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Abstract

Vision Transformers (ViT) and Visual Prompt Tuning
(VPT) achieve state-of-the-art performance with improved
efficiency in various computer vision tasks. This suggests a
promising paradigm shift of adapting pre-trained ViT models
to Federated Learning (FL) settings. However, the challenge
of data heterogeneity among FL clients presents a significant
hurdle in effectively deploying ViT models. Existing Gener-
alized FL (GFL) and Personalized FL (PFL) methods have
limitations in balancing performance across both global and
local data distributions. In this paper, we present a novel al-
gorithm, SGPT, that integrates GFL and PFL approaches by
employing a unique combination of both shared and group-
specific prompts. This design enables SGPT to capture both
common and group-specific features. A key feature of SGPT
is its prompt selection module, which facilitates the training
of a single global model capable of automatically adapting
to diverse local client data distributions without the need
for local fine-tuning. To effectively train the prompts, we uti-
lize block coordinate descent (BCD), learning from common
feature information (shared prompts), and then more special-
ized knowledge (group prompts) iteratively. Theoretically,
we justify that learning the proposed prompts can reduce the
gap between global and local performance. Empirically, we
conduct experiments on both label and feature heterogeneity
settings in comparison with state-of-the-art baselines, along
with extensive ablation studies, to substantiate the superior
performance of SGPT.

1. Introduction
FL is a framework that allows machine learning models
to be learned from multiple clients without sharing their
data [37]. In the landscape of computer vision, the integra-
tion of ViT [9] with FL emerges as a pivotal research domain
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Figure 1. Global accuracy and worst local accuracy on CIFAR-100
with s = 10 (s is the number of classes per client). Points located
in the top-right corner correspond to great performance on both
the global data and local clients’ data distributions. PFL models
perform well on local data, however, lack the ability to predict
out-of-client data. Global models have a better generalization but
cannot well adapt to each local data distribution. Our proposed
SGPT (?) achieves the best trade-off.

as it promises a significant improvement in image recogni-
tion tasks. Firstly, ViT’s attention mechanism has demon-
strated exceptional ability in deriving robust and discrimina-
tive representations [2, 3, 9, 51] in terms of scalability and
adaptability to a variety data scenarios; a feature crucial in
FL environments. Secondly, ViTs demonstrate a remarkable
ability to generalize from limited data by leveraging power-
ful publicly available pre-trained ViT models [9, 17, 19, 22]
as initialization, making them inherently suitable for FL’s
decentralized nature. While ViTs are often seen as com-
putationally demanding, recent advancements have signif-
icantly enhanced their efficiency casting them suitable for
FL1. These improvements include 1) updating part of model
parameters [47] or 2) optimizing additional parameters with

1A detailed related work review on parameter efficient tuning for trans-
former is provided in the appendix.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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a frozen model [28, 57], during local training of FL fol-
lowed by federated averaging [37]. In this paper, we focus
on the latter approach by employing Visual Prompt Tuning
(VPT) [19] given its efficiency and effectiveness in vision
tasks [19, 47, 56].

Although prompt tuning techniques allow efficient FL,
applying them to certain FL scenarios still remains an open
research challenge [56], particularly when data across clients
exhibits heavy heterogeneity in terms of domain discrep-
ancy [31] or imbalanced class distribution [29]. To navigate
data heterogeneity, two primary strategies are used: Gen-
eralized FL (GFL) and Personalized FL (PFL). On the one
hand, GFL approaches focus on learning a single global FL
model that achieves high generalization, with methods like
FedAvg variants [21, 30, 31]. On the other hand, PFL tai-
lors models to individual clients and clustered client groups.
For instance, some PFL methods [12, 55] involve local data
fine-tuning to customize a global model for personalized
models. Others [4, 14, 35] take into account client similar-
ity and integrate clients with similar data distributions into
clusters. In the regime of FL with ViT, FedPR [13], a recent
prompt-tuning-based GFL method, learns client prompts and
aggregates them into global prompts. Recently, FedPG [56],
another PFL method, uses a Hyper-Network [44] to gener-
ate client-specific prompts. Both GFL and PFL methods
have their own limitations: (1) GFL methods are insufficient
when dealing with significant data heterogeneity [30] with
one global model; (2) PFL customizes client models, which
can lead to overfitting on local data [55]. Overall, this limits
their ability to generalize to other distributions and may not
allow them to adapt to out-of-federation clients.2

