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Abstract

Prominent solutions for medical image segmentation are
typically tailored for automatic or interactive setups, posing
challenges in facilitating progress achieved in one task to
another.Thisalsonecessitatesseparatemodels for each task,
duplicating both training time and parameters. To address
above issues, we introduce S2VNet, a universal framework
that leverages Slice-to-Volume propagation to unify auto-
matic/interactive segmentation within a single model and
one training session. Inspired by clustering-based segmen-
tation techniques, S2VNet makes full use of the slice-wise
structure of volumetric data by initializing cluster centers
from the cluster results of previous slice. This enables knowl-
edge acquired from prior slices to assist in the segmenta-
tion of the current slice, further efficiently bridging the com-
munication between remote slices using mere 2D networks.
Moreover, such a framework readily accommodates inter-
active segmentation with no architectural change, simply
by initializing centroids from user inputs. S2VNet distin-
guishes itself by swift inference speeds and reduced memory
consumption compared to prevailing 3D solutions. It can
also handle multi-class interactions with each of them serv-
ing to initialize different centroids. Experiments on three
benchmarks demonstrate S2VNet surpasses task-specified
solutions on both automatic/interactive setups.

1. Introduction
In the realm of medical imaging, the practice of precisely

revealing anatomical or pathological structure changes in
a pixel observation holds the promise to substantially ad-
vance diagnostic efficiency[1]. Depending on the presence
of user interactions, it can be categorized into automatic or
interactive medical image segmentation (AMIS/IMIS) [2],
with the latter involving active user engagement (e.g., click,
scribble) throughout the segmentation process[3, 4].

Benefiting from the rapid development of deep learn-
ing techniques, both AMIS and IMIS have witnessed great
progress in their respective field. For AMIS, the emerging
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Figure 1. (a-b) Existing volume-wise and slice-wise solutions. (c)
Our slice-to-volume solution that bridges distant slices by cluster
center propagation and further unifies automatic/interactive seg-
mentation under the same model with 2D segmentation networks.

of seminal work[5] leads the research efforts towards devel-
oping stronger backbones[6–8], harnessing multi-scale fea-
tures [9–11] or incorporating attention mechanism[12–14],
etc. Conversely, IMIS centers its primary focus on effec-
tively integrating user inputs into segmentation models[15,
16], yielding remarkable performance. Nevertheless, such a
tailored paradigm for each task greatly diffuses the research
endeavors, impeding the seamless transfer of advancement
made in one task to another due to the fundamental differ-
ences in model architecture and training strategy. Moreover,
when working with the same dataset, current solutions ne-
cessitate the developing of two separate models for AMIS
and IMIS, respectively. This results in a duplication in terms
of both training time and network parameters.

In this work, we aim to formulate a universal segmenta-
tion framework capable of addressing both AMIS and IMIS
within one unified model and a single training session. To-
wards this, we first initiate a thorough exploration on the
limitations commonly observed in current AMIS and IMIS
solutions: i) the top-leading approaches for volume seg-
mentation rely heavily on 3D networks which suffer from
slow inference [9] and present significant challenges in de-
ploying on hospital devices that usually exhibit limited par-
allel computation capabilities, ii) they prove inefficient in
bridging remote slices due to the usage of sliding window
inference to handle large memory consumption, which fur-
ther hinders the broadcast of user inputs to entire volumes,

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3357



iii) current interactive solutions are limited to handle single
foreground class, in contrast to automatic approaches which
develop rapidly and excel in multi-class segmentation.

