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Figure 1. Image style transfer results by the proposed Z∗. Top: The stylized results by style/content references of different types. Our method
can well balance the contents and styles in the results. Bottom: Comparisons with state-of-the-art methods, including diffusion-based models
(VCT [9] and InST [51]), transformer-based model (StyTr2 [13]), flow-based model (ArtFlow [2]), and CNN-based model (CAST [50]).
Our method excels in generating stylized images with vivid style patterns and accurate content details.

Abstract
Despite the remarkable progress in image style transfer,

formulating style in the context of art is inherently subjective
and challenging. In contrast to existing methods, this study
shows that vanilla diffusion models can directly extract
style information and seamlessly integrate the generative
prior into the content image without retraining. Specifically,
we adopt dual denoising paths to represent content/style
references in latent space and then guide the content image
denoising process with style latent codes. We further
reveal that the cross-attention mechanism in latent diffusion
models tends to blend the content and style images, resulting
in stylized outputs that deviate from the original content
image. To overcome this limitation, we introduce a cross-
attention reweighting strategy. Through theoretical analysis
and experiments, we demonstrate the effectiveness and
superiority of the diffusion-based zero-shot style transfer
via attention reweighting, Z-STAR.

◦These authors contributed equally to this work.
�Corresponding author: Fan Tang.

1. Introduction

The task of image style transfer has received significant
attention in the research community, with numerous machine
learning techniques utilized, such as convolutional neural
networks (CNN) [11, 15, 18, 21, 32, 38], flow-based net-
works [2], visual transformers (ViT) [13, 46], and diffusion
models [9, 51]. After completing the training process, the
output stylized image is generated based on a content and
style image, as shown in Figure 1. The generated image
retains the content layout from the input content while
adopting a similar style to that of the input style. In essence,
the networks are trained by ensuring that the generated image
and the content/style image exhibit content/style similarity.

While certain methods, such as [2, 13, 18], employ
the Gram matrix [15] to measure global style similarity
and achieve promising style transfer outcomes, the second-
order statistics contained in the Gram matrix are limited
in their ability to capture intricate style patterns and fail
to transfer corresponding local features from the content
image to the style image (e.g., hair and eyes in StyTr2 [13],
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ArtFlow [2], AdaIN [18] in Figure 1). To address this
issue, CAST [50] proposes a contrastive loss that leverages
the relationships between positive and negative examples
to encourage the result to conform to the distribution of
styles. However, CAST also faces the obstacle of generating
stylized outcomes with vivid, fine-grained style details. In
reality, the contours and forms of a painting should be
subject to the adaptable preferences of the artist’s painting
techniques, rather than being rigidly determined by the
content and style images. In light of this, we rethink the
role of training in style transfer and reveal that the generative
model used to describe the distribution of images has already
learned the art of transfer.

With the advent of diffusion models, text-controlled
image editing and translation have gained unprecedented
attention. When given an image as input, the diffusion
model can generate an artistic image incorporating a style-
related prompt. However, the textual prompt is often too
coarse to effectively express the desired style details. While
prior approaches such as InST [51] and VCT [9] endeavor
to employ an image-controlled diffusion model for image
style transfer and translation, they necessitate training a
style embedding for each input style, leading to challenges
in distilling precise style representations and resulting in
deviations from the input style while failing to preserve
content (see InST and VCT results in Figure 1). In contrast
to [9, 51], where control information is encoded as text
embedding, we propose that the vanilla diffusion model is
capable of extracting style information directly from the
desired style image and fusing it into the content image
without requiring re-training or tuning.

