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Abstract

Existing approaches to video understanding, mainly de-
signed for short videos from a third-person perspective,
are limited in their applicability in certain fields, such as
robotics. In this paper, we delve into open-ended question-
answering (QA) in long, egocentric videos, which allows in-
dividuals or robots to inquire about their own past visual ex-
periences. This task presents unique challenges, including
the complexity of temporally grounding queries within ex-
tensive video content, the high resource demands for precise
data annotation, and the inherent difficulty of evaluating
open-ended answers due to their ambiguous nature. Our
proposed approach tackles these challenges by (i) integrat-
ing query grounding and answering within a unified model
to reduce error propagation; (ii) employing large language
models for efficient and scalable data synthesis; and (iii)
introducing a close-ended QA task for evaluation, to man-
age answer ambiguity. Extensive experiments demonstrate
the effectiveness of our method, which also achieves state-
of-the-art performance on the QAEgo4D and Ego4D-NLQ
benchmarks. Code, data, and models are open-sourced 1.

1. Introduction
In the literature, existing video perception tasks have pri-
marily focused on videos in third-person view, for exam-
ple, action recognition [4, 11, 14], video-language ground-
ing [9, 16, 30], and video question-answering [17, 37, 40],
these videos are short, e.g., typically ranging from 10 sec-
onds to one minute. Until recently, the proposal of Ego4D
dataset [12] re-ignites the interest of video understanding
from egocentric views, where the inputs are normally long,
continuous video streams from the first-person point of
view, i.e., seeing the world through the eyes of an agent
actively engaged with its environment, which resembles an
important step towards deploying vision models into real-
world scenarios, such as robotics and augmented reality.

In this paper, we consider question answering (QA) in
long, egocentric videos, as illustrated in Fig. 1. Given ques-

1https://github.com/Becomebright/GroundVQA

Question:  
where did I put lettuce?

Choices:  
(A) pantry (B) refrigerator (C) cupboard (D) draw

Temporal window:  
20-50s

Answer:  
in the fridge / (B) refrigerator

t=0 t=T

Figure 1. We propose a unified model for addressing grounded
question answering in long egocentric videos, i.e., simultaneously
identifying the temporal window to a question, generating answers
in natural language (OpenQA task), or picking answers from can-
didate choices (CloseQA task).

tions about an egocentric video, e.g., “where did I put let-
tuce”, we aim to build a visual system that can answer the
raised question in free-form language. This task serves two
purposes: enhancing episodic memory [35], i.e., allowing a
person or robot to ask questions on the fly about their own
past visual experience; or probing the multi-modal reason-
ing abilities of deep models.

Question-answering (QA) in long egocentric videos is
challenging, primarily due to the complexity of temporally
grounding and generating answers to the queries within ex-
tensive video content. A pioneer work, overlooking the im-
portance of query grounding, achieves unsatisfactory QA
performance that merely outperforms “blind guessing” [3].
On the other hand, research about temporal grounding in
long egocentric videos, while achieving good progress, is
limited in practical uses without the QA ability. A poten-
tial fix would be chaining models from the two areas, i.e.,
starting by localizing the temporal window to which the
question relates, and followed by answering based on the
corresponding video context. However, such a method is
often ineffective due to error propagation. To address these
challenges, we propose to train a unified model for simulta-
neous query grounding and answering, as shown in Fig. 1.
The unified training has three advantages: First, by train-
ing the grounding task, the model can better grasp query-
relevant information from the long videos, which is helpful
for effective QA; Second, simultaneously training these two
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tasks can reduce error accumulation thanks to the synergy
effect [32] in deep models; Third, predicting a temporal
window helps to understand the cause of failure. Thus, we
propose to solve the query grounding and answering con-
currently, namely GroundVQA.

Nevertheless, training the unified architecture demands
significant resources and effort to manually annotate the
triplets – comprising a question, answer, and temporal win-
dow – on lengthy videos. Limited training data poses a ma-
jor challenge in training large models with millions of pa-
rameters. To combat this issue, we establish an automatic
pipeline that leverages large language models (LLMs) to
generate abundant training samples. This pipeline prompts
LLMs to transform the plentiful, timestamped narrations in
Ego4D into QA pairs, and estimates corresponding tempo-
ral windows. As a result, we produce 303K data samples
from 5,389 video clips, which is a 30-fold increase over the
existing dataset [3]. Our newly created pre-training dataset,
named EGOTIMEQA, effectively mitigates overfitting and
significantly enhances grounding and QA performance.