To solve the aforementioned limitations as well as recon-
cile AMIS and IMIS, we proposed S2VNet. It draws inspi-
ration from the clustering-based image segmentation meth-
ods [17–20] that utilize a set of learnable queries as cluster
centers to aggregate pixel feature associated with target ob-
jects, and update in an iterative manner. This insightful ap-
proach prompts us to reformulate volumetric segmentation
by utilizing mere 2D segmentation models. Specifically, it is
observed that objects in a volume usually manifest identical
representation across different slices. This inherent consis-
tency forms the basis for a novel slice-to-volume propaga-
tion approach that centroids after comprehensive updates in
one slice can be passed forward and serve as the initial val-
ues for cluster centers in successive slices, facilitating ef-
fortless transfer of knowledge retrieved in prior segmenta-
tion process to the next round. This paradigm is simple yet
powerful, harnessing both the key principle of clustering-
based methodologies and the slice-wise structure of volu-
metric data. Moreover, this framework is readily adapted to
IMIS without architectural changes by initializing centroids
from backbone features at the position of user inputs, which
clearly signify intended objects. Since there would be multi-
ple clicks for a identical object, we further design an adap-
tive sampling strategy to reweight feature points when given
new interactions. Finally, as the current pipeline may be af-
fected by outliers and face decaying awareness to prior cues
after rounds of propagation, we devise a recurrent centroid
aggregation strategy to collect historic centroids and fuse
them into a single vector which introduces nearly no addi-
tional cost to deliver a more robust network inference.

Taking advantage of such slice-to-volume propagation
paradigm, S2VNet unveils several compelling facets: First,
it seamlessly accommodates AMIS and IMIS into a unified
model through a single training process, accomplished by
initializing a subset of cluster centers from user inputs while
the others are left as random, enabling both automatic and
interactive segmentation learning. Second, in leveraging of
reusing centroids, S2VNet extends user inputs or slice cues
throughout the entire volume with 2D networks, contribut-
ing to a significant alleviation in computational resource
(i.e., 15 times faster inference speed and 48.2% memory
reduction compared to 3D counterparts). Third, S2VNet
can simultaneously accept multiple classes of user inputs,
with each of them initializing one cluster center. This fa-
cilitates parallel refinement for multiple instances of differ-
ent classes in a single network forward pass, while prior
work could only handle one foreground class [15, 21, 22].
Fourth, given the universal characteristic of S2VNet, we
could build a diagnosis system that meets rigorous clinical
requirements. Concretely, S2VNet is able to provide coarse

segmentation results for multiple lesion/organ classes via
AMIS. Physicians can then choose instances of interest and
conduct refinement with precise feedback, saving consider-
able time in the initial search for lesions/organ areas.

We open a new avenue for medical image segmentation
from the universal perceptive, and further provide a feasible
solution via clustering-based slice-to-volume propagation.
To comprehensively evaluate our method, we experiment
S2VNet on three volumetric datasets, i.e., WORD [23],
BTCV [24], and AMOS [25]. Our empirical findings sub-
stantiate that S2VNet could consistently yield superior per-
formance even compared to the specified solutions for each
task, through the utilization of only one single model.

2. Related Work
Volumetric Medical Image Segmentation aims to seg-
ment organic or pathological structures[26–28] in 3D med-
ical images and can be broadly grouped into two cate-
gories [29]: slice-wise and volume-wise. The slice-wise
methods [7, 30–33] usually split 3D images into 2D slices
along the z-axis, and then segment each slice separately.
Since the proposal of [5], there has been a research surge
based on the U-shaped architecture [13, 34–46]. Such a
paradigm enjoys fast inference but makes no use of the
3D structure of images. In contrast, volume-wise meth-
ods [6, 8, 14, 47–49] directly process 3D images by extend-
ing 2D operations to their 3D counterparts. While captur-
ing spatial context in three dimensions, they are inefficient
in establishing meaningful connections between distant re-
gions due to the limited receptive field of CNNs [50]. Re-
cently, efforts have been made to leverage Transformer to
capture long-range dependencies[51–58]. However, the in-
puts are still 3D image patches that contains only nearby
slices, remaining unable to bridge remote slices.

