, 13, 20, 27,
40, 69, 70]. However, the expensive investment needed for
construction and operation significantly restrict their appli-
cation, and researchers have devoted great efforts in reduc-
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ing the number of views needed for reconstructing realistic
human avatars. For example, Peng et al. [49] introduce
a neural blend weight field, which recovers animatable hu-
man models by combining NeRF and 3D human skeletons.
Kwon et al. [36] also leverages a 3D body motion prior
to learn generalizable neural radiance representations. Li et
al. [39] use a joint-structured pose embeddings to encode
high-frequency details and improve the representation abil-
ity of pose embeddings through feature lines, while Zheng
et al. [78] learn high-quality full-body avatars that can be
animated and rendered in real-time based on a composi-
tional representation modeling the hands, face, and body
with independent implicit fields.

With the rapid development of flexible and powerful
representations, methods based on monocular videos have
achieved great progress [12, 14, 19, 29, 30, 41, 68, 72,
73]. Pioneer works can only generate some reasonable but
blurred results by decoding images from input pose skele-
ton [42, 43]. Some methods adopt a parametric body tem-
plate to improve generalization and robustness[2, 3, 6]. The
rasterization pipeline and texture map are further replaced
by neural textures to store more high-level information
[50, 51, 55]. Temporal constraints have also been proven to
be essential for generating stable results [9, 31, 72, 80]. To
overcome the inevitable tracking error of template fitting,
researchers explore to build animatable full-body avatars di-
rectly from videos [38, 57–59]. Nevertheless, most of the
existing monocular human avatar methods fail to achieve
real-time photo-realistic animation and typically ignore the
face and hands, which restricts their applications.

Neural Texture The core idea of Neural Texture [62]
is replacing traditional RGB texture maps with learnable
feature planes, where the rich signal contained in high-
dimensional neural features serves as a more accurate en-
coding of appearance than RGB values. Since its proposal,
neural textures have been adopted in many areas and proved
its superiority [18, 42, 43, 50, 55]. As for modeling high-
quality avatars, ANR [51] uses neural texture to account
for geometric misalignment and pose-dependent surface de-
formation, while Next3D [60] adopts neural textures as the
facial deformation representation to achieve photo-realistic
portrait generation with fine-grained control. Thanks to the
large-scale dataset of human images and scans, Dinar [61]
builds realistic animatable avatars from a single reference
image. In this paper, we propose a dual attention module
upon the neural texture based feature map, which not only
compensates for the misalignment of the body template but
also improves the temporal consistency.

Domain Adaption Enhancing the robustness of the learn-
ing model against the out-of-distribution data is a challeng-
ing task [16, 37, 47, 54, 71]. Although significant progress

has been achieved in human avatar modeling, state-of-the-
art methods may still generate artifacts or even collapse
when driven by poses quite different from the training data
[30, 77, 78]. To overcome this deficiency, a common prac-
tice is constructing motion graphs [4, 35] based on the train-
ing sequence. Some methods [7, 8, 25] synthesis human
videos depending on reconstructed human meshes based on
multi-view datasets, while [79] split and re-assemble video
clips to generate a video with gestures matching a target
speech audio. Zhang et al. [74] combine motion graph with
local neural radiance fields to ensure the rendering quality.
However, adopting motion graphs means that the generated
video is strictly restricted by training pose sequences even
though existing human avatar modeling methods can gener-
alize to novel poses that fall in the training pose domain. In
this work, we propose to transfer driving poses into avatar
pose space by a motion distribution align module. This
module can faithfully reconstruct the poses that falls into the
avatar pose domain, and properly adjust out-of-distribution
poses without losing the motion semantics.

3. Method
This section presents RAM-Avatar, a novel method that en-
ables the learning of high-fidelity full-body avatars from
monocular videos with real-time animation capabilities.
The architecture of our system is depicted in Figure 2. We
begin by presenting a methodology for capturing realistic
facial and hand details. Building on this foundation, our
system leverages a lightweight StyleUnet and a time-aware
discriminator to facilitate photo-realistic real-time render-
ing. In addition, we introduce a dual attention module de-
signed to guarantee temporal consistency and enhance the
image realism of modeled clothed body elements. Lastly,
we discuss our Motion Distribution Align module, which
improves the robustness and generalization at test time, and
outline the training objectives in our work.

