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Figure 1. Our method estimates detailed geometry and reflectance maps, yielding convincing rendering under new lighting conditions.

Abstract

Reconstructing an avatar from a portrait image has
many applications in multimedia, but remains a challenging
research problem. Extracting reflectance maps and geom-
etry from one image is ill-posed: recovering geometry is a
one-to-many mapping problem and reflectance and light are
difficult to disentangle. Accurate geometry and reflectance
can be captured under the controlled conditions of a light
stage, but it is costly to acquire large datasets in this fash-
ion. Moreover, training solely with this type of data leads
to poor generalization with in-the-wild images. This moti-
vates the introduction of MoSAR, a method for 3D avatar
generation from monocular images. We propose a semi-
supervised training scheme that improves generalization by
learning from both light stage and in-the-wild datasets. This
is achieved using a novel differentiable shading formula-
tion. We show that our approach effectively disentangles the
intrinsic face parameters, producing relightable avatars. As
a result, MoSAR1 estimates a richer set of skin reflectance
maps and generates more realistic avatars than existing
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1Project page: https://ubisoft-laforge.github.io/character/mosar

state-of-the-art methods. We also release a new dataset,
that provides intrinsic face attributes (diffuse, specular, am-
bient occlusion and translucency maps) for 10k subjects.

1. Introduction

Avatars are an important component of virtual worlds, being
widely used in virtual reality, multimedia and video-games.
Realistic personalized avatars, often called digital doubles,
serve as bridge between the physical world and digital real-
ities. The light stage [13] has long been regarded as the pri-
mary solution to obtain high-quality realistic avatars, how-
ever their high cost restricts their availability to the gen-
eral public. They also require physical presence of users for
scanning, which is impractical for many applications.

In contrast, creating avatars from a single monocular im-
age enables a wide range of applications [6, 11, 16, 17, 19,
20, 34, 53–55, 66]. These methods are fast and robust to ar-
bitrary capture conditions, however, they fall short in terms
of quality for high-level multimedia production standards.

Moreover, these approaches often produce avatars that
cannot seamlessly be integrated in tools used by content cre-
ators and artists, which limits the ability to edit the captured
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avatars. For example, modern graphic engines render re-
alistic faces by relying on advanced materials and texture
maps that these methods do not support. Even state-of-
the-art methods [30–32, 40, 63] are limited to estimating
diffuse, specular, and normal maps, while modern engines
use a broader range of maps including ambient occlusion
and translucency to simulate global illumination and sub-
surface scattering.

In this paper, we propose a new method for generating
3D avatars from a single monocular image. It estimates rich
reflectance maps including ambient occlusion and translu-
cency, in addition to diffuse, specular, and normal maps, all
at a 4K resolution. Our method can separate light contribu-
tions from the ambient occlusion and translucency from the
diffuse maps because it relies on high-quality light stage
data. It generalizes well to uncontrolled capture condi-
tions because it also trains on a large quantity of in-the-wild
monocular images using self-supervision. This is made pos-
sible by our new differentiable shading formulation. This
paper makes the following main contributions:

• We propose a semi-supervised training scheme leveraging
high-quality light stage data, and large quantities of in-
the-wild images. This allows for the estimation of a rich
set of reflectance maps, as well as accurate geometry.

• We establish non-linear morphable models as a promis-
ing avenue to recover geometry from a single image by
ranking in 2nd place on the REALY benchmark [4], so
far largely dominated by linear models.

• We introduce a new differentiable shading formulation
that incorporates, for the first time, the ambient occlu-
sion and translucency maps with the spherical harmonics
lighting model.

These contributions culminate in a more accurate and
detailed head model than other state-of-the-art monocu-
lar avatar reconstruction methods. Figure 1 shows results
from our method. In addition to our method’s contribution,
we introduce a new dataset, named FFHQ-UV-Intrinsics,
the first public dataset providing intrinsic face attributes at
scale (diffuse, specular, ambient occlusion and translucency
maps) for a total of 10k subjects. We built it by applying our
method to the dataset FFHQ-UV[2].

2. Related works

3D Geometry reconstruction Monocular face recon-
struction is commonly treated in a self-supervised way [67],
by modeling a parametric scene with geometry, light, re-
flectance, and camera parameters. These are used in con-
junction with a differentiable renderer [28], enabling learn-
ing from images only. There are three main types of ap-
proaches for the parametric geometry model: (i) using lin-
ear morphable models (3DMM), (ii) learning unconstrained
geometry, and (iii) learning non-linear 3DMMs.