In this work, we adhere to the slice-wise pipeline, but de-
vise a novel slice-to-volume propagation mechanism char-
acterized by utilizing pixel clustering to facilitate the stor-
age and reusage of knowledge acquired in prior slices. This
seamlessly associates predictions across individual slices.
Finally, S2VNet combines the strengths of both efficient
inference offered by slice-wise methods and the effective
segmentation achieved in volume-wise methods, ultimately
leading to accurate and consistent 3D predictions. The
propagation strategy shares a similar spirit to object associ-
ation in video segmentation [59–64]. However, these work
mainly targets at challenges like fast motion, occlusion, and
object reappearing, while S2VNet explicitly modeling ob-
ject patterns via clustering. This benefits medical segmen-
tation that usually contains no complex contextual cues.
Interactive Medical Image Segmentation. Though achi-
eving promising performance, the above automatic meth-
ods still face challenges [65–67] in clinical applications due
to the severe biological variation present in medical im-
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ages[4]. In response to this, interactive medical image seg-
mentation (IMIS) [68–73] is emerging as a practical strat-
egy to improve accuracy by incorporating user interactions,
which includes bounding boxes [74, 75], scribbles [70, 76],
clicks [15, 16, 77], and extreme points [78]. Moreover, en-
deavors have been striven to enhance accuracy by empha-
sizing the effective integration of user interactions, such
as extracting informative cue maps [15, 16, 79], or adapt-
ing networks to inference images [3, 80]. Recently, alter-
nate research [4, 22, 81–83] explores interactive segmenta-
tion in a mask propagation manner, i.e., wrapping the mask
of previous slice according to affinity matrix to predict the
next slices. They differ from S2VNet in two aspects: i)
core idea: they follow the mask wrapping pipeline, while
S2VNet passes cluster centers to enable continuous seg-
mentation of targets; ii) network architecture: they need
two distinct networks (one providing 2D predictions with
user inputs and the other propagating the predictions) to
conduct IMIS, and cannot handle AMIS, while S2VNet can
tackle both AMIS and IMIS in an unified network.
Clustering-Based Image Segmentation. Prior to the resur-
gence of deep learning, clustering stood out as a straight-
forward yet highly efficient technique for image segmenta-
tion[84–86]. However, these traditional methods rely heav-
ily on low-level features such as texture or color, limiting
their capacity to capture high-level semantics [19]. Re-
cent studies have explored the utilization of CNNs to ex-
tract feature representations[87–97], with mask predictions
are delivered by clustering pixels into semantically coherent
segments in a post-processing manner [17, 98–103]. There
has also been a shift towards query-based Transformer ap-
proaches [88]. For instance, [18, 19] rethinks the relation
between pixel features and object queries by reformulating
cross-attention as a clustering solver. On this basis, [20] in-
troduces a recurrent cross-attention mechanism which un-
locks the power of iterative clustering in pixel grouping.
Inspired by these work, S2VNet further extends pixel clus-
tering to the continuous segmentation of 3D volumetric im-
ages, achieved by propagating clustering results (i.e., cen-
troids) of previous slices to the next. This not only preserves
the coherence of segmentation results over the z-axis, but
also establishes a robust prior for predicting identical ob-
jects. Moreover, it seamlessly and effortlessly adapts IMIS
in the same architecture, contributing to the advancement of
universal segmentation for volumetric images.

3. Methodology
3.1. Preliminary: K-Means Cross-Attention

Inspired by DETR[104], contemporary query-based im-
age segmentation methods[88,105] typically introduce a set
of learnable embeddings as queries to collect pixel features
associated with specific objects via cross-attention:

Ĉ = C + softmaxHW (Q(K)
⊤
)V , (1)

where C ∈RN×D represents N object queries with dimen-
sion size D, Ĉ denotes the updated queries, Q ∈ RN×D,
K ∈ RHW×D, V ∈ RHW×D stand for the features for
query, key, and value. Here softmaxHW means to conduct
softmax along the spatial dimension of image features, i.e.,
computing the probability of affiliated to a unique query
across all pixels. It is crucial to note that this mechanism
involves attending to a substantial number of pixels. In con-
trast to above, [19] devise the k-means cross attention:

Ĉ = C + argmaxN (Q(K)
⊤
)V . (2)

Here, Eq. 2 compels Q to query pixel features belonging
to a specific object, and subsequently inspect which query
embedding within C these features correspond to by apply-
ing argmax along the query dimension N . Such process is
similar to the k-means [106] algorithm which proceeds by
alternating between the assignment and update two steps:

Assignment Step: Ĉ = AV ,

Update Step: Ĉ = C + Ĉ,
(3)

where A = argmaxN (Q(K)
⊤
) is the assignment matrix

(i.e., attention map) where each element indicates whether
a pixel feature is assigned to a particular cluster. As a res-
ults, following the execution of a succession of Transformer
decoder layers composed by k-means cross attention, the
query embeddings C can be regarded as the cluster centers,
which adeptly captures the representation of target objects.