In addition, we face challenges in evaluating open-ended
answers, i.e., free-form language generation. Although
open-ended QA is more representative of real-world sce-
narios where users interact with systems in natural lan-
guage, it is a common consensus that the existing metrics
like BLEU [27], METEOR [2], and ROUGE [18] are not
fully satisfactory. To address this, we introduce CloseQA,
an alternative close-ended task, where the model is asked
to pick the correct answer from a set of candidate choices.
We again leverage LLMs to generate plausible but incorrect
answers, providing training and testing data for CloseQA.

The rest of the paper is structured as follows: Sec. 2
summarizes and discusses the relevant literature. Sec. 3
begins with an introduction to the proposed model for si-
multaneous query grounding and answering, followed by
an automatic pipeline for augmenting the existing training
dataset in a scalable manner. In Sec. 4, comprehensive ab-
lation studies are presented to demonstrate the effective-
ness of our proposed techniques. Consequently, our model
achieves state-of-the-art performance on the QAEGO4D [3]
and Ego4D-NLQ [12] benchmarks.

2. Related Work

Video language grounding. Video language grounding
(VLG), initially proposed by Hendricks et al. [1], in-
volves identifying and segmenting specific temporal in-
tervals within third-person view videos based on a nat-
ural language description or query [20, 38, 43]. Sev-
eral datasets and benchmarks, such as Charades-STA[9]
and TACoS [30], have been curated to support research in
this field. Notably, the Ego4D-NLQ [12] dataset features
long-form egocentric videos paired with natural language
queries. The NaQ dataset [29] further expands NLQ by re-

purposing the extensive narrations within Ego4D as queries,
thereby enhancing model performance [13]. However, these
narrations are not directly applicable to question-answering
(QA) tasks. To bridge this gap, we introduce a genera-
tion pipeline that transforms these narrations into structured
QA pairs. Additionally, we establish a multi-modal genera-
tive model capable of temporally localizing and answering
a language query given long, egocentric videos.

Video question answering. Video question answering
(VideoQA) entails generating responses to natural language
queries by analyzing video content. This challenging task
requires a detailed understanding of both visual and textual
information. The advent of VideoQA datasets has catalyzed
advancements in VideoQA research and benchmarking. For
instance, ActivityNet-QA [40], which focuses on a variety
of human activities, facilitates the evaluation of a model’s
ability to interpret complex actions and interactions. In con-
trast, How2QA [17], derived from instructional videos, em-
phasizes understanding sequential processes. NextQA [37]
stands out by concentrating on causal and temporal rea-
soning in videos. These datasets typically include short
videos, thereby limiting their relevance to real-world sit-
uations. In response, QAEGO4D [3] offers a long-form
VideoQA benchmark featuring over a thousand egocentric
videos with an average length of 8.2 minutes, each anno-
tated with open-ended answers based on the aforementioned
NLQ data. Our proposed method achieves state-of-the-art
performance on this benchmark.

Annotating VideoQA datasets is labor-intensive and ex-
pensive [39], while insufficient training data often results
in over-fitting. To address this, automatic generation of
VideoQA data has been investigated. For example, Jus-
tAsk [39] generates QA pairs from transcribed speech us-
ing pre-trained language models, substantially expanding
the dataset size. More recently, Large language models
(LLMs) have shown remarkable proficiency in task process-
ing and reasoning. Innovative studies like LLaVA [22] and
MiniGPT-4 [46] leverage the powerful capabilities of LLMs
to generate visual instruction tuning data, achieving notable
success in a range of visual-language tasks. In our study,
we exploit LLMs to transform existing narrations from the
Ego4D dataset into question-answer pairs with temporal
windows, facilitating multimodal understanding for ego-
centric videos. A concurrent work, EgoSchema [25], also
exploits LLMs for constructing QA pairs. Compared to it,
our approach includes both CloseQA and OpenQA, offer-
ing greater real-world applicability. Moreover, EgoSchema
aims to summarize entire videos, while our method empha-
sizes episodic memory, focusing on recalling specific frag-
ments for fine-grained queries.