To overcome the limitations of GFL and PFL methods
under data heterogeneity, it is essential to leverage their re-
spective strengths through a combination of the two. We
show that this is possible by appropriately leveraging prompt-
tuning. Concretely, we achieve this by developing a new FL
algorithm Shared and Group Prompt Tuning (dubbed SGPT).
Our algorithm focuses on learning a shared global model dur-
ing training, allowing it to acquire global information, while
also enabling local adaptation with prompt selection. This
approach leads to high accuracy in generalizing to global dis-
tribution as well as efficient alignment to various local client
data distributions (see Fig. 1). To elaborate, firstly, SGPT
globally learns shared and group prompts, which facilitate
the learning of both universal and group-specific knowledge.
Secondly, the prompt selection module (see Fig.2 (b)) effec-
tively finds data groups and assigns group prompts to each
input, thus automatically aligning the global model with
local distributions (see Fig.2 (c)), without needing local fine-
tuning. Thirdly, we use block-coordinate-descent (BCD) for
effective parameter training, starting with learning common
features (shared prompts) before optimizing group prompts

2A detailed related work review on FL is provided in the appendix.

for specialized knowledge iteratively. Finally, we present a
theoretical error bound and identify two factors generaliza-
tion and distribution discrepancy that affect the gap between
the global and local performance. Our SGPT effectively
considered these two terms. In summary, our contributions
are as follows.
• We introduce SGPT , a novel approach that employs shared

prompts to capture common information and utilizes group
prompts to effectively align the global model with local
distributions via a group selection module without local
fine-tuning.

• We introduce a BCD optimization routine that iterates be-
tween learning the easy and common knowledge (through
shared prompts) and then the more complex and specific
knowledge (through group prompts). This way, we tackle
optimization-specific challenges in the algorithm imple-
mentation.

• We theoretically bound the gap between global and local
performance and identify two key factors: generalization
and distribution discrepancy. SGPT can affect both these
two factors, thus tightening the bound.

• We empirically test our algorithm on a wide range of
datasets and types of heterogeneities. The results are com-
pelling, demonstrating that SGPT consistently surpasses
all baseline models.

2. Problem Setting and Preliminary
2.1. Problem Setting
In this paper, we examine a scenario involving M clients
and a central server. The clients’ data distributions are het-
erogeneous, characterized by either domain discrepancies or
imbalanced class distributions. We denote the distribution
for client i as Di with i 2 [M ]

3. Each client i contains Ni

data samples {(xi

j
, yi

j
)}

Ni
j=1. Further, let the parameter of a

pre-trained ViT model be ✓ that are frozen during training.
Denote trainable prompts as P , and classifier weights as WC .
We introduce the objective function of prompt-tuning the
task model in FL:

argmin
P,WC

MX

i=1

Ni

N

NiX

j=1

l(✓, P ,WC ;x
i

j
, yi

j
). (1)

where l : X ⇥ Y ! R+ is the cross-entropy loss and N
is the total number of data on all clients. In this way, we
can leverage the representation power of ViT while enabling
efficient tuning by only learning the prompts and classifier.

2.2. Visual Prompt Tuning (VPT)
Prompt Tuning is an efficient alternative to full fine-tuning
for large-scale Transformer models. VPT [19] introduces
only a small amount (less than 1% of model parameters)

3[m]={0, 1, . . . , m}
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Figure 2. Pipleline of our method. (a) Provides an overview of the federated group-aware prompt-tuning SGPT procedure. Each model
comprises shared prompts and group prompts, facilitating the acquisition of both common and group-specific knowledge. The shared
prompts and classification head are globally trained, while the group prompt is inserted into intermediate layers trained within its respective
data group and shared globally. (b) Depicts the prompt selection module. Here, each input undergoes processing by a pre-trained ViT model
encoder. Similarities between keys and last layer CLS token features are calculated, and the prompt corresponding to the most similar key is
selected for training, enabling group-aware training at the sample level. (c) Given that data distributions vary across clients, the frequencies
of selected group prompts differ, ensuring our model aligns with various local data distributions.

of trainable parameters in the input space while keeping
the backbone model frozen. Depending on the number of
Transformer layers involved, [19] proposed VPT and VPT-D
for efficient fine-tuning. To be specific, for VPT and VPT-D,
prompts are inserted into the first Transformer layer and all
layers respectively. Take VPT as an example, the prompt
token is a learnable d-dimensional vector. The learnable
prompt P is trained as follows:

[cls1, Z1, E1] = L1 ([cls0, P , E0])

[clsu, Zu, Eu] = Lu ([clsu�1, Zu�1, Eu�1]) u = 2, . . . , U

y = Head (xU ) ,

where U is the number of layers; Zu represents the prompt
features computed by the u-th Transformer layer Lu; Eu is
a collection of image patch embeddings as the inputs to the
(u+ 1)-th Transformer layer Lu+1; and clsu 2 Rd denotes
the classification embeddings at Lu+1’s input space.