3.2. Clustering Propagation-Driven Universal Seg-
mentation Framework

Motivation. Given a volume V ∈ RC×H×W with a spatial
size of H×W for C slices, volumetric image segmentation
aims to group it into a set of segments with corresponding
semantic labels. This task is distinguished by the inherent
structural property of volumetric image data, i.e., anatomi-
cal or pathological regions of interest often spanning across
multiple consecutive slices and exhibiting consistent visual
patterns. This property allows the same class of targets
in distinct slices to be compressed within a shared object-
centric representation. Given this context, we introduce the
clustering-based methodologies into volume segmentation,
as shown in Fig. 2. Specifically, our approach involves ex-
tending the dynamic evolution of cluster centers C which
is originally conducted within the image-level mask decod-
ing process (Fig. 2 (a)) to volume-level by using the same
collection of C throughout the segmentation for all slices
in V (Fig. 2 (b)). As such, the separate slice-wise segmen-
tation for each individual slice is seamlessly integrated into
a coherent segmentation process, and iteratively delivering
intermediate output for each slice.
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Figure 2. Our clustering propagation-driven universal segmentation framework (§3.2). (a) S2VNet adapts multi-class interactive segmenta-
tion and refinement by iteratively initializing cluster centers from user clicks. (b) Our clustering-based slice-to-volume propagation pipeline
where centroids are evolved during slice-level segmentation and passed to the next slices. C and * denote concatenation and dot product.

Slice-to-Volume Cluster Center Propagation. Denoting F
as the feature encoder, N cluster centers {Ct

n}Nn=1 are em-
ployed to extract the object-centric representation for each
class within the given slice Vt by:

{Ĉt
n}Nn=1 = D(F(Vt), {Ct

n}Nn=1), (4)

where D is the Transformer decoder composed of k-means
cross attention [19]. In the context of automatic volumet-
ric image segmentation, the segmentation often begins from
the first slice along the z-axis of the volume, which typi-
cally contains no foreground objects. It is the common case
that these foreground objects usually appear in the middle
part of the volume. To address the challenge that all cluster
centers collect features of the background class and further
impose negative impact to the segmentation of subsequent
slices, only cluster centers matched with foreground classes
will be propagated to the next slice. To achieve this, we per-
form one-to-one bipartite matching between the mask pre-
dictions {Ŷ t

n}Nn=1 and the ground truth {Y t
k}Kk=1 by:

θ̂ = argminθ∈ΘN

∑N
n=1 Lmatch(Yn, Ŷσ(n)). (5)

Here θ̂ represents the optimal assignment among a permu-
tations of N elements θ∈ΘN . Based on θ̂, we select clus-
ter centers {Ĉt

k}Kk=1 associated with foreground classes and
pass them to the next slice Vt+1 as the initial values:

{Ct+1
k }Kk=1 = {Ĉt

k}Kk=1. (6)

As such, these object-centric representation could encap-
sulate the coherent appearances of regions across different
slices, fostering a more compact and informative represen-
tation for subsequent segmentation and analysis. Note that
during the inference stage, we keep elements in {Ĉn}Nn=1

only if the corresponding class {ĉtn}Nn=1 is not identified as
the background class, and pass them to subsequent slices.
Interaction-Aware Cluster Center Initialization. In prior
research[15, 71, 72], the user input is conventionally repre-

sented as an binary mask M ∈ {0, 1}H×W where the fore-
ground region signifies user guidance. Subsequently, M
is combined with gray-scale images as inputs to segmen-
tation networks. Though achieving promising results, such
a paradigm suffers from several limitation: i) concatenating
user inputs with images introduces architectural modifica-
tions and disrupts the integration with automatic segmen-
tation into a unified framework, and ii) prior methods en-
counter challenges when accommodating multiple semantic
classes, thereby limiting the application to more complex
scenarios. To tackle above limitations, instead of explicitly
incorporating user guidance as the inputs to networks, we
harness the clustering-based property of S2VNet. Specif-
ically, denoting {Qk}Kk=1 = {(Pk, ck, tk)}Kk=1 as a set of
user inputs where each element Qk represents a click Pk

associated for one semantic class ck annotated on the slice
Vtk , we initialize the cluster center C from user input by:

Ĉk = FFN(Ok),

Ok = Sample(Ftk , Pk),
(7)

where Sample indicates retrieving the point feature Ok

from backbone features Ftk of slice Vtk according to the
click position Pk, and FFN is a simple feed forward net-
work to project Ok to the same size as C. Ĉk further serves
to aggregate pixel features similar to user indicated regions
and will be passed to subsequent slices. This realizes user-
guided segmentation across the whole volume by leveraging
above automatic segmentation pipeline, while introducing
no modification to the network architecture. Moreover, it can
accommodate an arbitrary number of classes with each
of them serving to initialize one cluster center, perfectly ad-
dressing all aforementioned limitations. Notably, extending
beyond these benefits, such a centroid initialization-based
interactive segmentation strategy offers several additional
advantages: first, in contrast to prior work treating user
interactions and images equally by concatenating them as
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inputs which can not exercise the guidance ability of in-
teractions to the fullest extent, our interaction-aware cen-
troid initialization implicitly guarantees predictions always
conforming to user highlighted regions and enhances inter-
pretability. Second, our method enables unified learning for
interactive/automatic segmentation, as the only difference
lies in the initial states of centroids. The input data, network
architecture, and training objectives remain consistent.
Adaptive Pixel Feature Sampling. Interactive segmenta-
tion commonly involves multiple rounds of refinement to
improve the precision of previously segmentation results by
incorporating newly provided user inputs. These iterative
refinements yield multiple instances of Qk associated with
the same category label, thus calling for an adaptive strat-
egy to initialize cluster centers for a specific semantic cat-
egory from multiple user inputs. As the latest user input
should play more important role in refinement compared to
prior clicks, we adopt a weighted sum to combine the pixel
feature Or

k sampled from the user input at the current re-
finement round r with those sampled from prior rounds by:

Ôr
k = Or

k + β1 ·Or−1
k + · · ·+ βn ·O1

k,

= Or
k + β · Ôr−1

k ,
(8)

where Ôr
k is the weighted output controlled by the factor

β∈ [0, 1]. Then Ôr
k at each round of refinement is utilized to

initialize a new cluster center, delivering a pair of prediction
{M̂ r

k , ĉ
r
k} where M̂ r

k ∈RC×H×W is the binary mask score
for all C slices in volume V and ĉrk ∈ RC is the score for
class ck. Consequently, multiple predictions are delivered
for each semantic class. To obtain the ultimate output, we
first multiply ĉk with corresponding M̂k and then retrieve
the maximum value across all R rounds of predictions by:

M̂k = max
R

(M̂0
k · ĉ0k, · · · ,M̂R

k · ĉRk ). (9)

It is crucial to emphasize that for all refinement rounds in
S2VNet, the pixel features associated with user inputs are
sampled from the same backbone features which only need
to be computed once. This stands in stark contrast to prior
work[3, 15, 71] that repetitively combines prior results with
image data and conducts a full network pass at each refine-
ment round. This also contributes to accelerated inference
and enhances the efficiency of computer-aided diagnosis.
Recurrent Centroid Aggregation. Though the cluster cen-
ters undergo continuous evolution during the mask decod-
ing so as to effectively associate successive slices, they tend
to be drifted by outliers such as foreign objects and artifacts
commonly encountered in clinical practice [107], and lose
track of distant structural cues with the slice-wise segmen-
tation process iterates. To deliver a robust inference and re-
tain enduring cues of remote slices, we propose to accumu-
late historic centroids of each slice and fuse them into a con-
solidated entity in a recurrent manner. As shown in Fig. 3,

Figure 3. Illustration of recurrent centroid aggregation (§3.2).
After clustering within the slice-wise segmentation for each slice,
the centroids are recurrently merged with the historic ones to assist
in the initialization of centroids belonging to the subsequent slice.