Egocentric video understanding. Egocentric video un-
derstanding, a rapidly evolving field, focuses on analyz-
ing videos captured by wearable cameras. This field
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Figure 2. Overview of GroundVQA. It addresses three tasks: OpenQA, CloseQA, and VLG. The model processes a video V and a
question Q, to reason about the relevant temporal window T and the answer A. Initially, a frozen video backbone encodes V and maps
it into the language embedding space. Simultaneously, Q undergoes tokenization and is transformed through an embedding layer. These
video and question embeddings are then fused using a visual-language encoder. Finally, a temporal localizer uses the resulting video
features to predict T , whereas a language decoder utilizes both video and question features, as provided by the VL encoder, to generate A.

boosts a wide range of applications, including robotics,
healthcare, augmented reality, and assistance for individ-
uals with visual impairments. Various datasets are acces-
sible to support research in this domain, including EPIC-
KITCHENS [7], which contains videos of kitchen activi-
ties; Charades-Ego [33], featuring various everyday tasks;
and Ego4D [12], which provides a global collection of
diverse egocentric videos. These resources have raised
emerging research problems such as human-object inter-
action [26], action recognition [15], and predictive mod-
eling [10], etc. In this work, we delve into the complex
task of grounded question answering, which demands tem-
porally localizing a segment from an untrimmed egocentric
video that corresponds to a given question, and producing
an answer in natural language.

3. Method

This paper investigates the problem of grounded question
answering in long egocentric videos, i.e., the simultaneous
localization and answering of questions. In Sec. 3.1, we be-
gin by formally defining the task. In Sec. 3.2, we introduce
our model, GroundVQA, that enables temporally ground-
ing of visual questions and generates answers in either free-
form language or a multi-choice format. In Sec. 3.3, we de-
scribe an automatic QA generation pipeline that leverages
Large Language Models (LLMs) to transform narrations
into QA pairs with temporal windows, a strategy proven to
mitigate overfitting caused by limited training data in exist-
ing QA dataset on egocentric videos [3]. Lastly, in Sec. 3.4,
we detail the multi-task training procedure for our model.

3.1. Task Definition

In general, we are interested in the task of generating open-
ended answers to natural language questions, with an em-
phasis on the challenges of temporal grounding and contex-
tual visual-language understanding.

Considering an egocentric video V ∈ RN×H×W×3 and
a question Q := {q1, q2, . . . , qM} as inputs – where N de-
notes the number of frames, H and W are the dimensions
of each frame, andM is the length of the query – our objec-
tive is to construct a model Φ that simultaneously performs
question grounding and answering:

[T ,A] = Φ(V,Q). (1)

The temporal window T := (s, e), defined by its start time
s and end time e, pinpoints a specific segment of the video
that is most relevant to the posed question, aligning with the
concept of Video Language Grounding (VLG). Moreover,
A is the generated responses, which can be in free-form
language for open-ended question answering (OpenQA) or
selected from multiple choices for close-ended question an-
swering (CloseQA). Our proposal involves the concurrent
training of the model on these three tasks.

3.2. A Multi-tasking Architecture

In Fig. 2, we present the architecture of our proposed
GroundVQA, comprising five main components: a lan-
guage embedding layer, a video feature encoder, a linear
projection layer, a visual-language encoder, and a dual-
headed decoder for temporal localization and answer gen-
eration. This section describes each component in detail.

Language embedding layer. This layer transforms the to-
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I will provide you with a series of narrations that depict my 
behavior. You should generate one QA pair based on the 
narrations in the format of {"Q": <question>, "A": <answer>} … 
other detailed requirements 

C pours hot water from the frying pan in his left hand into the 
bowl in his right hand.

{"Q": "What did I pour in the bowl?", "A": "boiling water"}

… other two examples 

C searches through the cabinet. C closes the cabinet. C picks the 
tin from the cabinet. C places the tin on the counter.

{"Q":"Where was the tin before I took it?", "A": "at the cabinet"}

System 
Prompt

In-Context 
Examples

Current 
Input

I'll provide a question and its correct answer. Generate three 
plausible, but incorrect, answers that closely resemble the correct 
one. Make it challenging to identify the right answer. No preamble, 
get right to the three wrong answers and present them in a list.


{"Q": "What did I pour in the bowl?", 

 "A": "boiling water"}

["hot oil", "steamed milk", "warm broth"]

… other two examples 

{"Q":"Where was the tin before I took it?", "A": "at the cabinet”}

["on the counter", "in the fridge", "under the sink"]

(A) Prompt of generating QA pairs for OpenQA (B) Prompt of generating wrong answers for CloseQA

Figure 3. The prompts for generating OpenQA and CloseQA training data with Llama2. (A) First, we generate question-answer pairs
using consecutive narration sentences from Ego4D. (B) Next, we generate three plausible yet incorrect answers for each question-answer
pair to construct data for the CloseQA task. We provide in-context examples to enhance the generation quality.