Methods based on linear 3DMMs [5, 12, 15, 18, 20,
34, 49, 53, 65] are bound by the statistical space of the
3DMM, which restricts their expressiveness. Methods such
as [47, 51, 64] estimate unrestricted geometry. These meth-
ods output dense meshes that require registration to a stan-
dard topology to be used in most applications.

Other methods such as [57, 58] learn a non-linear mor-
phable model. These methods train a decoder that esti-
mates the geometry under the weak supervision of another
decoder that predicts 3DMM coefficients. The geometry
produced by these methods often contains artifacts as noted
in [18]. Graph neural networks (GNN) have been used to
refine the geometry obtained from 3DMMs [21, 36], or to
directly estimate geometry and reflectance [33]. In [1], a
non-linear part-based GNN auto-encoder is trained for lo-
cal shape editing.

Our method is not restricted nor regularized by linear
3DMMs and instead implements a non-linear morphable
model using GNN auto-encoders [46], inspired by [33] and
[1]. Our proposed semi-supervised training scheme miti-
gates artifacts in the geometry while keeping it unbounded.

Skin reflectance To reconstruct a relightable avatar from
an image, the intrinsic skin reflectance attributes must be
disentangled. Recovering face attributes from single in-the-
wild images is an ill-posed problem. Most existing methods
[20, 53] use a Lambertian Bidirectional Reflectance Distri-
bution Function (BRDF) [8] and a statistical PCA basis for
albedo estimation, which largely limits their expressivity.

Some methods go beyond a statistical basis. In [17–19],
skin reflectance is modeled using a Microfacet BRDF [56],
with diffuse and specular components only regularized by
the PCA model. Nevertheless, this leads to blurry textures
and fails to capture fine-grained details of the skin. Lee et
al.[33] learn an unbounded skin reflectance model, how-
ever, the estimated texture map bakes light, geometry, and
skin color (diffuse and specular) making it unsuitable for
relighting. Finally, other methods [30–32, 40, 63] train a
conditional GAN to estimate diffuse, specular, and normal
maps for relightable avatars, but use only light stage data.

Our proposed method extends the Microfacet BRDF and
estimates a richer skin reflectance than existing methods. It
produces Ambient Occlusion and Translucency maps, all in
4K, enabling more realistic avatars. These maps are also
compatible with modern technical artist tools and rendering
engines. Our semi-supervised training scheme, which uses
a novel differentiable shading formulation, allows for disen-
tangling diffuse from ambient occlusion, as well as specular
and translucency maps, from in-the-wild images.

3. Method
An overview of our method is shown in Figure 2. First,
the 3D shape reconstruction module (Section 3.1) estimates
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Figure 2. Overview of the proposed pipeline. In the first step, the 3D geometry of the face is estimated, and the image is projected onto the
UV space. This texture is then used to estimate reflectance and displacement maps in 4K in a series of steps described in Section 3.

Figure 3. 3D Face reconstruction pipeline: An encoder E estimates
the scene parameters χ, used by a Differential Renderer (DR) to
obtain the estimated vertex colors, displayed here as an image.

the geometry and camera position used to project the input
image onto UV space. Then, the texture completion net-
work (Section 3.2) estimates the missing parts of the tex-
ture. Next, light is normalized across the entire face (Sec-
tion 3.3), and the intrinsic texture map estimation (Section
3.4) recovers various texture maps (i.e diffuse, specular, dis-
placement, ambient occlusion and translucency). Finally, a
super-resolution network upscales the maps to 4K. We train
this architecture in a semi-supervised manner, using (i) light
stage data, that contains raw images, ground truth geometry,
and reflectance maps, and (ii) in-the-wild images, for which
we do not have ground truth.

3.1. 3D Shape Reconstruction

We represent the scene with a parametric model, defined by
χ = {α, δ,β,γ,ϕ}, with neutral shape (identity) parame-
ters α, expression coefficients δ, reflectance coefficients β,
light coefficients γ and camera parameters ϕ, as shown in
Figure 3. This decomposition is similar to previous work
[17, 22, 53], but we propose a novel procedure to learn a
non-linear representation of identity.