In this paper, we leverage the prior knowledge from
latent diffusion [36] and propose a zero-shot (i.e., training-
free) style transfer method via attention reweighting, namely
Z-STAR (Z∗), to addresses the issues above. To obtain
generative image priors, we employ dual diffusing paths to
invert the style and content images. The features obtained
from diffusion models naturally represent content and style
information and could be fused by the attention mechanism.
However, without a training process, it is challenging
to strike a balance between content and image influence.
That is to say, the naive cross-attention operations are not
optimal for directly integrating content and style latent
status in the denoising process. Content structure may
be compromised due to inaccurate cross-attention values
(see Sec. 4.2 for more details). Therefore, we propose a
multi-cross attention reweighted strategy that manipulates
content and style information from images and seamlessly
fuses them in the diffusion latent space. By leveraging
a tailored attention mechanism, the diffusion model can
naturally address the constraints of content and style without
necessitating additional supervision. Experimental results
demonstrate that our method generates satisfactory results

with well-preserved content and vivid styles adapted to
content structures. In summary, our main contributions are
as follows:
• A zero-shot image style transfer method leveraging the

generative prior knowledge to conduct image stylization
without retraining/tuning.

• A reweighted attention mechanism to disentangle and fuse
content/style information in the diffusion latent space.

• Various experiments demonstrate that our method can
generate outstanding style transfer results, naturally fusing
and balancing content and style from two input images.

2. Related Work
Image style transfer. Since Gatys et al. [15] discovered
that perceptual features can effectively represent content
and Gram matrices may express style in CNNs, various
frameworks for style transfer trained by content and style
loss have been proposed [1, 11, 12, 18, 20, 23, 27, 34, 38,
42]. CNN-based methods [11, 12, 23, 38] achieved success
by exploring the fusion of content and style representation.
Some works [13, 39, 43, 44, 46, 49] utilize the long-range
feature represention ability of Transformer [47] and enhance
stylization effects. However, the Gram matrix measures
second-order statistics of the entire image, which may not
be sufficient for style representation. Recent works [7, 48,
50] use contrastive loss to replace style loss based on the
Gram matrix, which is effective in processing fine-detail
style patterns. Despite the continuous progress of existing
methods, precise style representation remains challenging,
and inaccurate style expression may lead to unsatisfactory
stylized results. In light of this challenge, we aim to develop
a zero-shot style transfer method that does not rely on explicit
style constraints.

Diffusion for image generation. Diffusion models have
demonstrated impressive results in text-to-image genera-
tion [29, 33, 36, 37] and image editing [3, 5, 6, 10, 16,
22, 28, 30, 40, 45, 52]. However, certain methods like
Imagic [22] require fine-tuning the entire diffusion model
for each instruction, which can be time-consuming and
memory-intensive. To address this, Prompt-to-prompt [16]
introduces cross-attention maps during the diffusion process
by replacing or reweighting the attention map between
text prompts and edited images. Additionally, NTI [28]
proposes null-text optimization based on Prompt-to-prompt
to enable real image editing. In order to reduce reliance on
text prompts, StyleDiffuison [24] incorporates a mapping
network to invert the input image to a context embedding,
which is then utilized as a key in the cross-attention
layers. However, manipulating the cross-attention solely
between text and image can be challenging for achieving
precise control. To address this, Plug-and-Play [40] and
MasaCtrl [6] focus on spatial features using self-attention in
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the U-Net of the latent diffusion model. While these methods
can accomplish text-guided style transfer by inputting a text
prompt like “a pencil drawing”, simple words may not be
sufficient to describe fine-detail style patterns. To address
this limitation, InST [51] and VCT [9] employ an inversion-
based image style transfer/translation scheme that can train
a style image into a style embedding to guide the generated
results. In this paper, we demonstrate that style images alone
(i.e., without pseudo-text guidance) are adequate for latent
diffusion models to achieve image-guided style transfer,
without requiring additional training.

3. Preliminary
Attention Mechanism [4] was introduced as a powerful tool
in neural network architectures for aggregating information
and later adopted by Vaswani et al. [41] as a fundamental
building block for machine translation:

Attention(Q,K, V ) = Softmax(
QKT

√
d

)V. (1)

Attention-based vision transformers [14, 26] have demon-
strated remarkable empirical results on mainstream bench-
marks, solidifying attention mechanisms as a crucial compo-
nent in modern deep neural networks. Moreover, by incor-
porating additional information, along with the utilization of
Key and Value vectors, cross-attention has proved effective
in latent diffusion models for applying conditions to the
denoising process.
Diffusion Model, as described in the literature, belongs to
a class of generative models that employ Gaussian noise to
generate desired data samples. This is accomplished through
an iterative process of noise removal, where a forward
process is defined to add noise to an initial data sample
x0, resulting in a noisy sample xt at time-step t, according
to a predetermined noise-adding schedule αt:

xt =
√
αt · x0 +

√
1− αt · z, z ∼ N (0, I). (2)

Additionally, a corresponding reverse process is also defined:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)
+ σtz. (3)

The backward process aims to gradually denoise xT ∼
N (0, I), where a cleaner image xt−1 is obtained at each
step. This is accomplished by a neural network ϵθ(xt, t) that
predicts the added noise z.