3.1. Achieving Full-body Control

Neural Textures [51, 62] aim to improve the expressive ca-
pability of traditional texture maps by learning a set of high-
dimensional feature maps on top of template meshes, which
can be further interpreted by a neural renderer. Specifically,
the neural textured feature map is generated by rasterizing
the mesh to image space according to the standard graphics
pipeline and texturing it with the high-dimensional neural
texture. ANR [51] presents a neural texture based method
to generate high-resolution images by learning a neural tex-
ture plane on top of coarse body templates and forming a
deformation-aware body feature map for further rendering.
However, it ignores the fine-grained body parts including
facial expressions and hand gestures, which serve as signif-
icant forms of nonverbal communication and transmit criti-
cal social cues among humans. To tackle this challenge, we
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Figure 2. The pipeline of our method. Our monocular high-fidelity avatar learning framework can be divided into three main parts: 1) the
dual attention module aims to enhance the clothed body details; 2) the motion distribution align module aims to bridge the distribution gap
between training and testing motions to improve robustness; 3) the face and hands modeling part aims to achieve full-body control. The
green lines only activate at testing stage while the yellow lines only activate at training stage.

leverage FaceVerse [64] to obtain the relevant facial expres-
sion parameters. Considering the limited variation of facial
shapes and the requirement of computational efficiency, we
utilize a convolutional network to extract distinguishing fea-
tures from the synthesized face mesh, thereby generating
the t-th face feature map F face

t ∈ RH×W×C1 . Acknowl-
edging the intricate and versatile characteristics of finger
movements, we additionally construct a hand pose feature
map F hand

t ∈ RH×W×C2 by establishing connections be-
tween key points on the hands, which serves as an auxil-
iary input condition. Subsequently, we concatenate F hand

t ,
F face
t , along with the neural texture based body feature

map F body
t ∈ RH×W×C3 , to form a comprehensive full-

body feature map F full
t ∈ RH×W×C , where C equals to

C1 + C2 + C3.
Given the high-level full-body feature maps, we adopt

a lightweight Style-Unet [65] architecture to render photo-
realistic results. More precisely, a 2D generator G is em-
ployed to interpret feature maps F full

t into RGB images
G(F full

t ). Similar to [9, 10], we concatenate the t-th gen-
erated image G(F full

t ) with adjacent ground truth images
and feed them into the discriminator. Such a method forces
the discriminator to determine both the difference in realism
and temporal coherence between the “real” sequence (Igt

t−1,
Igt
t , Igt

t+1) and “fake” sequence (Igt
t−1, G(F full

t ), Igt
t+1).

In this way, our method enables the generation of high-
quality, photo-realistic animation results while improving
temporal consistency across neighboring frames.

3.2. Dual Attention Module

Although high-level texture information has been embed-
ded in neural textures, naively synthesized body feature
maps based on per-frame neural textures neglects tempo-
ral dependencies and suffers from the misalignment of the
body template, leading to unsatisfactory results. To address
this limitation, we propose a dual attention module. It is

inspired by [15], which adopts two types of attention mech-
anism on top of scene feature maps to capture contextual
dependencies. Our dual attention module consists of spatial
and temporal parts, which aim to compensate for the mis-
alignments associated with the body template and enhance
the temporal consistency of body feature maps.

Specifically, rather than simply generating a body fea-
ture map Ft ∈ RH×W×C3 by rasterizing the body tem-
plate mesh corresponding to the t-th frame, we pull out-
wards the vertices in the current mesh along their normal
directions, and render it into an expanded body feature map
F e
t ∈ RH×W×C3 . The original body feature map Ft is then

refined based on the distance and similarity between Ft and
F e
t . This refinement process is designed to facilitate net-

work to distinguish the regions near the template and those
far away. To ensure computational efficiency, we adopt a
variant of criss-cross attention [26] as the central attention
mechanism in our framework, where pixel-level features are
updated based on features sharing the same row or column.

Concretely, two convolutional layers with 1 × 1 filters on
F e
t and Ft are deployed to get two feature maps, denoted as

Qt and Kt, each with dimensions RH1×W1×C4 . H1,W1,
and C4 are less than H,W, and C3 for computing efficiency.
For the sake of brevity, we omit the symbol t in the subse-
quent equations. For each position u in feature map Q, we
obtain a vector Qu ∈ RC4 and its corresponding vector set
Ωu ∈ R(H1+W1−1)×C4 , where vectors in Ωu are derived
from K and are in the same row or column with position u.
The correlation degree ai,u is computed as follows:

ai,u = d(i, u)QuΩi,u (1)

where Ωi,u ∈ RC4 represents the i-th element in Ωu, ai,u ∈
A and A ∈ R(H1+W1−1)×H1×W1 , and d(i, u) represents
the distance weight function between the position of Ωi,u

and position u.
We then apply another convolutional layer with 1 × 1

filters on F to get V ∈ RH1×W1×C3 for aggregation. Simi-

1999



Figure 3. Visualization of a single iteration of criss-cross attention
in spatial part of dual attention module.