We use a part-based GNN model inspired by [1, 46] to
generate a detailed neutral mesh. While this method was
proposed for artist-controlled geometry editing, our pro-
posed semi-supervised training procedure makes it effective
for monocular face reconstruction, improving modeling ac-
curacy when compared to linear 3DMMs.

The GNN model is composed of a collection of encoders

Gi each responsible for translating the vertices of a specific
part of the face into a latent representation αi where i ∈
[0, . . . , 7]. These are concatenated in a single vector α, and
fed to a decoder F(α), that reconstructs the entire input
mesh. We use the same architecture as [1].

We represent facial expressions as a set of linear dis-
placement blendshapes E. Given parameters α and δ, we
obtain the geometry as V̂ = F(α) +

∑
i δiEi, where Ei is

the ith blendshape in the set.
For reflectance, we use a Lambertian BRDF model, with

a PCA basis on per-vertex albedo colors. We model light
using 3rd-order spherical harmonics, and we use a pinhole
camera model.

Training We train two components at this stage: the GNN
model producing neutral meshes and a scene-encoder E
translating images into scene parameters χ. We first pre-
train the GNN model in a supervised way with the light
stage data, following the work of [1]. Next, we train
the scene encoder E and the GNN decoder F in a semi-
supervised manner. We combine the in-the-wild data with
light stage data, for which we have ground truth vertex po-
sitions used for supervision.

When training with in-the-wild data, we rely solely on
self-supervision. The differentiable renderer uses the esti-
mated geometry V̂ , reflectance coefficients β, light coeffi-
cients γ and camera parameters ϕ to compute the final color
(irradiance) for each vertex, as in [53]. These are then com-
pared to their corresponding pixels in the input image X .
Additionally, we extract landmarks l using an off-the-shelf
detector [3]. We minimize the following loss function:

Lu = Lphoto + Llandmark + Lreg, (1)

where the photo-consistency loss Lphoto is the ℓ1-norm be-
tween the predicted vertex colors and their associated pixel
colors in the input image; Llandmark is the ℓ2-norm of the
distance between the landmarks l and the perspective pro-
jection of their associated mesh vertices. Lreg is the regular-
ization term defined as:

Lreg = Llap + Llight + Lexp + Lalb. (2)
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Llap is the Laplacian smoothing operator from [23] applied
to the estimated mesh V̂ , which minimizes the mean sur-
face curvature. Lexp is the ℓ1-norm of the expression coef-
ficient vector acting as a regularization term. Llight encour-
ages monochromatic light (similar to [17]), while Lalb reg-
ularizes against implausible face deformations using prior
albedo statistics as defined in [53]. We note that the term
Llap if required since F is not restricted to a parametric
model, and thus requires regularization to avoid producing
implausible geometry.

When training with light stage data, we leverage the
ground-truth mesh vi associated with the image Xi. In that
case we complement Lu with Lsupervised and Lnrm which are
respectively the ℓ2-distance between the vertices of the esti-
mated and GT mesh, and the cosine distance between their
normal vectors:

Ls = Lu + Lsupervised + Lnrm. (3)

We omitted weighting coefficients (λ) of the loss term
for better readability. They are specified in the supplemen-
tary material.

Finally, at inference time, we further refine the scene pa-
rameters for the input image. Similarly to [17], we directly
optimize the parameters χ to minimize Equation 1, using
the Adam optimizer [29], with the values given by the scene
encoder χ = E(X) as initialization.

3.2. Texture completion

We project the image onto the UV space using the esti-
mated geometry and camera information. This produces an
incomplete texture because certain regions of the face are
occluded, as illustrated in Figure 2.

Similarly to [14], we estimate a complete texture map
from an incomplete map alongside its mirrored version. To
train this model, we create synthetic textures simulating in-
the-wild settings from light stage data. We render faces
from random camera angles and HDR maps, then project
onto UV space. This creates self-occlusions and non-visible
areas similar to real images. We train an image-to-image
translation network, by minimizing the ℓ1-distance between
the estimated texture and the ground truth.

3.3. Light normalization

The light normalization step aims to produce uniform light
on the subject, mimicking the controlled light conditions of
the light stage. This enables using simple light models for
the remaining of the pipeline, such as Spherical Harmonics
[44, 52], even for in-the-wild images, that can present com-
plex lighting conditions. If this step is omitted, unexplained
light contributions (e.g. strong directional lights) end up
baked in the final estimated reflectance maps.