kenized query into vector embeddings: Q′ = ϕemb(Q).
Specifically, in OpenQA, the term “query” refers to the
questions being asked, whereas in CloseQA, a set ofK can-
didate answers is appended to the question.
Video encoder and projection layer. We utilize a frozen
encoder, ψv, to extract features from the video sequence.
These features are then mapped to the language embedding
space by a linear projection layer: V ′ = ϕproj ◦ ψv(V).
Visual-language encoder. Here, we use several Trans-
former encoder layers [36] that accept the projected video
features and query embeddings as inputs, and fuse the
visual-language information: [Q̂, V̂] = ψvl(Q′,V ′).
Temporal question localizer. The objective here is to
identify a temporal window within the video, that is most
informative for answering the specific question. Our lo-
calizer takes the updated video feature from the visual-
language encoder, and predicts the temporal window, i.e.,
T̂ = ψt(V̂). Specifically, we adopt a similar module as in
GroundNLQ [13] and ActionFormer [41], which consists of
a classification head and a regression head. The classifica-
tion head outputs a probability score for each timestamp’s
relevance to the question, while the regression head esti-
mates the boundary distances from the current timestamp.
Language decoder. To generate answers to specific visual
questions, we use a causal Transformer decoder. This de-
coder cross-attends to the output video and question fea-
tures from the visual-language encoder and generates the
answer in an auto-regressive manner: Â = ψd(Q̂, V̂).

3.3. Generate QA from Narrations

To train our model in concurrent query grounding and an-
swering, as outlined in Equation 1, we utilize the Ego4D
dataset [12]. This dataset comprises a vast collection of ego-
centric videos, each annotated with detailed, timestamped
narrations describing the activities of the person wearing

the camera, with an average of 13.2 sentences per minute.
Our goal is to exploit these high-quality narrations to create
an automated pipeline that generates QA training samples
using large language models (LLMs).

Estimating temporal windows for narrations. In an
egocentric video Vi, narrations are represented by the set
{(Nj , tj)}, where Nj is a narration sentence and tj is its
timestamp. To determine the temporal windows, we adopt
a strategy akin to that in EgoVLP [19]:

Tj =
(
tj −

βi
2α
, tj +

βi
2α

)
, (2)

where βi denotes the average interval between the times-
tamps of consecutive narrations, and α is the average of all
βi values across videos. Essentially, these temporal win-
dows are defined based on the dataset statistics.

Generating OpenQA data. We use an LLM to gener-
ate QA pairs from consecutive narration sentences. Con-
sidering that individual narration sentences are relatively
short (7.4 words on average) and may lack sufficient infor-
mation for generating meaningful questions, we propose to
group consecutive sentences that collectively convey a com-
plete context. Specifically, we segment the chronologically
arranged narrations of a video into chunks. These chunks
are based on either up to 5 sentences or a maximum duration
of 30 seconds, whichever is reached first. For each chunk,
we prompt the LLM to generate one QA pair and merge the
associated temporal windows, resulting in a (Q,A, T ) pair.
As depicted in Fig. 3 (A), the prompt comprises the chunk’s
narrations, detailed instructions, and three in-context exam-
ples to enhance the generation quality.

Utilizing the Llama2-13B model [34] on an NVIDIA
A100 (80GB) GPU, we can generate approximately 20K
QA pairs per hour, which is significantly more efficient than
manual annotation. We apply this method to the training
split of Ego4Dv2 Episodic Memory dataset. Consequently,
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we have created EGOTIMEQA, a grounded QA dataset
containing 5,389 egocentric videos and 303K samples, as
detailed in Tab. 1.

Generating CloseQA data. We prompt the LLM to gen-
erate three options that appear valid but are ultimately in-
correct for a given question-answer pair. The constructed
prompt is illustrated in Fig. 3 (B). We apply this proce-
dure to augment EGOTIMEQA and QAEGO4D, enabling
the training and evaluation of models in a multi-choice sce-
nario. The generation speed reaches 40K samples per hour.

Filtering CloseQA test set. The LLM may generate im-
plausible choices. To maintain the rigor of the CloseQA
task, we filter out questions from the QAEGO4D test set
that are easily answerable without video context. Specif-
ically, we train a text-only “blind” model to identify and
remove questions that are consistently answered correctly
across ten trials with different seeds. Additionally, we per-
form rigorous human verification by eliminating samples
that contain incorrect answers or temporal windows. The
resulting QAEGO4DClose serves as a more refined testing
ground. This ensures that models being evaluated truly re-
quire video content analysis to answer the questions cor-
rectly, thereby emphasizing the visual aspect of CloseQA.