larly, we obtain a vector Vu ∈ RC3 and corresponding vec-
tor set Φu ∈ R(H1+W1−1)×C3 , where vectors in Φu come
from V and share the same row or column with position u.
The output of the spatial part is calculated as follows:

F spa1
u = α

H1+W1−1∑
i=1

A′
i,uΦi,u (2)

where α is learned during the training process, A′ represent
the softmax version of A, Φi,u ∈ RC3 represents the i-th
element in Φu, and F spa1 ∈ RH1×W1×C3 represents the
result feature map. Note the above procedure is performed
twice in order to capture more contextual information and
we adopt a skip connection [22] to improve stability, thus
generating the feature map F spa ∈ RH×W×C3 of spatial
part.

For temporal coherence, we generate an additional fea-
ture map F tem ∈ RH×W×C3 in an analogy way with Q
generated from the body feature map of the previous frame.
Next, we pass F spa and F tem through two separate convo-
lution layers, after which we perform an element-wise sum-
mation for feature fusion and obtain the aggregated body
feature map F body ∈ RH×W×C3 . By doing so, we aug-
ment the pixel-level features with rich contextual informa-
tion, thereby benefiting the subsequent rendering process.

3.3. Motion Distribution Alignment

Although the above pipeline can render promising photo-
realistic animation results, it suffers from the domain-shift
issue: it tends to generate blurry results when the input
pose deviates significantly from the training pose [30, 74].
Therefore, the key challenge of this task is how to adjust
the driven poses to match the training pose domain while
maintaining semantic meaning, i.e., manipulating the range
of motion while sustaining the underlying trend.

To overcome this challenge, we propose a motion dis-
tribution align module to seamlessly transfer the driven
pose to the avatar pose domain without semantic degrada-
tion. Specifically, to learn a robust latent pose representa-
tion to indicate inherent human motion meaning, we follow

Figure 4. Visualization results of motion distribution align mod-
ule. Given a training video mainly contains stand motions, e.g.
speech video, our motion distribution align module faithfully re-
constructs upper body motions while transferring the lower body
motions to stand motions, thus avoiding blurry results. The white
meshes represent the original motion, while the blue meshes rep-
resent the transferred motion.

[48, 52] to train a variational autoencoder [34] on several
large-scale human motion capture datasets [1, 28, 44, 46].
To coherently translate the latent pose representation to spe-
cific distribution, we implement an extra conditional de-
coder trained on the avatar pose data, which acquires the
latent representation of the current pose and the former pose
as input. The robust pose encoder is frozen when training
along with the conditional decoder to maintain robustness.
Once deployed, we leverage the combination of the robust
pose encoder and the distribution-specified pose decoder to
bridge the gap between the distributions of the training and
testing pose. In this way, our motion distribution align mod-
ule inherits the best of both worlds: the robust pose encoder
is responsible for extracting the intrinsic semantics of hu-
man motions, while the distribution-specified pose decoder
transforms these semantics into continuous human motion
sequences.

3.4. Training objectives

We adopt the common GAN loss, L1 loss, and perceptual
loss with a VGG19 to train the rendering framework. We
also provide a hand-loss item to regularize the hand regions
based on perceptual loss.

L = LGAN + L1 + Lpercep + Lhand (3)

LGAN = Et[logD(Igt
t−1, I

gt
t , Igt

t+1)]

+Et[log(1−D(Igt
t−1, G(F full

t ), Igt
t+1)]

(4)

As for training the robust variational autoencoder, we
adopt the Kullback-Leibler loss, reconstruction loss, and
regularized loss as in [48]. After that, we train the
distribution-specified decoder with reconstruction loss.

2000



Figure 5. Examplary results of our framework. We display the novel pose synthesis results of four avatars, where two pairs of avatars
perform the same body pose, hand gesture, and facial expressions.

Figure 6. Comparisons for novel in-distribution pose animation against ANR [51], HFMT [31], and InstantAvatar [30]. Our method
generates a more realistic appearance and outperforms other methods for novel in-distribution poses.