Figure 4 illustrates the training procedure for the light
normalization network. We first perform the shading in UV

Figure 4. Light normalization step: We render faces in UV space
with random light and camera positions. The network then esti-
mates a light-normalized map M.

space, using the mesh geometry V and its associated tex-
ture maps. We use random environment maps, camera po-
sitions with the rendering Equation 5. The resulting tex-
ture is fed to a U-Net architecture that generates a normal-
ized texture M. The network is trained to minimize the ℓ1-
distance between the estimated normalized texture and the
target ground truth. The target texture is obtained by pro-
jecting the images from all light stage camera views onto
UV space, and then aggregating them in a single image.

3.4. Intrinsic texture maps estimation

The normalized texture M and the estimated geometry V
are used to estimate different face attribute maps: Diffuse
D, Specular S, Ambient Occlusion A, Translucency T and
Normal map N , as depicted in Figure 5.

A separate network is used to estimate each of the re-
flectance maps. This architecture could be trained using
only light stage data by supervising the output of each net-
work. To achieve better generalization outside the light
stage, we seek training on in-the-wild images as well. For
this, we add an encoder C to estimate the residual light γ̂
and the camera position ϕ̂, and introduce a new differen-
tiable shading formulation (DS in Figure 5). DS outputs a
new shaded texture M̂ which can then be compared to M.
This allows our model to be trained in a semi-supervised
manner, combining light stage and in-the-wild datasets. The
encoder C captures residual light that was not removed dur-
ing the Light Normalization step (Section 3.3). This pre-
vents the model from baking this light into one of the tex-
ture maps.

To estimate the normal map N , we first predict the dis-
placement map following a patch-based approach as in [7].
First, a PCA basis is built on patches of displacement maps
from the light stage data. A coarse displacement encoder
(refer to Figure 5), estimates the PCA coefficients that best
reproduce a patch of the texture M. This PCA captures
repeated patterns (e.g. wrinkles) and low to medium fre-
quency details. This approximation is further refined by a
second U-Net model that complements the patch with high-
frequency details (e.g. skin pores and moles). Finally, the
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Figure 5. Texture estimation pipeline: Reflectance and normal
maps are estimated by reconstructing the light-normalized texture
M using Differentiable Shading (DS).

normal map is obtained from the displacement map using a
Fast Fourier convolution.

To estimate the remaining maps (D,S,A, T ), we use
image-to-image translation networks. For the diffuse D
and specular S, the generators predict the maps from the
normalized texture image M. For A and translucency T ,
the generators also use the geometry V projected onto UV
space. We use adversarial training, by defining a discrim-
inator for each texture map. These networks are trained
jointly, with the following loss:

L = Lshading +
∑

D,S,A,T
(LGAN(G,D) + Lsup), (4)

where Lshading is the ℓ1 reconstruction loss between M and
M̂, LGAN(G,D) is the adversarial loss described in [25],
applied for each texture map separately. Finally, when train-
ing with light stage data, we also compute Lsup as the ℓ1 loss
between the ground truth and predicted maps. We omitted
weighting coefficients (λ) of the loss term for better read-
ability. They are specified in the supplementary material.

Differentiable shading. The differentiable shading DS
(in Figure 5), takes the predicted textures (D, S, A, T and
N ), camera parameters ϕ̂, light coefficients γ̂ and outputs a
new texture map M̂. We formulate our shading equation,
for each pixel m̂ in M̂, extending the Microfacet BRDF
model [56] as follows:

m̂ = Bd + Bsss + Bs, (5)

where Bd, Bsss and Bs are the diffuse, subsurface scatter-
ing and specular contribution respectively, described in the
equations below.

To model the diffuse component of the skin Bd, we ex-
tend the diffuse Lambertian model with an additional term

a that captures residual diffuse ambient occlusion in areas
that receive less light such as wrinkles, folds, and nostrils.
Bd is calculated as follows:

Bd = d · a ·
2∑

l=0

l∑
m=−l

Al · γ̂m
l · Y m

l (n), (6)

where d, is the diffuse albedo obtained from the diffuse D
map, and a is the residual ambient occlusion term from A.
Al are the Lambertian BRDF coefficients [43, 44]. γ̂ are
the SH coefficients, and Y m

l are the SH basis [44]. n is
the pixel normal (using normal mapping). For the diffuse
component, we use 3rd-order spherical harmonics (l = 2)
as it has been shown in [43] that it captures 99% of the
reflected radiance.