Utilizing a U-Net integrated with an attention mechanism
as ϵθ(xt, t) is a common approach. This configuration
allows for self-attention to capture long-range interactions
among image features, while cross-attention receives a
guiding signal from the given text prompt. The attention
mechanisms are formulated as:

f l
t = Attention(Ql

t,K
l
t, V

l
t ). (4)

Even as Key and V alue at l-th layer may vary from image
spatial or text features, they still adhere to the standard
format.

4. Method
Our research is based on the observation that the attention
module within the stable diffusion can effectively align
features K and V with the query Q. Previous studies, such
as [6, 40], have leveraged the self-attention layer to extract
information from key and value features, which represent
spatial attributes in the DDIM inversion process, for image
editing applications. However, in style transfer tasks, the
simultaneous preservation of both style and content is crucial.
Consequently, we need to address two important questions
to practically apply this observation:
• How can appropriate style features K and V be obtained

for the stable diffusion model without necessitating re-
training? It is crucial to emphasize that our objective is to
directly extract style information from images rather than
depending on a proxy prompt like text embedding, which
may lack the necessary level of detail.

• Mere utilization of style attention [31] results in poor
content preservation under diffusion models without re-
training. We aim to recreate the content image in a way
that resembles the style image in terms of its contours,
forms, and overall visual appearance.

To address these challenges, our approach adopts a two-
fold strategy. Firstly, dual-path networks are designed
to generate suitable K and V features during the reverse
process. Secondly, we incorporate attention reweighting
techniques to better align content features with style features.

4.1. Dual-path Networks

In our proposed approach, we address a key limitation
in the conventional stable diffusion model, where the
text embedding remains unchanged throughout the reverse
process, from timestamp t ∈ [0, T ], despite the desirable
need for the style feature to adapt to the denoising stylized
image. This adaptation is crucial as the initial denoising
process involves the reconstruction of the image’s shape and
color, followed by the refinement of details such as contours
and brushstrokes towards the end.

To address this limitation, we introduce a novel dual-path
scheme that simultaneously generates the denoised style
image and the stylized content image at the same timestamp
T . This is achieved through the following equations:

Is = Gθ(ϵIs , {fs}, T ), Ic = Gθ(ϵIc , {fc}, T ). (5)

This ensures that the features in both networks are naturally
aligned in the time dimension. Specifically, given a content
image Ic and a style image Is, our objective is to obtain
a stylized result Îc that retains the content of Ic while
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Figure 2. Overall pipeline of our style transfer framework. The stylization process operates in the latent space. We perform DDIM inversion
separately for the content and style images. During the denoising process, our Cross-attention Reweighting is employed to integrate style
patterns into the content structure. By iteratively performing 50 denoising steps, we are able to achieve the final stylized output.

incorporating stylistic patterns from Is. This is achieved
through the following equation:

Îc = Gθ(ϵIc , {fs, fc}, T ), (6)

where Gθ(·, ·, T ) represents the application of denoising
for T steps in the diffusion model, using fixed pre-trained
weights θ. The term ϵI∗ denotes the noisy xT generated in
the forward process by progressively adding Gaussian noise
to Ic or Is, as described in Eq. (2). The notation {fs, fc}
refers to the spatial U-Net features in the diffusion models
from the style and content images, respectively, which are
utilized in cross-attention.

As shown in Figure 2, we utilize DDIM inversion to invert
the style image and content image, obtaining the diffusion
trajectories xc

[0:T ] and xs
[0:T ]. Subsequently, we introduce a

novel cross-attention arrangement to disentangle and fuse
content and style information (i.e., fc and fs, denoted as
Query, Key and V alue), within the diffusion latent space
using U-Net at timestamp t. Through T denoising steps,
we convert the stylized latent features f̂c, generated by the
reweighted attention, into the style transfer result Îc.