3. Method
3.1. Architecture

In this section, we follow VPT [19] to utilize a pre-trained
ViT and adapt it to new tasks by prompt-tuning. We further
advanced the architecture so that it can align to different
data distributions automatically. Specifically, our approach
involves learning shared prompts for common features while
employing specialized group prompts through a prompt se-
lection module to align with various local client data distri-
butions effectively. Following VPT (shown in Section 2.2),
we initialize with a pre-trained ViT model comprising U
layers but learn shared and group prompts (see Fig. 2 (a)).
First, we define the selection function Select : X ! [G]

(detailed in Section. 3.2) that efficiently groups data into G
groups. Then we introduce the shared and group prompts:
Shared Prompts: The shared prompts PS are designed to
capture common representations. Recent studies [15, 39]
have shown low-level representations can be shared across
groups, and distilling commonly used information into
shared prompts can enhance the model’s generalization. Mo-
tivated by the observation that features from different classes,
processed by early layers of a pre-trained ViT, are uniformly
distributed on the manifold (shown in Fig. 5 in Appendix),
indicating shared information across classes. Therefore, we
attach shared prompts PS to the embedding features of the
early layers, i.e. the first layer:

⇥
cls1, Z

S

1 , E1

⇤
= L1 ([cls0, PS , E0]) . (2)

Group Prompts: The group prompts set PG =

{p1, . . . , pG} containing G group prompt pg, g 2 [G], which
is designed to extract specialized information. In contrast
to the early layers, the diverse and specialized features
have shown to be preserved in higher layers [42]. Thus,
we use the Select function to assign group membership
g = Select(x) to a sample x (detailed in Eq. 5) and insert
corresponding group prompts pg 2 PG to higher layers (i.e.
the u-th layer) to extract task-specific features [42]:
⇥
clsu, z

g

u
, ZS

u
, Eu

⇤
=Lu

�⇥
clsu�1, pg, Z

S

u�1, Eu�1

⇤�
, (3)

where ZS

u
represents the shared prompt features, zg

u
repre-

sents the group prompt feature computed by the u-th Trans-
former layer Lu. At last, we rewrite the objective function
Eq. (1) into:

argmin
PG,PS ,WC

MX

i=1

Ni

N

NiX

j=1

l(✓, pg, PS ,WC ;x
i

j
, yi

j
), (4)
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Figure 3. Stability analysis of one example client on CIFAR-100
dataset with s = 10. We plot the mean and standard deviation
of the prompt selection number overall communication rounds.
(a) Without stability regularization, the variance is larger and is
unstable. (b) With our proposed momentum updating, the variance
is reduced and is more stable.
where pg 2 PG are the selected group prompts that aligned
with the predicted group membership of input x from the
function Select.

3.2. Learning Prompt Selection Function
In this section, we introduce the prompt selection module
Select that learns data-specific keys for picking group
prompts. These keys are trained to capture the similarity of
feature representations within their respective groups. Here,
we propose a simple yet effective similarity-based cluster-
ing approach: we learn a key kg for each group g 2 [G]

as a centroid [54] and cluster data to its nearest centroid.
Specifically, we first process the input sample x using the
pre-trained model h✓ to obtain its generalized feature rep-
resentation [49]. Subsequently, the keys K = {k1, ..., kG}
then cluster feature representations into groups based on
cosine similarity:

Select(x) = argmax

g2[G]
cos(h✓(x), kg). (5)

However, training keys K in the FL setting faces several
challenges: 1) collapse, leading to data clustering in few
groups [34] and 2) instability due to heterogeneous client
data causing inconsistent clustering (as shown in Fig 3 (a)).