Next, we introduce a new subsurface scattering contri-
bution Bsss which indicates where thinner parts of the face
(e.g. nose, lips, and ears) scatter more light than other
thicker areas, defined as:

Bsss = d ·
2∑

l=1

l∑
m=−l

Sl · γ̂m
l · Y m

l (n), (7)

with Sl = e−l2/t4 , with t being the translucency value from
T . Intuitively, thicker parts of the face would have a low
value in T which in turn would negate the Bsss contribution
through Sl nearing 0.

Finally, we compute the specular component Bs as the
spatial convolution of the SH light representation with the
BRDF roughness kernel. This kernel is constant in the sim-
plified Microfacet BRDF model that we use. Thus our spec-
ular contribution Bs is defined as:

Bs = f ·
8∑

l=0

l∑
m=−l

Rl · γ̂m
l · Y m

l (r), (8)

where f = s+ (1− s)(1− cos θ)5 is the Fresnel reflection
[59] calculated using Schlick’s approximation [50]. f quan-
tifies the proportion of light that is reflected and depends on
the angle at which light hits the surface. θ is approximated
with the angle between the normal vector and the camera
view direction [45]. s ∈ R is specular intensity from S. ri
is the reflection vector of the viewing vector (obtained from
the camera position ϕ̂) according to the surface normal [59],
and Rl are the SH coefficients of the BRDF function corre-
sponding to the roughness [37, 45]. For the specular con-
tribution, we use 9th-order spherical harmonics (l = 8) for
better approximation of the specular reflection [18].

Equation 5 is fully differentiable with respect to all tex-
ture maps, allowing for gradient-based optimization of the
generators. We note that the diffuse d and ambient occlu-
sion a have the same contribution, and therefore cannot be
separated using only self-supervised training. For instance,
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the model can bake all the information in a single diffuse
map which results in a sub-optimal separation. Our semi-
supervised training scheme (Equation 4) allows for this sep-
aration, by leveraging ground truth data from light stage in
conjunction with the unlabeled data.

3.5. Super-resolution

We use super-resolution at the last step, to obtain 4K tex-
ture maps. We train two ESRGAN models [61]: one that
upsamples the input to 1K and one that upsamples to 4K, as
in [35]. Both are trained with data from the light stage.

4. Experimental protocol

Datasets The light stage dataset is composed of 890 sub-
jects, captured with a neutral pose. For every subject, 12
cameras capture frontal and side views. The geometry is
obtained using a Multi-View reconstruction pipeline, fol-
lowed by registration to a standard topology. Each subject
has diffuse, specular, displacement, ambient occlusion and
translucency maps in 4K. We keep 50 subjects for validation
and use the remaining for training.

We train the 3D reconstruction model with the light stage
dataset and 70k images from the FFHQ dataset [26]. We
crop and resize the images to the resolution of 512 × 512.
We apply standard data augmentation (brightness, rotation,
scale, and flip). For texture estimation, we use the light
stage dataset and FFHQ-UV [2], which contains 54k tex-
tures obtained from StyleGAN [27]. We normalize the
FFHQ-UV textures using our light normalization network.
The textures are processed in resolution 512× 512.

Training For the 3D geometry estimation (Section 3.1), E
is a ResNet-50 [24]. For F we use the same architecture as
[1] from their open-source implementation. We train both
networks for 20 epochs, using a batch size of 32 images,
equally divided between light stage and in-the-wild data.

The texture completion network is trained for 20 epochs
on the light stage data following the data augmentation de-
scribed in Section 3.2. We train the light normalization net-
work for 20 epochs, using random environment maps sam-
pled from a collection of 190 HDR maps2.

The displacement map estimation is done in patches in
the full resolution (4K). We manually selected 20 wrin-
kled subjects from the training set to obtain the PCA basis
for coarse displacement, as done in [7]. After training the
coarse displacement encoder for 5 epochs, we jointly train
the coarse and fine displacement networks for 15 epochs.

The texture estimation networks are trained on the light
stage data and the FFHQ-UV dataset. We use a batch size of
2 containing a labeled and an unlabeled image. All the gen-

2https://polyhaven.com

Figure 6. Comparison of 3D face reconstruction methods.

erators are 5-layer U-Nets with skip connections [48]. We
use the patch GAN multi-scale discriminators from [41].