Ht−1
k is denoted as the fused vector, aggregating informa-

tion from slice V0 to Vt−1. When given new centroid Ĉt
k

after mask decoding for slice Vt, we fuse it with Ht−1
k :

Ht
k = FFN(SelfAttn([Ht−1

k ; Ĉt
k])), (10)

where [; ] means concatenation. Here the self-attention (i.e.,
SelfAttn) is employed to identify the most relevant re-
gions within the concatenated vector [Ht−1

k ; Ĉt
k], and FFN

is subsequently used to project it into the same dimension
as Ĉt

k. In this way, rather than introducing a memory bank
which would impose additional GPU memory and computa-
tional time overhead, we efficiently store historic structural
cues by recurrently merging new centroids into the exist-
ing one. Then, when initializing the centroid Ct+2

k for slice
Vt+2, we incorporate not only the cluster center obtained af-
ter mask decoding at slice Vt+1 (i.e., Ĉt+1

k ), but also query
the centroids from the previous t slices stored in Ht

k by:

Ct+2
k = Ĉt+1

k + CrossAttn(Ĉt+1
k ,Ht

k). (11)

Here CrossAttn refers to the standard cross-attention.

3.3. Implementation details

Network Configuration. S2VNet is constructed upon the
clustering-based image segmenter. Specifically, for the
slice-wise segmentation, we adopt Mask2Former [88] and
integrate k-means cross attention[19] to replace the standard
ones in the Transformer decoder. Other setups remain con-
sistent to the default configuration. The positional encoding
in Transformer is reserved to help capture the location of
diseases. In order to align S2VNet with the most recent
top-leading solutions [53, 58] for medical image segmenta-
tion that favor Transformer-based backbones, we employ
Swin-B[108] for feature extraction. We empirically set the
weighted factor β as 0.8 in adaptive pixel feature sampling.
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Interaction Simulation. To evaluate S2VNet under the in-
teractive setup, we opt for click as the primary mode of user
interaction which is generally more accessible and can ac-
commodate various input devices like mice, touchscreens,
and styluses. Following conventions [15, 22, 109], we ad-
here to the automatic evaluation pipeline wherein the clicks
are simulated based on ground truth and current segmenta-
tion results. Specifically, the initial click is sampled near the
center of the target object, while subsequent clicks aimed at
refinement are generated iteratively from the the most sig-
nificant error regions by comparing the current prediction
mask with the ground truth. The user clicks comprises both
positive and negative ones with the former targeting fore-
ground objects and the latter being applied to background.
Unified Segmentation Learning. To facilitate the slice-
to-volume propagation learning, we randomly sample three
slices from each volume and use clustering results obtained
in previous slice to initialize centroids for the next slice. We
designate 20 cluster centers for each semantic class, with
each click serving as the trigger to initialize one of them,
i.e., allowing up to 20 clicks. Notably, for classes presenting
in the inputs, there exists a 50% probability that the cluster
centers are initialized from simulated user clicks, while the
left are randomized initialized from empty, so as to enable
both automatic and interactive segmentation learning. Fol-
lowing prior work[15,49,53,58], the final learning target is
the combination of the Cross Entropy loss and Dice loss.

4. Experiment
4.1. Experimental Setup
Datasets. Our experiments are conducted on three datasets:
• WORD [23] is a large-scale real clinical abdomen bench-

mark, providing high-quality annotations for up to 16 or-
gans in the abdominal region. It contains 100/20/30 CT
images for train/val/test, respectively.

• BTCV [24] consists of 30 CT volumes which is divided
into 24 and 6 volumes for train and val. This dataset
provides careful annotation for 13 organs, including 8 of
them from Synapse. Following existing work[53,58], We
report the DSC score on all 13 abdominal organs.

• AMOS [25] is a large-scale diverse dataset collected from
multiple centers and provides voxel-level annotations for
15 abdominal organs. It covers CT and MRI two modal-
ities with each of them containing 200/100/200 and
40/20/40 scans for train/val/test.