To avoid collapse, we calibrate the Select function
in Eq. 5 by weighting with the accumulated selection
probability qg during training. Specifically, let vt

g
=

P
t

t0=1

P
M

i=1 v
t
0

g,i
as the total number of times group g is

selected up to communication round t across all clients i.
The selection probability at communication round t is then
calculated as qt

g
=

v
t
gP

g2[G] v
t
g

, we drop the communication
round t to lighten notation in the later part. Then, we calcu-
late the following loss function:

Lkey = �cos(h✓(x), kg) (6)

where g 2 argmax

g2[G]

�
cos

�
h✓(x), kg

�
� 1

�
· qg,

To enforce the stability of clustering, we perform mo-
mentum parameter aggregation [16, 48] on the server side

for both keys and group prompts to ensure selection consis-
tency and knowledge consistency, respectively. Denoting the
aggregated parameters for a group g’s key and prompts at
round t as kt

g
and pt

g
, and the momentum parameters as k̂t

g

and p̂t
g

(see Algorithm 2 in appendix), the parameters are
updated as follows:

k̂t
g
= ↵kk̂

t�1
g

+ (1� ↵k)k
t

g
, (7)

p̂t
g
= ↵gp̂

t�1
g

+ (1� ↵g)p
t

g
, g 2 [G],

where ↵k and ↵g are the momentum rates (0.5 in our case).

3.3. Block Coordinate Descent for Optimization
Because we use Select function, a non-continuous func-
tion, for selecting group prompts, this renders the objective
function in Eq. (4) to be non-smooth, further introducing op-
timization challenges. To effectively navigate the challenges,
we employ a Block Coordinate Descent (BCD) method for
the local training of Eq. (4). The BCD optimization involves
dividing the parameters into sub-groups and optimizing them
in an iterative manner. In our case, this means optimizing the
shared prompts and group prompts separately. Furthermore,
the order of updating each parameter sub-group is critical
for achieving good performance [45]. Inspired by cognitive
development theories on human learning progression [11],
our method first learns the easy, common feature informa-
tion (shared prompts) and then optimize the group prompts
to extract more specialized knowledge.4 In this way, we
formulate the local objective functions for client i as:

argmin
PG,WC

E(x,y)⇠Di
[l(pSelect(x), P

?

S
,WC ;x, y)], (8)

st.P ?

S
,WC 2 argmin

PS ,WC

E(x,y)⇠Di
[l(PS ,WC ;x, y)]. (9)

We first find the optimal share prompts PS independently
to learn common information. Then, the group prompts
PG will residually learn group-specific knowledge upon the
optimal shared prompts.
Block I: Learning Shared Prompts. The shared prompts
are learned independently (lines 1-5 in Algorithm 1) to cap-
ture common information with the following loss function:

Lshare = l(PS ,WC ;x, y) (10)

where l is the cross-entropy loss.
Block II: Learning Group Prompts and Keys: Having
obtained the shared prompts, the group prompts are learned
(lines 6-11 in Algorithm 1) to extract group-specific knowl-
edge. Initially, the shared prompts PS are inserted but frozen.
Then, we employ Select function to determine x’s group

4To demonstrate the effectiveness of this ordered approach, we present
an ablation study on the update sequences in Table 3.
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Algorithm 1 Block Coordinate Descent on Local Client
Input: Weights W = {WC , PG, PS}, pre-trained ViT h✓,
prompt selection module Select with learnable keys K =

{kg}Gg=1, training data (x, y) ⇠ D, learning rate ⌘, local
training steps E in one communication round.

1: Block I: Learn Shared Prompts Only:
2: for e = 1! E do
3: Optimize the Eq. (8)
4: {P ?

S
,WC} {PS ,WC}� ⌘ ·rl(PS ,WC ;x, y)

5: end for
6: Block II: Learn Group Prompts with frozen P ?

S
:

7: for e = 1! E do
8: pg, kg  PROMPTSELECTION((x))
9: {pg,WC} {pg,WC}� ⌘ ·rl(pg, P ?

S
,WC ;x, y)

. Eq. (9)
10: K  K � ⌘ ·rlkey(kg;x, y) . Eq. (6)
11: end for
12: procedure PROMPTSELECTION(Select, x)
13: pg  PSelect(x) . Select group prompt
14: kg  KSelect(x) . Select group key
15: end procedure

g = Select(x) (detailed in Eq. (5)) and insert correspond-
ing group prompts pg to extract group-specific features [42].
The feature representation derived from these prompts is
combined with the cls token via average pooling for the final
classification. Consequently, the group prompts effectively
learn group-specific knowledge. Additionally, The keys K
in Select function are learned simultaneously, and the
total loss function is:

Ltotal = Lkey + l(PG,WC ;x, y), (11)

where l is cross-entropy and Lkey is the loss for learning
Select function. We perform Algorithm 1 to optimize the
parameters over the global communication rounds.