4. Experiments
In this section, we evaluate the performance of our meth-
ods for learning high-quality human avatars from monoc-
ular training videos that achieve high-resolution photo-
realistic rendering in real time according to monocular driv-
ing videos. We begin by describing the experimental set-
tings of our evaluation and then make comparisons with
state-of-the-art methods. Lastly, we assess the influence of
key components in our framework. Some exemplary results
are shown in Figure 1 and Figure 5.

Table 1. Novel in-distribution pose animation quantitative com-
parison against state-of-the-art methods. The red numbers indi-
cate the best results in different metrics, while the blue numbers
indicate the sub-optimal results. Best viewed in color.

SSIM ↑ LPIPS ↓ tLPIPS ↓ FID ↓
ANR [51] 0.871 0.098 0.405 54.15

HFMT [31] 0.895 0.053 0.469 14.48
InstantAvatar [30] 0.918 0.105 0.886 44.48

Ours 0.943 0.036 0.353 12.79

Table 2. Novel large rotation pose animation quantitative compar-
ison against state-of-the-art methods. Notations in this table have
the same meanings as those in Table 1.

SSIM ↑ LPIPS ↓ tLPIPS ↓ FID ↓
ANR [51] 0.940 0.039 0.174 74.35

HFMT [31] 0.938 0.042 0.455 63.73
InstantAvatar [30] 0.930 0.039 0.314 26.97

Ours 0.961 0.020 0.155 32.09

4.1. Experimental Settings

Dataset. We evaluate the performance of our method on the
“HFshirt” sequence from prior work [31], which contains
12,099 frames for training and 640 frames for testing. We
also evaluate the model capability for handling large-scale
rotational movements on the “female-4-sport” sequence
from People-Snapshot dataset [3], where we leverage 300
frames for training and 100 frames for testing. To as-
sess the robustness of the model against out-of-distribution
poses, we further collect a sequence “Male1”, which con-
tains 2,000 frames for training and 600 frames for testing.
Note motions in the test set of “Male1” are beyond the scope
of the training set, and this sequence is shot with natural
backgrounds to accommodate real scenarios e.g. training
with limited data.
Comparison baselines. To validate the superiority of our
RAM-Avatar, we compare with 1) ANR [51], which also
adopts neural texture to learn a 2D avatar, 2) HFMT [31],
which adopts recurrent deep neural networks to predict
plausible motion-dependent shape and appearance from 2D
keypoints, 3) InstantAvatar [30], which proposes an effi-
cient neural radiance field variant to reconstruct avatars. We
reimplement ANR under the guidance of the authors and
run HFMT and InstantAvatar based on the official codes.
Implementation Details. We adopt three statistic templates
to capture the status of corresponding parts, i.e., SMPL-X
[48] for the body, FaceVerse [64] for the face, and MANO
[53] for the hands. We adopt the method in [64, 76] to esti-
mate the template parameters. We adopt a variant of Style-
Unet [65] to render 1024 × 1024 resolution images, where
the original discriminator is replaced by a temporal-aware
discriminator to improve consistency. We encode the body
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Figure 7. Comparisons for novel large rotation pose animation against ANR [51], HFMT [31], and InstantAvatar [30]. Our method
preserves the body details in comparison with other methods for novel large rotation poses.

Figure 8. Comparisons for out-of-distribution pose animation against ANR [51], HFMT [31], and InstantAvatar [30]. Our method generates
high-quality animation results by transferring out-of-distribution motions to the avatar motion domain while preserving inherent motion
trends, resulting in improved robustness compared to competing methods for novel out-of-distribution poses.

template with a neural texture map 1024 × 1024 × 48. For
the face and hands, we adopt two separate shallow Unets to
extract characteristic features, resulting in two 1024 × 1024
× 16 feature maps respectively. The structure of cVAE is a
variant of Vposer [48].

4.2. Results and Comparisons

Evaluation metrics. To evaluate the quality of the gener-
ated images, we employ a range of widely used metrics, in-
cluding LPIPS [75], SSIM [67], and FID [24], which assess
the perceptual distance of neural network features, pixel-
space structural similarity, and the Fréchet inception dis-
tance between two datasets, respectively. Additionally, to
evaluate the animation quality in videos, we compute and
report tLPIPS [72] which quantifies temporal plausibility by
comparing perceptual changes across consecutive frames.

By utilizing these metrics, we can provide a comprehensive
assessment of animation quality in our evaluation.