5. Results
5.1. Geometry estimation

In this section, we evaluate our method for 3D shape recon-
struction. We compare to different state-of-the-art methods,
including methods that specialize in geometry prediction
without supporting texture map generation.

First we visually compare our results to DECA [20],
HRN [34], Deep3D [15] and FaceVerse [60]. Figure 6
shows the estimated geometry of each method under the
same rendering conditions. Our method produces meshes
with more similar likeness to the input images, notably on
the nose, eyes, cheeks, and the shape of the face. It also bet-
ter captures higher-frequency details such as wrinkles and
folds than the other methods. While HRN captures some of
the details, they are not as fine and precise as ours. More-
over, HRN produces noticeable artifacts around the eyes
and nose. The details captured by DECA are not as visible
and sometimes missing. Deep3D does not predict displace-
ment maps and does not capture any of the folds and wrin-
kles. DECA, Deep3D, and FaceVerse avoid baking glasses
in the geometry, while HRN and our method do. The sup-
plementary material contains additional comparisons.

For a quantitative analysis, we compare our method to
state-of-the-art methods using REALY [4], a publicly avail-
able benchmark. This evaluation framework uses multi-
view rendered portrait images of 100 high-quality scans
from the HeadSpace dataset [9, 10]. Geometric reconstruc-
tion errors are computed separately on different face regions
which reduces imprecision caused by alignment errors and
allows for a fine-grained analysis of the results. For each
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Error (mm)
Method Nose Mouth Forehead Cheeks All

MICA [66] 1.585 ± 0.325 3.478 ± 1.204 2.374 ± 0.683 1.099 ± 0.324 2.134
DECA [20] 1.697 ± 0.355 2.516 ± 0.839 2.394 ± 0.576 1.479 ± 0.535 2.010
PSL [39] 1.708 ± 0.349 1.708 ± 0.563 2.350 ± 0.551 1.593 ± 0.540 1.882
AlbedoGan [42] 1.656 ± 0.374 2.087 ± 0.839 2.102 ± 0.512 1.141 ± 0.303 1.746
Deep3D [15] 1.719 ± 0.354 1.368 ± 0.439 2.015 ± 0.449 1.528 ± 0.501 1.657
HRN [34] 1.722 ± 0.330 1.357 ± 0.523 1.995 ± 0.476 1.072 ±0.333 1.537
HiFace (w/o synthetic) [5] 1.227 ± 0.407 1.787 ± 0.439 1.454 ± 0.382 1.762 ± 0.436 1.558
HiFace [5] 1.036 ± 0.280 1.450 ± 0.413 1.324 ± 0.334 1.291 ± 0.362 1.275

Baseline (linear 3DMM) 1.815 ± 0.516 1.725 ± 0.576 2.550 ± 0.825 1.469 ± 0.511 1.890
MoSAR (ours) 1.499 ± 0.366 1.424 ± 0.462 1.950 ± 0.559 1.128 ± 0.303 1.500

Table 1. Reconstruction errors on the REALY benchmark.

face region, the mean of the per-vertex ℓ2-distance between
the predictions and the ground truth is reported in Table 1.

Our method ranks second on reconstruction error aver-
aged for all parts, being surpassed only by the full HiFace
model [5] when trained with 200k synthetic images with
ground-truth meshes. The addition of the synthetic dataset
significantly improves HiFace’s results, which otherwise
would perform a bit worse than ours. We believe that our
method would similarly benefit from this additional data.

Our results indicate that non-linear morphable models
can perform competitively compared to the dominating lin-
ear 3DMM. We included in Table 1 an implementation of
our method using a linear 3DMM, a PCA created with the
same light stage dataset. Except for the geometry model,
all other factors were kept constant (i.e. dataset, encoder ar-
chitecture). These results show that the improvement stems
from the higher expressivity of non-linear modeling.

5.2. Texture estimation ablation

This ablation study evaluates the effect of light normaliza-
tion (Section 3.3) and the proposed semi-supervised train-
ing scheme (Section 3.4) on the quality of the predicted tex-
ture maps. As a baseline, we train our system in a fully-
supervised manner without light normalization, using only
light stage data. This means that our differential shading is
not required for self-supervision, thus, we ignore the term
Lshading on Equation 4. Then, we include the light normal-
ization to the baseline model to measure its impact. For
completeness, we train a model in a purely self-supervised
manner, without any light stage data.