4.2. Attention Reweighting

As demonstrated in Eq. (6), our attention mechanism
incorporates two types of attention calculation between fs
and fc: style-cross attention for merging content and style
features, and content self-attention for preserving structure.
Since we use the standard self-attention, we mainly discuss
the proposed style-cross attention in this section.

Naive Setting It is intuitive to represent content informa-
tion, such as image structure, using the Query, and represent
style information, such as color, texture, and object shape,
using the Key and V alue features. The style-cross attention

Naive Setting Simple Addition Attention Reweighting

St
yl
e

Co
nt
en
t

Figure 3. The outcome of the “Naive Setting” exhibits a bias
towards emphasizing the style patterns while neglecting the original
content structures. The distorted area corresponds to the low
similarity portion between self-attention and cross-attention results,
suggesting that the Vs fails to adequately reconstruct the target
region, resulting in a loss of content. “Simple Addition” preserves
an excessive number of content features, whereas the re-arranged
attention achieves a more favorable trade-off.

then uses the content features to query the information from
style images that best suit the input patch. Formally, the
inputs of style-cross attention are features from the content
latent space c and style latent space s where

f̂c = Attn(Qc,Ks, Vs) = Softmax(
QcK

T
s√

d
)Vs. (7)

Despite the simplicity, we observe that the naive fusion
setting in Eq. (7) tends to prioritize the style patterns at
the expense of the original content structures. Figure 3
displays the heatmap representing the cosine similarity
between the results of cross-attention Atten(Qc,Ks, Vs) and
self-attention Atten(Qc,Kc, Vc). It is observed that regions
with low similarity scores correspond to pixels that have
experienced a loss of content information.
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(a) q⃗cKs (b) Softmax(q⃗cKs) (c) Ours

Figure 4. Visualization of the distribution of q⃗cKs for two content
feature points (represented by blue and red bars) before and after the
Softmax in (a) and (b). In (c), we display the distribution of q⃗cKs

normalized by Eq.(11). It is observed that Softmax operation tends
to overly amplify smaller values of q⃗cKs (e.g., blue bars being
shifted further to the right compared to the red bars in (b), even
though the original q⃗cKs values are mostly less than 0). In contrast,
the negatively correlated values are limited to small magnitudes
before and after normalization in (c).

Simple Addition To tackle the aforementioned issue,
we propose a simple solution by enhancing the content
information in f̂c through the reintroduction of content self-
attention. The equation is formulated as follows:

f̂c = λ ·Attn(Qc,Ks, Vs)+(1−λ) ·Attn(Qc,Kc, Vc), (8)

where λ ∈ [0, 1]. However, we found the selection of λ can
be delicate. For instance, certain content pixels exhibit a
weak correlation with style, as indicated by small values of
q⃗cK

T
s (represented by blue bars in Figure 4(a), where q⃗cKT

s

is less than 0). It is desirable to assign smaller attention
weights to these pixels in order to minimize their negative
impact. Conversely, in other scenarios where q⃗cK

T
s yields

meaningful values (represented by red bars in Figure 4(a)),
we aim to assign larger attention weights to these pixels.
Unfortunately, due to the inherent nature of the Softmax
function, which disregards the absolute magnitudes and
solely amplifies the differences between q⃗cK

T
s values, we

observe counter-intuitive results as depicted in Figure 4(b),
where smaller q⃗cKT

s values result in larger attention weights
after Softmax normalization. In such cases, we need to
introduce an additional variable, denoted as λ, to compensate
for this deficiency. However, it is worth noting that a pre-
defined λ value cannot cater to the requirements of every
content/style image pair.