3.4. Multi-task Training

Our model is designed to simultaneously address three
tasks: open-ended question answering (OpenQA), close-
ended question answering (CloseQA), and video-language
grounding (VLG).

Training for question-answering. Training alternates
between OpenQA and CloseQA to ensure proficiency
in both question-answering formats. For OpenQA, in-
puts follow the format question: <question>?
video: <video feature>. While for CloseQA,
inputs are structured as question: <question>?
choices: <choices>. video: <video
feature>. To avoid memorization of answer positions,
candidate answers are randomly shuffled. Moreover, the
model is tasked to not only identify the correct option but
also generate the associated answer, increasing training
complexity. Cross-entropy loss is employed for both tasks,
expressed as LQA = Lce(A, Â).

Training for video-language grounding. Concurrent with
question-answering tasks, our model undergoes training on
the VLG task. We employ temporal jittering [29] to aug-
ment temporal windows through random scaling and shift-
ing. The loss function is a combination of binary Fo-
cal loss [21] and DIoU loss [45], formulated as LVLG =
Lfocal(T , T̂ ) + LDIoU(T , T̂ ).

The final loss is a weighted sum: L = 0.5×LVLG+0.5×
LQA. Incorporating the VLG task into training enhances the
visual-language encoder’s capability to distill relevant in-

Dataset # Video # Sample Supported Task

OpenQA CloseQA VLG

tr
ai

n QAEGO4D 997 11K ✓ ✓ ✓
EGOTIMEQA 5,389 303K ✓ ✓ ✓

va
l QAEGO4D 162 1913 ✓ – –

NLQv2 415 4,552 – – ✓

te
st

QAEGO4D 166 1,850 ✓ – –
QAEGO4DClose 148 500 – ✓ –
NLQv2 333 4,004 – – ✓

Table 1. A summary of detailed dataset statistics. Both the
QAEGO4D and our EGOTIMEQA datasets support training on
OpenQA, CloseQA, and VLG tasks. Hyper-parameters are picked
based on the validating results on QAEGO4D and NLQv2, while
models’ performance is evaluated on corresponding test sets.

formation from videos, thereby boosting QA performance.
Our model can be exclusively trained on VLG by freezing
the LM decoder, or on a QA task by freezing the temporal
localizer. Relevant experiments are provided in Sec. 4.4.

4. Experiments

4.1. Dataset and Metrics

Natural Language Query (NLQ) [12] is a prominent ex-
ample of the video language grounding task. The second
version of this benchmark, NLQv2, comprises 1,659 video
clips, paired with 17.3K natural language queries and corre-
sponding temporal windows. It is split into train, validation,
and test sets, containing 11.3K, 3.9K, and 4K pairs, respec-
tively. For evaluation, we use Recall@k, IoU=m, where
k ∈ {1, 5} and m ∈ {0.3, 0.5}. The primary metric for the
NLQ challenge is Mean Recall@1, computed as the aver-
age of Recall@1, IoU=0.3 and Recall@1, IoU=0.5.

NaQ [29] augments NLQ by repurposing the extensive nar-
rations with Ego4D as queries, including 5,389 video clips
and 945K training samples.

EGOTIMEQA is our contributed pre-training dataset, con-
taining the same video clips as NaQ, while featuring 303K
question-answer pairs with temporal windows.

QAEGO4D [3] expands the NLQ benchmark by manually
annotating open-ended answers on its train and validation
sets. It consists of 1,325 video clips and 14.5K data sam-
ples, further divided into 10,746 training, 1,913 validation,
and 1,850 testing samples. It adopts Accuracy and machine
translation metrics including ROUGE-L (f-score) [18], ME-
TEOR [2], and BLEU-4 [27]. In our experiments, we ex-
clude BLEU-4 because the majority (around 80%) of an-
swers in QAEGO4D are under three words in length, and
Accuracy as it’s not effective due to language ambiguity in
open-ended answers. To further address such ambiguity, we
choose sentence similarity (Sim.) [31] as the primary met-
ric, which maps sentences to a learned embedding space to
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calculate cosine similarity. Specifically, we utilize the Sen-
tence Transformers library and the all-MiniLM-L6-v2
language model to perform the mapping.
QAEGO4DClose. As detailed in Sec. 3.3, we have aug-
mented QAEGO4D with a close-ended question answering
(CloseQA) testing set. We run a model five times on this set
with different seeds and calculate the Accuracy metric.