To evaluate these systems on settings similar to in-the-
wild, while having access to ground truth maps, we ren-
der subjects from our light stage validation data under novel
lighting conditions using random HDR maps. From 50 sub-
jects, we generate 1000 renders. We report the Structural
Similarity Index (SSIM) [62] between the predicted and
ground-truth maps.

Results are shown in Table 2. The supervised method,
trained using only light stage data underperforms, indicat-
ing poor generalization when confronted with the variety
of lighting conditions in the wild. Our light normalization
step reduces this problem by attenuating specular highlights
and strong shadows. Consequently, it improves SSIM, es-

Method Diffuse Specular AO Transl.

Supervised 0.69 0.28 0.61 0.67
+ Light Normalization 0.80 0.55 0.82 0.79

Self-supervised 0.80 0.19 0.36 0.65

Full (Semi-supervised) 0.83 0.65 0.85 0.82

Table 2. SSIM metric between estimated and ground truth texture
maps, for different settings of our method (higher is better).

pecially on the specular map. On the other hand, the self-
supervised method, which is trained without any ground-
truth textures, fails to disentangle the contributions of dif-
ferent maps, as expected, since they are entangled in the
rendering Equation 5. It bakes most of the information in
the diffuse albedo map and is therefore unsuitable for re-
lighting applications. Our full model obtains the best SSIM.
It takes advantage of high-quality light stage data to bet-
ter disentangle the contributions of different maps, as op-
posed to the self-supervised-only version. Moreover, train-
ing from in-the-wild images exposes the model to a wide
variety of lighting conditions and allows for training with a
larger quantity of data. This translates to improvements on
every map, but especially the specular map.

Aside from improving SSIM, our full model produces
visually sharper and cleaner maps when applied to in-the-
wild data, as shown in Figure 8. Our semi-supervised train-
ing helps to better separate the intrinsic face attributes. For
instance, the supervised-only model bakes specular reflec-
tions in the diffuse map. This is observed on the specular
highlights of the nose, which our full model successfully
removed from the diffuse map. The supervised model also
bakes into the diffuse map both light and shadows that were
not completely removed by the light normalization step. Fi-
nally, the AO map produced by the full method better cap-
tures the shading of the wrinkles and folds. The supplemen-
tary material contains more results with challenging light-
ing conditions.

5.3. Avatar reconstruction

In this section, we perform a visual comparison with re-
cent state-of-the-art methods that perform full-avatar recon-
struction: FitMe [32] and Relightify [40]. Both methods
estimate geometry, diffuse, specular and normal maps from
a single image. Figure 7 shows, for each method, the es-
timated geometry, and a rendering of the avatar, under the
same conditions (camera and light). We focus the compar-
ison on the skin reflectance, and therefore we removed the
scalp, eyes and mouth interior of FitMe and Relightify since
our method do not estimate them. We refer the reader to the
supplementary material for additional comparisons.

Our approach captures subtle geometric details, includ-
ing wrinkles and folds, in contrast to other methods, which
struggle to reproduce these nuances. Notably, the shad-
ows caused by wrinkles (see the first row) are baked in the
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Figure 7. Comparison of the estimated geometry and renders under 3 lighting conditions, against FitMe [32] and Relightify [40]

Figure 8. Reflectance estimation using the “supervised + LN”
model (rows 1 and 3) vs the full method (rows 2 and 4).

Method Diffuse Specular AO Transl.

Relightify 0.704 - - -
FitMe 0.720 - - -

MoSAR (Ours) 0.754 0.515 0.766 0.806

Table 3. Comparison of SSIM between estimated and ground truth
texture maps, for different methods.

albedo for both FitMe and Relightify, since they were not
captured in the geometry, which causes unrealistic wrinkles
in other light conditions. Our method is better at capturing
the facial structure (cheek, nose, eyes) and expression, re-
sulting in a likeness that more faithfully resembles the orig-
inal image. For darker skin tones, while our method has a
better shape estimation, it tends to yield lighter skin tones.

For quantitative analysis, we estimate reflectance maps
from portrait images of 25 subjects for which we have
ground truth reflectance maps (obtained separately in a light
stage). For FitMe and Relightify, we do not compare the
specular maps as they use a different formulation than ours
(Eq. (8)). We compute the SSIM between estimated and
ground truth texture maps, shown in Table 3. Our model
achieves higher SSIM on the diffuse map, showing a better
intrinsic separation of the face attributes.