Cross-attention Reweighting Though a handcraft λ out-
side of Atten(·, ·, ·) can not adapt to input images, we find
that it can be achieved with a λ inside Softmax(·). By
expressing Eq. (8) in matrix form through an equivalent
reformulation, we obtain:

f̂c =
[
λ · σ(QcK

T
s√

d
), (1− λ) · σ(QcK

T
c√

d
)
]
∗
[
Vs

Vc

]
(9)

= A ∗ V ′T . (10)

Here, σ(·) represents the Softmax function, and each row
in A ∈ RN×2N , denoted as a⃗ ∈ R2N , is normalized, i.e.,
a⃗ · 1⃗T = 1. This normalization inspires us to re-construct
the matrix A in the form of applying Softmax to rows, i.e.,

A′ = σ(
[
λ · QcK

T
s√

d
,

QcK
T
c√

d

]
) (11)

f̂ ′
c = A′ ∗ V ′T = σ(

[
λ · QcK

T
s√

d
,

QcK
T
c√

d
,
]
) ∗

[
Vs

Vc

]
. (12)

Specifically, Eq. (11) integrates λ within Softmax, which
inherently normalizes the output to the [0, 1] range, elim-
inating the requirement for 1 − λ. In contrast to the
previous attention formulation presented in Eq. (9), the newly
proposed reweighted attention matrix A′ ∈ RN×2N takes
into account both the intra-content feature differences and
the inter-content and style feature differences simultaneously
during the application of the Softmax(·) function for output
normalization. The reweighted attention matrix effectively
enhances significant values of both q⃗cK

T
s and q⃗cK

T
s at

each pixel, while automatically suppressing the small values
of q⃗cK

T
s when the content pixel corresponding to q⃗c is

irrelevant to all style pixels.

Superiority of Cross-attention Reweighting The Cross-
attention Reweighting can be considered as a more versatile
formulation. Its properties can be demonstrated as follows:
(i) In cases where the correlation between the style and

content images is weak, i.e., when each element q⃗ck⃗s
T

in QcK
T
s approaches −∞, the modified attention f̂ ′

c =
A′ ∗ V ′T reduces to the standard self-attention of content
images, denoted as Attention(Qc,Kc, Vc). (ii) When the
correlation between the style and content images is strong,

if the maximum value of q⃗ck⃗s
T

is approximately equal to

the maximum value of q⃗ck⃗c
T

, and the Softmax operation
generates an approximate one-hot probability distribution,
then f̂ ′

c = A′ ∗V ′T is equivalent to Eq. (8). (iii) Last but not
least, Eq. (8) can be rewritten using A′ as follows:

f̂c =
1

2
· Attn(Qc,Ks, Vs) +

1

2
· Attn(Qc,Kc, Vc), (13)

= σ(
[
QcK

T
s√

d
+ C,

QcK
T
c√

d

]
) ∗

[
Vs

Vc

]
, (14)

where

C = ln

∑
j exp

(
[QcK

T
c ]·,j

)∑
j exp

(
[QcKT

s ]·,j
) . (15)

In Eq. (14), the simple addition of self-attention to cross-
attention introduces an additional term C. This variable
serves to magnify all elements within QcK

T
s , including

small values that represent weak correlations between style
and content features, which are deemed inconsequential and
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Figure 5. The illustrations of regional control. The control map is
represented by the binary mask located at the bottom right of the
content reference. Black pixels mark the areas designated for style
transfer.

should be disregarded. Consequently, the incorporation of C
may introduce an increased level of noise into the Softmax
function, thereby resulting in sub-optimal outcomes.

Conditional Control The simplicity of Eq. (11) allows
for easy extension of the attention reweighting technique to
more complex downstream applications. To illustrate this,
we introduce an additional mapping function ϕ(·) on QcK

T
c√

d
,

which provides enhanced control over a specific region Ω
for image style transfer. The modified equation is given by:

A′ = σ(
[
ϕ(

QcK
T
s√

d
),

QcK
T
c√

d

]
). (16)

Here, ϕ(xi,j) is defined as:

ϕ(xi,j) =

{
−∞ {i, j} /∈ Ω
xi,j otherwise . (17)

It is important to note that directly setting the values to −∞
may lead to discontinuous style switching, resulting in an
artificial sharp boundary. To achieve a more natural gradient
effect, we utilize a linear gradient for ϕ(xi,j), transitioning
from −∞ to xi,j . We visually demonstrate the effect of
conditional control in Figure 5, where Ω region corresponds
to the white pixels in the binary mask.