4.2. Implementation Details

Video backbone features. Recent studies, particularly In-
ternVideo [5] and GroudNLQ [13], have utilized features
from multiple video backbones to improve performance. To
ensure a fair comparison, we use identical video features:
EgoVLP, InternVideo-text, and InternVideo-verb. We con-
catenated these features along the channel dimension, form-
ing 2304-dimensional feature vectors for each time step.
Unless otherwise specified, we uniformly sample 1,200 vec-
tors from these features as model input, which corresponds
to an average of 8.2 minutes of video clips.
Model configurations. We use an instruction-tuned ver-
sion of Flan-T5 [6, 28] as the language model. Our experi-
ments involve its two variants: we conduct ablation studies
using Flan-T5-Small (denoted as GroundVQAS) and
make final comparisons using Flan-T5-Base (denoted
as GroundVQAB). Our temporal localizer is adapted from
ActionFormer [41], without using multi-scale pyramid fea-
tures. This localizer comprises a classification head and a
regression head, each has two layers of 1D convolution with
layer normalization and ReLU activation in between.
Training details. We train all models with the AdamW op-
timizer [24], setting β1 = 0.9, β2 = 0.999, a learning rate
of 1×10−4, and no weight decay. The language embedding
layer of Flan-T5 is fixed during training. Experiments are
carried out on 4 NVIDIA A100 (80GB) GPUs, with gradi-
ent accumulation to maintain a consistent global batch size
of 128. The training process is limited to 100 epochs, with
early stopping based on the validation performance.

4.3. QA Baselines

As baseline models, we adopt the same models used in [3]
and introduce several improvements for a fair comparison.
BlindVQA fine-tunes a T5-Base language model to an-
swer questions without using video input. Essentially,
BlindVQA serves as a language-only model to understand
whether visual signals are essential to a specific question.
SimpleVQA enhances BlindVQA by incorporating visual
capabilities. Here, video features are mapped to the
language space and concatenated with question embed-
dings from an LM encoder. An LM decoder then gen-
erates answers given the merged features. Our proposed
GroundVQA model differs from SimpleVQA, by conduct-
ing visual-language fusion in the encoder and adopting

VLG supervision on the fused video features.

SimpleVQA+ builds on SimpleVQA by adding a rank-
ing loss on LM Decoder’s cross attention. Like our ap-
proach, SimpleVQA+ uses VLG supervision to emphasize
the model’s attention on question-relevant video segments.
However, it cannot predict temporal windows, hindering the
assessment of its grounding ability. Additionally, its perfor-
mance falls short compared to our GroundVQA.

Rehearsal Memory (RM) [44] compresses long videos
into a fixed-size memory. It segments a lengthy video into
uniform parts, each processed by a Transformer encoder.
Then, a recurrent module sequentially attends each segment
feature to update the memory state. RM pretrains the mem-
ory state using reconstruction as a proxy task and further
fine-tunes on the QA task.

Improved baselines. To ensure a fair comparison, we make
several enhancements to the baseline models: (i) Replacing
the original SlowFast [8] features with EgoVLP and Intern-
Video features, as specified in Sec. 4.2; (ii) Upgrading T5
to Flan-T5 and freezing word embeddings during training;
(iii) Increasing the batch size to 128 and adjusting the learn-
ing rate to 1× 10−4. These modifications have consistently
boosted the baseline model performance.

4.4. Ablations

In this section, we conduct experiments to investigate the
effect of our proposal, for example, joint training of multi-
ple tasks, integrating EGOTIMEQA, etc.

Integrating the CloseQA task. As presented in Tab. 2 (A-
B), simultaneously training OpenQA and CloseQA tasks,
despite their varying input-output formats, marginally im-
pacts OpenQA performance. However, this integration of-
fers a more comprehensive and reasonable method for as-
sessing the model’s question-answering capabilities. Thus,
we integrate CloseQA in training as default.

Integrating the VLG task. As shown in Tab. 2, incor-
porating VLG task indeed improves question-answering
performance, e.g., GroundVQAS’s Sentence Similarity in-
creases from 54.8 to 55.6 when trained on QAEGO4D (B-
C) and increases from 56.1 to 57.7 when trained on both
QAEGO4D and EGOTIMEQA (D-E), demonstrating the ef-
fectiveness of our proposed multi-task training approach.

Conversely, SimpleVQA+S utilizes VLG supervision to
direct the LM Decoder’s cross attention towards question-
related video segments. However, this approach results in
diminished QA performance (G to I and H to J). This sug-
gests that the complexity of the VLG task exceeds the ca-
pacity of the cross-attentions.