3.4. Efficient Inference
In this section, we explain the inference procedure of
SGPT . Given a sample x, we first use the Select func-
tion (see Eq. (5)) to determine its group membership g =

Select(x). Then, the shared prompt PS and correspond-
ing group prompt pg are inserted into the model to achieve
sample-level adaptation for inference. When performing
tests on new clients, the frequencies of selected group
prompts can be automatically adjusted by Select func-
tion (shown in Fig. 2 (c)), ensuring our model aligns with
their local data distributions. We provide more training and
inference details of our proposed SGPT in the Appendix.

4. Theoretical Analysis
In this section, we provide analytical justification for narrow-
ing the empirical risk of the global model found by empirical

loss minimization and the population risk of the optimal
model of a client. Following the heterogeneity setting in [36],
we assume each local client i’s data distribution Di is a mix-
ture of G underlying distributions (groups).

Assumption 1. On a client i, there exist G underlying (in-
dependent) distributions Di

g
, g 2 [G], such that for i 2 [M ],

Di is mixture of the distributions Di

g
with mixing probability

vector ⇡i = [⇡i

1, . . . ,⇡
i

G
]:

Di =

X

g2[G]

⇡i

g
D

i

g
,

X

g

⇡i

g
= 1 and ⇡i

g
� 0, (12)

where ⇡i

g
=

N
i
g

Ni
is the probability of a data sample on client

i belong to group g and N i

g
is a fixed number of samples

from D
i

g
for all g 2 [G], i 2 [M ].

Based on this, we also introduce the probability distri-
bution Cg of data belonging to group g as follows. For a
group g, its global data distribution Cg is a mixture of the
distributions D

i

g
, i 2 [M ] with mixing probability vector

⇡g = [⇡1
g
, . . . ,⇡M

g
]:

Cg =

X

i2[M ]

⇡i

g
D

i

g
. (13)

Following [18], we refer to the distribution Cg as the “partic-
ipated clients’ data distribution” for the g-th group.

Finally, for g 2 [G] and hypothesis hg 2 H,
we use hSelect = {h1, ..., hg, ..., hG}Select(x) to de-
note the group-aware hypothesis determined by function
Select when datapoint x is given as input. Let bhg =

argminh2H LbCg
(h) denote the empirical model for data

group g and ĥSelect = {ĥ1, ..., ĥg, ..., ĥG}Select(x) denote
the corresponding global model.

Theorem 4.1 (Gap between the global and local perfor-
mance). Assume the loss function ` is bounded in [0, 1] and
the function Select is a data grouping method. Let the
VC-dimension of hypothesis class H be d. Then, with a
probability of at least 1� � over the training set,

L bDi
(bhSelect)�min

h2H

LDi(h)  (14)
s

log
1
�

Ni

+ 2

GX

i=1

N i

g

Ni

s
2d

Ng

✓
1 + log(

Ng

d
)

◆

| {z }
Generalization

+

GX

g=1

N i

g

Ni

⇣
disc(D

i

g
, Cg) + disc( bDi

g
, bCg)

⌘

| {z }
Distribution Discrepancy

,

where discH (D1,D2) = maxh2H |LD1(h)� LD2(h)| and
Ng is the tocal number of data in group g from all the clients.
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The detailed proof is provided in the Appendix. The left-
hand side of Eq. (14) represents the gap between the mini-
mum empirical risk5 of the global model found by empirical
loss minimization using the Select grouping function and
the population loss of the optimal model of client i. The
right-hand side of Eq. (14) bounds this gap with respect to
weighted averages of two factors: 1) Generalization (GE)
that is related to Ng , and 2) Distribution Discrepancy (DD)
between the global group distribution Cg and the local group
distribution D

i

g
of client i. SGPT accounts for these two

terms and reduces the gap with shared and group prompts.
Specifically, recent studies [15, 39] have shown that low-
level representations exhibit considerable similarity across
different groups, suggesting a relatively small DD term. In
response to these findings, our approach involves inserting
shared prompts PS in early (low-level) layers of ViT and
training using all data, thereby maximizing the value of
Ng (g = 1, Ng = N ) to effectively reduce the dominant
GE term. At higher layers, where the DD dominates the
bound due to diverse feature representations [59], a selec-
tion module groups similar data to learn the same group
prompt, ensuring D

i

g
⇡ C

i

g
thus reducing DD. For a detailed

discussion, see Appendix C.4.