Comparison settings. In our comparative analysis, we con-
sider three distinct settings. Firstly, we evaluate methods in
the context of novel in-distribution pose animation, where
testing poses belong to the same distribution as the train-
ing poses. Secondly, we assess methods in the scenario
of novel large rotation pose animation where models are
driven by novel unseen rotation poses. Lastly, we inves-
tigate the performance of our method in the case of novel
out-of-distribution pose animation. In this setting, the mod-
els are driven by novel unseen poses that do not conform to
the distribution of training poses. We remove the facial ex-
pression and hand gesture modeling part in our framework
and model body only for a fair comparison. The motion
distribution align module also only activate in novel out-of-
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Figure 9. Qualitative results of ablation study for face and hand
modeling.

distribution pose animation setting.

Evaluation results. The in-distribution comparison results
are shown in Table 1 and Figure 6. It can be seen that our an-
imation results own photo-realistic appearance while other
methods generate a few artifacts. Our method also obtains
the best performance in all metrics, which demonstrates the
superiority of our framework in image quality. From Figure
7 and Table 2, we observe that our method achieves bet-
ter performance than 2D methods ANR and HFMT. Our
method also outperforms the 3D method InstantAvatar in
most metrics and achieves comparable performance in com-
parison with FID. Note although InstantAvatar performs
good results when training with 300 frames only, it tends to
produce average or even blurry results when training with
a larger dataset (see Figure 6). As for driving by out-of-
distribution poses in Figure 8, both ANR and InstantAvatar
fail to render reasonable results, while our method success-
fully adjusts the range of body motion without changing the
inherent meaning and avoids collapse. We attribute the im-
proved robustness of our framework to the special design
of the motion distribution align module, which effectively
mitigates the gap between the training and testing pose dis-
tributions, resulting in improved synthesis quality and ro-
bustness.

4.3. Ablation Study

After demonstrating the superiority of our method, we con-
duct an ablation study to evaluate the influence of our key
components. Specifically, we consider four framework vari-
ations, i.e., our framework without spatial part in dual at-
tention module (w/o Spa), our framework without tempo-
ral part in dual attention module (w/o Tem), our framework
without hand modeling component (w/o Hand), and our
framework without face modeling component (w/o Face).
As shown in Table 3, we can conclude that each component
contributes to the final quality, where removing the tempo-
ral part hampers the temporal consistency, and removing the
spatial part leads to degenerate image quality. In Figure 9,
ablation studies confirm that each face and hands modeling
component positively impacts the overall output quality.

Table 3. Ablation study for novel in-distribution pose animation.

SSIM ↑ LPIPS ↓ tLPIPS ↓ FID ↓
Ours (w/o Spa) 0.938 0.038 0.354 13.23
Ours (w/o Tem) 0.942 0.038 0.380 13.72

Ours 0.943 0.036 0.353 12.79

5. Discussion and Conclusion

Limitations Despite achieving better performance com-
pared to other state-of-the-art human avatar methods and
supporting real-time animation, the proposed RAM-Avatar
method has several limitations. Firstly, it relies on an
image-to-image translation system, which is constrained
by the available training data. Although the motion dis-
tribution align module enhances robustness by transferring
the animation pose to the avatar pose domain, the gener-
ated images may still appear blurry when encountering ex-
treme poses, e.g. driven by rotation poses while training
video only captures the front side of the subject. Secondly,
the system generates rendering results based on parametric
template tracking, which does not accurately describe body
poses or facial expressions. As a result, the full-body con-
trol is imperfect, impacting the overall performance of our
framework.

Social Impact Our method enables learning human avatars
that can be animated by another person, resulting in a threat
to be used to generate fake videos, which needs to be ad-
dressed before deploying.

Conclusion This paper introduces RAM-Avatar, a method
for learning real-time, photo-realistic avatars that supports
full-body control from monocular videos. Our approach is
building upon two statistic templates to model the facial ex-
pressions and hand gestures while leveraging dual attention
augmented Neural Texture feature maps to model realis-
tic and consistent body details, followed by a lightweight
StyleUnet to generate high-quality animation results in real-
time. To enhance the robustness of our method, we propose
a motion distribution align module, which transfers the an-
imation pose to the avatar pose domain while preserving
semantic meaning. Through comprehensive experiments,
we demonstrate that our method achieves state-of-the-art
performance in human avatar learning based on monocu-
lar videos. We believe our real-time framework will boost
a wide range of downstream applications, including aug-
mented reality and virtual reality.
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