Unified v.s. separate training. An alternative to our uni-
fied model is training two separate models, one for tempo-
ral grounding and the other for question-answering on the
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Model Additional Data Additional Task OpenQA CloseQA

EGOTIMEQA CloseQA VLG Sim. ROUGE METEOR Accuracy

(A) GroundVQAS – – – 54.9 27.9 18.8 –
(B) GroundVQAS – ✓ – 54.8 27.7 18.7 39.5±0.5
(C) GroundVQAS – ✓ ✓ 55.6 29.0 19.8 40.8±1.0
(D) GroundVQAS ✓ ✓ – 56.1 28.8 20.1 47.2±0.5
(E) GroundVQAS ✓ ✓ ✓ 57.7 30.2 21.2 48.7±0.4
(F) Oracle ✓ ✓ – 58.4 30.9 21.9 53.5±0.7
(G) SimpleVQAS – ✓ – 54.9 28.0 19.0 41.3±0.4
(H) SimpleVQAS ✓ ✓ – 56.1 28.8 20.2 47.1±0.3
(I) SimpleVQA+S – ✓ ⋆ 54.7 27.9 19.0 39.3±0.6
(J) SimpleVQA+S ✓ ✓ ⋆ 55.4 28.1 19.5 42.0±0.7

Table 2. Ablation study on QAEGO4D and QAEGO4DClose test sets. “Additional Data”: adding training data beyond QAEGO4D.
“Additional Task”: incorporating training tasks beyond OpenQA. “Sim.”: the Sentence Similarity metric. “Oracle” represents a variant of
GroundVQAS, taking only question-relevant video segments as input to bypass the need for temporal grounding, thereby establishing the
upper-bound performance. SimpleVQA+ leverages VLG supervision but cannot solve the VLG task, indicated by “⋆”.

Training EGOTIMEQA OpenQA CloseQA

Sim. ROUGE METEOR Accuracy

Two-stage – 54.7 27.3 18.4 39.3±0.8
Unified – 55.6 29.0 19.8 40.8±1.0
Two-stage ✓ 56.0 28.3 19.9 46.4±0.7
Unified ✓ 57.7 30.2 21.2 48.7±0.4

Table 3. Effect of the unified training method. The ”Two-stage”
method separately trains two GroundVQAS models: one for the
VLG task, and the other for QA tasks using relevant video seg-
ments. During inference, it uses the grounding results from the
first model in the question-answering process of the second model.

QAEGO4D EGOTIMEQA NLQv2+NaQ Mean R@1 Mean R@5

✓ – – 8.8 20.0
✓ ✓ – 18.4 37.2
✓ ✓ ✓ 20.9 42.5

Table 4. Data scaling effect on the NLQv2 val set. We train our
GroundVQAS model on OpenQA, CloseQA, and VLG tasks with
different training data, and evaluate its VLG performance.

grounded video clip. Results in Tab. 3 validate the effec-
tiveness of our unified training method.

Incorporating EGOTIMEQA data. Our data generation
method produces 303K samples, a 30-fold increase over
the QAEGO4D training set, resulting in notable perfor-
mance gains in QA and VLG tasks. The QA metrics for
GroundVQAS demonstrate significant enhancements, as ev-
idenced in Tab. 2 (B to D and C to E). Similar improvements
are observed for SimpleVQAS (G-H) and SimpleVQA+S

(I-J), confirming the generality and effectiveness for EGO-
TIMEQA. In Tab. 4, EGOTIMEQA also boosts VLG recall
by a large margin, which is further amplified with NLQ and
NaQ data. Notably, as depicted in Fig. 4, the value of EGO-
TIMEQA is even more evident in overcoming overfitting.

Combining the above enhancements (A-E in Tab. 2), our
method closely approaches the oracle upper bound (F), with
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Figure 4. Training and validation curves of GroundVQAS. The
limited training data of QAEGO4D results in severe overfitting,
which is effectively mitigated by our generated EGOTIMEQA.

the main gap due to imperfect temporal grounding.