Furthermore, the extension of style transfer from a one-
to-one content-style image pair to a one-to-many setting can
be easily achieved using Eq. (11). In the case where we aim
to transfer the style of N style images to a single content
image, the equation is modified as follows:

A′ = σ(
[
QcK

T
s1√
d

, ...,
QcK

T
sN√
d

,
QcK

T
c√

d
,
]
). (18)

Owing to the limited memory footprint, we consider this
aspect as a potential area for future research and leave it for
further investigation.

5. Experiments
5.1. Implementation Details

Our research builds upon the concept of Stable Diffu-
sion [35] and utilizes the v1.5 checkpoint. In our experimen-
tal setup, the text prompts are configured as null character
strings. The denoising process consists of a total of 30
steps. We introduce our cross-attention reweighting module
between layers 10-15 during the 5th-30th denoising steps.

5.2. Evaluation

We conduct a comparative analysis of our proposed method
against state-of-the-art style transfer approaches, includ-
ing ArtFlow [2], AdaAttN [25], IEST [8], StyTr2 [13],
CAST [50], QuanArt [17], InST [51] and VCT [9].
Qualitative evaluation. The qualitative comparisons pre-
sented in Figure 6 provide a visual assessment of the
outcomes achieved by different style transfer methods. Art-
Flow [2] exhibits limitations regarding style representation
and the smoothness of stylization results. AdaAttN [25]
and IEST [8] exhibit inconsistencies in the generated
output style compared to the input style reference. The
results of QuanArt [17] suffer from a weakening of the
style performance due to the prominence of the content
appearance. CAST [50] and StyTr2 [13] still fall short in
terms of faithfully reproducing the artistic qualities, as “not
real compared with artworks” due to unfaithful style loss
constraints.

Diffusion-based approaches, InST [51] and VCT [9],
encounter challenges in converging towards the optimal
style embedding, leading to failure in generating a similar
style and content as the input (as evident from the content
deviation in Figure 1 and style deviation in Figure 6).
VCT [9] demonstrates better style performance, however,
still suffers from the issue of content bias, as evidenced by
the complete alteration of the girl’s facial identity while not
precisely matching the desired input style. Additionally, it is
worth noting that InST [51] and VCT [9] require a training
time of approximately 20 minutes per style image, whereas
our proposed method does not require any training/tuning.

In contrast, our proposed approach does not rely on a style
loss to enforce conformity of the original image to a different
distribution. Unlike CNN-based methods, our model does
not include a fixed pre-trained encoder, thereby reducing the
loss of content and style information. As demonstrated in
Figure 6, our method achieves captivating stylized results
by effectively transferring style patterns, such as painting
strokes and lines, onto input content images. These style
patterns are skillfully adapted to the content semantics, as
exemplified in the 1st, 3rd, and 7th rows of Figure 6.

User study. To quantitatively evaluate the impact of differ-
ent stylization methods, we conducted a user study to gather
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Content Style Ours VCT InST QuanArt CAST StyTr²      IEST AdaAttN ArtFlow

Figure 6. Compared with other style transfer methods. The content images are presented in first column, the style images are presented in
second column, and the stylized results generated by different methods are presented in the rest.

Table 1. User study results. Each number represents the percentage of votes that the corresponding method is preferred to ours, using the
criteria of overall quality, preservation of content and style, respectively.

VCT [9] StyleDiff [19] InST [51] QuanArt [17] CAST [50] StyTr2 [13] IEST [8] AdaAttN [25] ArtFlow [2]

content 20.6% 16.4% 18.6% 35.5% 23.6% 45.0% 45.9% 32.3% 37.7%

style 30.7% 25.9% 32.3% 28.6% 56.4% 51.4% 40.9% 40.5% 23.6%

overall 29.5% 16.4% 15.9% 35.9% 29.5% 35.5% 36.4% 35.0% 22.7%

public preferences. A total of 55 participants were randomly
selected for the study. We provided them with 10 content
images and 10 style images and generated 100 stylized
results using both our method and comparison methods.
Each participant was shown 32 groups of questions, where
they were presented with a random content/style image
and its corresponding stylized result from both our method
and a random comparison method. The participants were
then asked to answer three questions: 1) which stylization
result better preserves the content, 2) which stylization result