5. Experiments
5.1. Experiment Setup
Datasets. In this section, we introduce datasets with la-
bel and feature heterogeneity. Label heterogeneity: we
demonstrate the effectiveness of our proposed approach
for label heterogeneity using two datasets. (1) CIFAR100
dataset comprises 50,000 training images and 10,000 test-
ing images distributed across 100 classes. (2) Fivedataset
consists of a sequence of 5 datasets (SVHN, CIFAR10,
not-MNIST, Fashion-MNIST, and MNIST) as outlined in
the work by [10]. Feature heterogeneity: we also con-
sider feature heterogeneity and follow [56] to demonstrate
the effectiveness of our proposed approach using Office-
Caltech10 and DomainNet for feature heterogeneity: (1)
Office-Caltech10 [43] is composed of four data domains,
including Amazon, DSLR, Webcam, and Caltech. Each do-
main contains ten classes, with 2,533 images in total. (2)
DomainNet [40] consists of 0.6 million images of 345 classes
distributed across six domains: clipart, infograph, painting,
quickdraw, real, and sketch. Following [31, 56], we use the
top ten most frequent classes to form a sub-dataset for our
experiments.
Non-IID Settings. In this section, we introduce the FL envi-
ronments and the data partition strategies for various datasets.
For clients with label heterogeneity, in CIFAR-100, we intro-
duce 100 clients and set a low (hard) client participating ratio
(�) to 0.05. To introduce data heterogeneity among clients,

5We also give the gap on population distribution in the Appendix.

we apply the “Pathological Partition” [28, 38]. We first
sort the data by labels and then allocate data from a specific
number of classes (s) to each client. Since s is the number
of classes each user can have, as s decreases, the degree of
data heterogeneity increases. As to the Five Datasets, we
distribute the data among 20 clients, with every 4 clients orig-
inating from the same dataset. We set the participating rate to
� = 0.1 and perform training for 50 communication rounds.
For conducting clients with feature heterogeneity, we follow
the newest benchmark [56] and assign a data domain to a
client, indicating the number of clients (M ) is set as 4 and 6
for Office-Caltech10 and DomainNet, respectively.
Implementation Details. Following [13, 56], we use
ImageNet-21K pre-trained ViT-B-16 [9] as our model be-
cause it achieves a good trade-off between performance and
efficiency. Since ViT-B-16 is originally trained on images
with size 224 and patch size 16, we resize our images to
224 to align with the model’s specifications. During the
prompt-tuning process, we focus on the shared prompts,
group prompts, and the classifier. We use local training
epochs (E = 5) for all experiments and set the prompt length
to 1 for efficiency. For label heterogeneity datasets, we use
the last layer’s cls token as the input feature for Select
and set group number G as 20 and 5 for CIFAR-100 and
Five-dataset respectively. For feature heterogeneity, we use
the intermediate (5-th) layer’s cls token as the input feature
for Select because intermediate layers capture the texture-
related information [15] and set G as 4 and 6 for Office and
DomainNet datasets respectively. We follow other settings
in [56] for consistency.
Baseline Methods. For label heterogeneity, we conduct a
comparative analysis of our method against various global-
model approaches: VPT [19] that optimized using Fe-
dAvg [37] (FedVPT), Head-Tuning [47], FedMix [58], as
well as recent FedPR [13]. Additionally, for personalized
Federated Learning, we considered pFedPG [44, 56] and
FedEM [36]. For feature heterogeneity, we implement the
same baseline methods as [56] as it is the newest benchmark
for FL feature heterogeneity.

5.2. Results
5.2.1 Label Heterogeneity Results

We calculate three metrics for evaluation: (1) Global Ac-
curacy represents the mean accuracy made by each client
overall all testing images regarded as global distribution per-
formance (2) Local Accuracy is calculated by averaging the
accuracy of each local client on its local test data. (3) Worst
Local Accuracy demonstrates the worst-performing client
result, showcasing the ability to adapt to local data distribu-
tion. We follow [28] to report the averaged testing accuracy
for the last 10 consecutive global communication rounds.
Overall Performance The results of CIFAR-100 and Five-
datasets are presented in Table 1. Due to the difficulty of
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Table 1. Performance comparison of different methods on the CIFAR-100 dataset and the Five dataset. The bold and underline highlights
represent the best and second-best results, respectively.