4.5. Comparison with State-of-the-art

In this section, we compare our model to the state-of-the-art
on OpenQA, CloseQA, and VLG tasks, and present quali-
tative examples in Fig. 5.
On QAEGO4D. We report results on the QAEGO4D test
set in Tab. 5. To ensure fairness, we reproduce the other
methods using identical settings (detailed in Sec. 4.3). Our
model achieves the best performance, outperforming prior
works by a large margin.
On NLQv2. We then assess VLG performance on the
NLQv2 test set. As seen in Tab. 6, our model, without com-
plex design or multi-scale feature pyramids [13], matches
the SOTA performance. GroundVQA†

B exhibits further im-
provements by pre-training on NLQv2 and NaQ, and fine-
tuning exclusively on NLQv2.
Qualitative analysis. Fig. 5(A) shows an OpenQA exam-
ple. Our model successfully predicts the temporal window
and the answer, while SimpleVQA∗ fails. Although our pre-
dicted answer slightly differs from the ground truth, it’s still
valid, highlighting the challenge of paraphrasing in evalu-
ating open-ended answers, thus reflecting the advantage of
our CloseQA task. Fig. 5(B) demonstrates a CloseQA ex-
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Figure 5. Qualitative examples. In our demonstration, we compare three models: the Oracle baseline, our GroundVQA, and SimpleVQA∗.
Each column presents a sample that includes the query Q, the ground truth answer A, three frames from the grounded video segment, and
the predicted answer Â. Additionally, each column illustrates the video’s time span and the predicted temporal window T , with Oracle’s
temporal window serving as the ground truth. Note that SimpleVQA∗ is incapable of predicting the temporal window.

Method OpenQA CloseQA Param
Sim. ROUGE METEOR Accuracy

BlindVQA - 25.9 17.4 - 247
BlindVQA∗ 53.8 27.5 18.4 36.3±0.5 247
SimpleVQA - 26.1 17.4 - 249
SimpleVQA∗ 55.7 28.6 19.3 41.1±0.5 249
SimpleVQA+ - 27.1 18.3 - 249
SimpleVQA+∗ 55.7 28.8 19.5 41.4±0.3 249
RM - 26.6 17.7 - 368
RM∗ 54.1 27.3 18.5 39.9±0.8 368
GroundVQAB 58.2 30.4 21.5 50.2±0.5 252

Table 5. Comparison with the state of the art on QAEGO4D
and QAEGO4DClose test sets. “Param”: number of parameters in
millions. Gray results are reported in [3] while “∗” denotes our re-
producing performance with several enhancements. “BlindVQA”
represents the lower-bound baseline, learning only language bias.

ample. Our model shows competence in predicting a close
temporal window and identifying the correct answer. On the
contrary, SimpleVQA∗ chooses an incorrect answer, while
the absence of temporal localization hinders understanding
of its error source. Fig. 5(C) is a failure case of our model
and SimpleVQA∗. Yet, our model’s temporal window pre-
diction is relevant to the query, and the predicted answer
is coherent with the grounded content. This highlights an
issue of the QAEGO4D and NLQ annotations, where multi-
ple relevant video segments and plausible answers exist, but
only one annotation is available per query.

We present additional results in the supplementary ma-
terial, including the impact of using different LLMs to gen-
erate QA data, a more in-depth statistical analysis of EGO-
TIMEQA, additional qualitative findings, prompts for gen-
erating QA data, limitations, and future work.

Method
Recall@1 Recall@5

Mean IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

VSLNet [42] 4.08 5.42 2.75 8.79 5.07
EgoVLP [19] 8.35 10.46 6.24 16.76 11.29
ReLER [23] 10.51 12.89 8.14 15.41 9.94
NaQ++ [29] 17.67 21.70 13.64 25.12 16.33
GroundNLQ [13] 20.91 24.50 17.31 40.46 29.17
GroundVQAB 19.31 23.65 14.96 36.19 24.58
GroundVQA†

B 22.15 26.67 17.63 39.94 27.70

Table 6. Comparison with the state of the art on the NLQv2

test set. “GroundVQAB” is simultaneously trained on all three
tasks with QAEGO4D and EGOTIMEQA data. “GroundVQA†

B”
follows NaQ++ and GroundNLQ, pre-trained solely on the VLG
task with NLQv2 and NaQ data, and further fine-tuned on NLQv2.

5. Conclusion
In conclusion, this paper tackles the challenge of grounded
question answering in long egocentric videos. We demon-
strate the crucial role of precise temporal grounding in ef-
fective question-answering and propose a novel, unified
model that concurrently tackles both tasks. To counter the
risk of overfitting due to limited training data, we introduce
an automated pipeline for generating extensive question-
answer pairs from narrations using LLMs. Additionally,
to address the challenge of evaluating open-ended answers,
we present the CloseQA benchmark, ensuring more reli-
able evaluations. Extensive ablation studies confirm the ef-
fectiveness of our approach, which achieves state-of-the-
art performance on the QAEGO4D and the Ego4D-NLQ
benchmarks, marking a significant advancement in the field
of egocentric video understanding.
Acknowledgements. This work is supported by National
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