exhibits better style patterns and 3) which stylization result
has a better overall effect. In total, we collected 1, 760 votes.
The vote counts are summarized in Table 1. We can observe
that Z∗ beats all contrast methods on average in terms of
content preservation. Only CAST and StyTr2 outperform
Z∗ regarding style representation, while the difference is
insignificant. In terms of the overall effect, Z∗ clearly
outperforms the comparative methods; showing that Z∗

achieves a balance between style and content, leading to
satisfactory results.
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step 0-10 step 5-20step 10-20 step 15-30step 20-30 step 5-30

Content

Style

Figure 7. Injecting attention module in different denoising steps.

layer 0-5                 layer 5-10              layer 10-15 layer 0-15StyleContent

Figure 8. Injecting attention module in different U-Net layers.

Content Style                Attention Reweighting        Simple Addition               Naive Setting

Figure 9. Results of using different attention arrangement.

5.3. Ablation Study

Influence of the attention injection step and layers. The
impact of the attention injection step and layers on stylization
outcomes is analyzed. As depicted in Figure 7, initiating the
denoising step too early results in the loss of content structure
information, whereas increasing the start denoising step
enhances content preservation but sacrifices style patterns
(as observed in the first three columns of results). On the
other hand, increasing the overall denoising steps makes
style patterns more prominent without compromising content
structure (as evident in the comparison between the second
and fourth columns of results). Consequently, the denoising
process is initiated at the 5th step and concluded at the 30th

step to achieve the most optimal stylized results.
In Figure 8, the stylized results obtained by injecting the

attention module at different layers of the U-Net architecture
are presented. Utilizing all layers in U-Net adversely affects
content structure in the results. The low-resolution layers
in U-Net effectively preserve content structure but transfer
fewer style patterns (layers 5-10). Conversely, the high-
resolution layers in U-Net can extract style features (layers
0-5 and layers 10-15), but encoder layers (layers 0-5) damage
content structure. Hence, the attention module is injected
into the high-resolution layers of the decoder.

Influence of the cross-attention reweighting. To evaluate
the efficacy of the cross-attention reweighting, we provide a
visual representation of the stylized outcome in Figure 9.
We conduct a comparative analysis by considering two
ablation scenarios: 1) the complete removal of content,

Input 1.1 1.2 1.3 1.4 1.5

Figure 10. The effect of λ in Eq. (12) .

as described in Eq. (7), and 2) the utilization of only the
summation operation, denoted by Eq. (8). The coefficient
λ in Eq. (8) is assigned a value of 0.5. As illustrated
in Figure 9, eliminating the content component leads to
compromised preservation of content structures within the
stylized outputs. Similarly, incorporating solely the Query
feature of the content image results in the loss of content
details and insufficient style patterns. In contrast, the cross-
attention reweighting demonstrates a superior ability to strike
a balance between content and style in the stylized results.

Influence of the style scaling factor. We present a visual-
ization of the impact of various values of λ in Eq. (12). The
results, depicted in Figure 10, demonstrate the robustness
of our method to different choices of λ. Specifically, our
approach exhibits satisfactory performance when λ is set to
values greater than or equal to 1.2. Based on these findings,
we adopt a fixed value of λ = 1.2 for all experiments
conducted in this study.

6. Conclusion
This paper introduces a novel zero-shot style transfer
approach that leverages ample prior knowledge within a
pre-trained diffusion model. By incorporating a Key and
Value features attention layer, we modify the self-attention
mechanism in the diffusion model, enabling the use of
Query features to retrieve style-related information from
the Key and Value features. To enhance the preservation of
content structures in stylized outputs, we propose a cross-
attention reweighting technique that incorporates additional
content information and achieves a more favorable balance
between content preservation and style rendering. Extensive
experimental evaluations demonstrate the superiority of our
proposed method in terms of stylization results, outperform-
ing existing state-of-the-art approaches.
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