Datasets CIFAR-100 (%) " Five-Dataset (%) "

Method Global Local Worst Local Global Local Worst Local
s = 50 s = 10 s = 50 s = 10 s = 50 s = 10

Head-Tune 76.69 75.35 76.68 75.36 65.96 55.53 75.09 75.09 28.60
FedVPT [19] 82.35 80.79 85.67 80.79 72.28 66.43 80.88 80.88 53.04
FedVPT-D [19] 85.85 79.49 85.85 79.49 74.83 63.38 82.09 82.09 54.96
FedMix [58] 85.65 80.83 85.67 80.82 74.33 69.59 81.07 81.07 42.62
pFedPG [56] 84.67 81.19 85.22 81.82 72.33 70.53 72.12 82.48 56.24
FedEM [36] 81.52 78.41 81.53 78.40 72.06 63.87 79.54 79.54 46.50
FedPR [13] 85.92 81.42 85.92 81.35 75.26 63.93 81.29 81.29 42.12
SGPT (Ours) 86.72 84.64 86.71 84.64 77.56 73.85 83.40 83.40 61.04

Table 2. Performance comparison of different methods on the Office-Caltech10 and DomainNet datasets. The bold and underline highlights
represent the best and second-best results respectively.

Datasets
Method

Office-Caltech10 (%) " DomainNet (%) "
A C D W Avg. C I P Q R S Avg.

Per-FedAvg [12] 91.67 90.22 100.0 100.0 95.47 69.39 48.71 82.07 35.30 90.63 72.56 66.44
FedRep [6] 91.15 88.44 100.0 100.0 94.90 64.26 38.20 72.86 62.10 82.66 60.11 63.37
FedVPT [19] 92.71 84.44 100.0 100.0 94.29 65.59 44.14 76.58 47.30 91.04 60.29 64.16
FedVPT-D [19] 91.67 89.33 100.0 100.0 95.25 63.31 43.07 74.80 54.80 87.26 67.15 65.07
pFedPG [56] 94.79 92.44 100.0 100.0 96.81 73.00 50.08 84.33 60.00 94.00 68.41 71.64
FedPR [13] 95.31 95.11 100.0 96.61 96.76 88.02 49.16 86.11 70.00 96.06 83.94 78.88
SGPT (Ours) 95.31 95.56 100.0 100.0 97.72 89.54 52.82 87.56 70.00 96.14 86.82 80.48

datasets, directly leveraging the pre-trained ViT and apply-
ing head-tuning cannot achieve good performance. With the
help of prompt-tuning, FedVPT serves as a strong baseline
compared to recent personalized FL algorithms. This can
be attributed to the effectiveness of transformers in mitigat-
ing catastrophic forgetting and accelerating convergence in
dealing with heterogeneous data [41], which validates our
motivation to apply ViT in FL. With the help of our pro-
posed SGPT , we outperform all baselines on both global
and worst-local test accuracy across various degrees of data
heterogeneity and datasets by a significant margin.
Different Label Heterogeneity Level. As s decreases, this
represents an increase in label heterogeneity. The CIFAR-
100 results in Table 1 show a performance drop across all
methods as heterogeneity increases with the decrease of s
from 50 to 10. Fortunately, our SGPT demonstrates robust-
ness to data heterogeneity, with a smaller performance drop
compared with other methods.

5.2.2 Feature Heterogeneity Results.

In addition to label heterogeneity, our method can also be
applied to datasets with feature shifts. We follow [56] and
report both the performance for each client and the aver-
age performance overall for clients. The results of Office-
Caltech10 and DomainNet datasets with the presence of
domain shifts across clients are presented in Table 2. Among
all baselines, our SGPT achieves the highest average accu-
racies on Office-Caltech10 and DomainNet at 97.72% and

80.48% respectively. In addition, SGPT can also align the
global model with different local client data with the worst
local performance of each dataset at 95.31% and 52.82%
respectively. The results validate our goal to reduce the
performance gap between global and local data distribution.

5.3. Global and Local Performance Trade-off

We demonstrate our method’s capacity to achieve high test
accuracy on both global data distribution and local clients’
data distributions. As shown in Figure 1, we visualize both
the global accuracy and the worst local accuracy (client with
the worst test accuracy) for the CIFAR-100 dataset with
s = 10. Points situated in the top-right corner indicate better
performance in both global data distribution and local clients’
data distribution. PFL methods that are finetuned locally tend
to overfit on local data distribution. GFL methods, though
achieving good generalization, often underperform in local
data. Notably, our method shows the greatest capacity for
aligning with both global and local data distributions.

5.3.1 Analysis and Ablation Study

In this section, we provide a detailed analysis of each module
in our methods. For more analysis, please see the Appendix.
Effect of Shared Prompt and Group Prompt. To demon-
strate the benefits of reducing the terms related to GE and DD
as outlined in Theorem 4.1, we conduct ablation studies on
shared and group prompts. As indicated in Table 3, replacing
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Table 3. Effect of different prompts and block coordinate descent.
We report the results on the CIFAR-100 dataset with s = 10.