6. Limitations

Our method does not explicitly model external occluders
(e.g. eyeglasses, hair) which get baked into the texture
maps. Also, our method is more successful in preserving
the skin tones of caucasian subjects. This is mainly due to
the representation imbalance in our in-the-wild dataset. As
shown in [38], FFHQ is composed of around 69% white,
4% black, and 27% of other races. This biases the model
towards generating lighter skin tones. Interestingly, we do
not notice the same bias in the 3D shape reconstruction.

7. Conclusion

In this work, we presented MoSAR, a complete framework
for creating realistic, relightable avatars from a single por-
trait image. It produces detailed geometry and skin re-
flectance maps at 4K resolution, compatible with modern
rendering engines. We proposed a semi-supervised train-
ing procedure that includes a novel differentiable shading
formulation that allows for estimating ambient occlusion
and translucency. Our experiments highlighted the bene-
fit of our semi-supervised training and showed that we ob-
tain competitive results for geometry estimation using non-
linear morphable models. This amounts to realistic and
visually appealing renderings when compared to existing
state-of-the-art methods. Finally, we introduced a dataset
containing intrinsic facial attributes for 10k subjects of the
FFHQ-UV dataset to accelerate research on this field. For
future work, we intend to collect a more balanced dataset
to reduce bias in our results. We want to model external
occluders and reduce artifacts caused by hairs.

8. Acknowledgments

We would like to thank Dr. Alexandros Lattas and Foivos
Papantoniou for running the FitMe and Relightify methods
on the selected subjects. We thank Amaury Depierre for
assistance with the super-resolution network.

1777



References
[1] Mohammad Amin Aliari, Andre Beauchamp, Tiberiu Popa,

and Eric Paquette. Face editing using part-based optimiza-
tion of the latent space. In Computer Graphics Forum, pages
269–279. Wiley Online Library, 2023. 2, 3, 6

[2] Haoran Bai, Di Kang, Haoxian Zhang, Jinshan Pan, and Lin-
chao Bao. Ffhq-uv: Normalized facial uv-texture dataset for
3d face reconstruction. In IEEE Conference on Computer
Vision and Pattern Recognition, 2023. 2, 6

[3] Adrian Bulat and Georgios Tzimiropoulos. How far are we
from solving the 2d & 3d face alignment problem? (and a
dataset of 230,000 3d facial landmarks). In International
Conference on Computer Vision, 2017. 3

[4] Zenghao Chai, Haoxian Zhang, Jing Ren, Di Kang,
Zhengzhuo Xu, Xuefei Zhe, Chun Yuan, and Linchao Bao.
Realy: Rethinking the evaluation of 3d face reconstruction.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), 2022. 2, 6

[5] Zenghao Chai, Tianke Zhang, Tianyu He, Xu Tan, Tadas
Baltrusaitis, HsiangTao Wu, Runnan Li, Sheng Zhao, Chun
Yuan, and Jiang Bian. Hiface: High-fidelity 3d face recon-
struction by learning static and dynamic details. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 9087–9098, 2023. 2, 7

[6] Prashanth Chandran, Sebastian Winberg, Gaspard Zoss,
Jérémy Riviere, Markus Gross, Paulo Gotardo, and Derek
Bradley. Rendering with style: combining traditional and
neural approaches for high-quality face rendering. ACM
Transactions on Graphics (ToG), 40(6):1–14, 2021. 1

[7] Anpei Chen, Zhang Chen, Guli Zhang, Kenny Mitchell, and
Jingyi Yu. Photo-realistic facial details synthesis from single
image. In Proceedings of the IEEE International Conference
on Computer Vision, pages 9429–9439, 2019. 4, 6

[8] Robert L Cook and Kenneth E. Torrance. A reflectance
model for computer graphics. ACM Transactions on Graph-
ics (TOG), 1(1):7–24, 1982. 2

[9] Hang Dai, Nick Pears, William Smith, and Christian Dun-
can. Statistical modeling of craniofacial shape and texture.
International Journal of Computer Vision, 2019. 6

[10] Hang Dai, Nick Pears, William Smith, and Christian Duncan.
Statistical modeling of craniofacial shape and texture. Inter-
national Journal of Computer Vision, 128:547–571, 2020. 6

[11] Radek Danecek, Michael J. Black, and Timo Bolkart.
EMOCA: Emotion driven monocular face capture and an-
imation. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 20311–20322, 2022. 1
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