Share Group BCD-Inv BCD Global " Worst Local "
p

79.49 63.38
p

82.51 70.79
p p

77.82 62.62
p p p

76.76 62.15
p p p 84.64 73.85

shared prompts with group prompts, to reduce distribution
discrepancy, resulting in a 7% gain in the worst local accu-
racy. This implies successfully aligning the global model
with local data distributions, thereby validating our theoret-
ical motivation. Additionally, the group prompts improve
global accuracy by around 3% because similar data lead to
lower gradient dissimilarity [26] and benefit the optimization
process [21]. By additionally adding shared prompts and
optimizing prompts with BCD, the global and worst local
performance improve by around 2% and 3% respectively. As
a result, learning common information with shared prompts
benefits the generalization.
Effect of Block Coordinate Descent. In this section, we
analyze the effect of our proposed BCD optimization (Sec-
tion 3.3) on the CIFAR-100 dataset, specifically with s = 10.
As shown in Table 3, the direct addition of group prompts
leads to a performance decrease by nearly 3%. With the
aid of our BCD optimization that iteratively learns shared
prompts first and then groups prompts, a significant improve-
ment by 7% is observed. When inverting the BCD order
(denoted as BCD-Inv), the result drops significantly. These
results validate our BCD optimization approach.
Ablation on Clustering Performance. We conduct ablation
studies on various improvements in learning Select func-
tion. We evaluate the clustering accuracy using the CIFAR-
100 test dataset, with coarse labels [24] serving as the ground
truth. As shown in Table 4, the direct application of FedAvg
to learn keys results in clustering all data into the same group,
resulting in only 5% accuracy. By adding selection proba-
bility qg, Select function successfully learns meaningful
keys, as shown in Eq. (6). Introducing momentum update,
as shown in Eq. (7), further enhances the clustering perfor-
mance, achieving approximately 10% and 5% improvements,
respectively. Additionally, in Fig 3, we plot the mean and
standard deviation of the prompt selection numbers over all
communication rounds. This demonstrates that our proposed
momentum updating improved stability.
Where to attach prompts? Here we take CIFAR-100 with
s = 10 as an example and use a heuristic search strategy:
(1) We start with examining the position for shared prompts
by adding them to the first US layers. Our findings, shown
in Fig 4, inserting shared prompts beyond the 3-rd layer
decreases performance. This is because higher layers suffer
more from heterogeneity [59]. As a result, US = 3. (2)

Table 4. Ablation studies with different improvements on Select.
We report the results on the CIFAR-100 dataset with s = 10.

Dataset CIFAR-100 (%)
Method s = 50 s = 10

FedAvg 5.00 5.00
w/ qg 46.09 51.26

w/ momentum and qg 56.39 56.62

Table 5. The size of learnable parameters compared with that of
vanilla FedAvg [37], which trains the whole models.

Method FedAvg Ours
Architecture ResNet-18 ResNet-50 ViT-16/B ViT-16/B

# Parameters # 11M 24M 86M 0.1M

Figure 4. Exploring prompt insertion layers on CIFAR100 (s=10).
The brown curve represents performance using only shared prompts,
while the blue curve illustrates performance with group prompts
inserted at varying layers, alongside shared prompts in layer 3.

Based on the best position for shared prompts, we study the
position of group prompts. As depicted in Fig 4, adding
prompts from 4-th to 6-th yields the optimal performance
of 84.64%. In summary, without specific designs (i.e., our
algorithm), training prompts on higher layers prove challeng-
ing due to increased heterogeneity. We suggest that prompt
tuning in FL should take this aspect into consideration. Effi-
ciency. In this section, we conduct a comparison between the
number of parameters that need training and communication
between SGPT and training a whole network in classical FL
(e.g., FedAvg [37]). As shown in Table 5, prompt-tuning
requires significantly less trainable parameters compared
with traditional FL thus improving the efficiency and saving
the communication cost.

6. Conclusion
This work demonstrates the significant advancements in FL
through the integration of ViT to bridge GFL and PFL. This
is achieved through our proposed SGPT , which introduces
a shared and group prompt tuning strategy, enabling the
model to adeptly capture both common and group-specific
features. The prompt selection module of SGPT facilitates
the training of a global model that can automatically adapt
to varied local client data distributions without necessi-
tating local fine-tuning. We employ BCD for effective
optimization of the learnable parameters. Theoretically, our
approach minimizes the error bound between global and
local performances. Empirical tests and ablation studies
highlight SGPT’s superior performance and efficiency.
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