Training. We train our network for 20k iterations with a
batch size of 8. The AdamW [110] optimizer with a initial
learning rate 0.0002 and weight decay 0.02 is adopted. The
learning rate is scheduled following the step policy, i.e., de-
caying by a factor of 10 at 14K and 18K steps, respectively.
A learning rate multiplier of 0.1 is applied to the back-
bone which is initialized with ImageNet [111] pre-trained
weights. After adapting the volumetric data in to 2D slices,

we employ z-score normalization to rescale image intensi-
ties within the range of 0 to 255. The remaining setups are
determined following [15,22,49,50,53] for fair comparison.
Specifically, for data augmentation, we use standard large-
scale jittering (LSJ) augmentation with a random scaling
sampled from range 0.5 to 1.75, followed by a fixed-size
crop of 512×512 for all datasets[23–25]. The random hor-
izontal flipping are also applied to enhance diversity.
Testing. The inference steps are tailored to optimize the
usage of user inputs. Please note that we adopt the identical
network architecture and model weight for both two tasks.
• Automatic. Inference starts from the first slice along the

z-axis, proceeding sequentially till the final slice.
• Interactive. Inference is initiated from the slice with user

inputs and broadcast bidirectionally throughout the entire
volume, emphasizing the significance of user interactions.

For fair comparison, we follow prior work[56,58] to use the
input resolution of 512×512 for all datasets[23–25].
Evaluation Metric. Following the standard evaluation pro-
tocol [23, 58, 112], We employ Dice Similarity Coefficient
(DSC) [113], Hausdorff Distance (HD) [114] and normal-
ized surface dice (NSD)[25] to assess the performance un-
der both automatic and interactive setups. DSC quantifies
the overlap between predictions and ground-truths, whereas
HD functions for measuring the 3D surface distance be-
tween them. To eliminate the impact of outliers, we employ
HD95, which captures the 95% distance of all points in one
surface to the other. For NSD, it scores the category-wise
segmentation quality for evaluating precision of boundaries.
Reproducibility. S2VNet is implemented in PyTorch and
trained on four NVIDIA Tesla A100 GPU. Evaluation for
all methods is conducted on the same machine.
IMIS Comparison. As existing interactive approaches [4,
76, 81, 115] are limited to binary segmentation with sin-
gle foreground class, we train an independent model for
each target class while considering remaining classes as
background. To render a more comprehensive comparison,
we adapt the top-leading automatic work into the interactive
setup by concatenating user clicks and prior round predic-
tions with image data. Given this substantial workload, we
only report performance for several representative classes
with relatively lower performance across each dataset.

4.2. Comparison to State-of-the-Arts

WORD[23]. As shown in Table 1, S2VNet yields remark-
able performance on the automatic setup, i.e., surpassing
SwinMM[56] by 1.18% in terms of DSC and outperform-
ing all 3D solutions in terms of HD95 which emphasizes
on the coherence of predictions across slices. This demon-
strates the effectiveness of our 2D slice-to-volume propaga-
tion strategy in bridging distance cues. Under the interactive
setup, S2VNet achieve a 4.05% average improvement in
DSC compared to the automatic setup, verifying the supe-
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Average
Methods

HD95 ↓ DSC ↑ Liv Spl Kid L Kid R Sto Gal Eso Pan Duo Col Int Adr Rec Bla Fem L Fem R

Automatic Setup
UNETR [53] 17.34 79.77 94.67 92.85 91.49 91.72 85.56 65.08 67.71 74.79 57.56 74.62 80.40 60.76 74.06 85.42 89.47 90.17
CoTr [54] 12.83 84.66 95.58 94.90 93.26 93.63 89.99 76.40 74.37 81.02 63.58 84.14 86.39 69.06 80.00 89.27 91.03 91.87
Swin UNETR [55] 14.24 84.34 96.08 95.32 94.20 94.00 90.32 74.86 76.57 82.60 65.37 84.56 87.37 66.84 79.66 92.05 86.40 83.31
ESPNet [116] 15.02 79.92 95.64 93.90 92.24 94.39 87.37 67.19 67.91 75.78 62.03 78.77 72.80 60.55 74.32 78.58 88.24 89.04
DMFNet [117] 7.52 85.10 95.96 94.64 94.70 94.96 89.88 79.84 74.10 81.66 66.66 83.51 86.95 66.73 79.62 88.18 91.99 92.55
LCOVNet [118] 9.11 85.82 95.89 95.40 95.17 95.78 90.86 78.87 74.55 82.59 68.23 84.22 87.19 69.82 79.99 88.18 92.48 93.23
SwinMM [56] 9.35 86.18 96.30 95.46 93.83 94.47 91.43 80.08 76.59 83.60 67.38 86.42 88.58 69.12 80.48 90.56 92.16 92.40
S2VNet (Ours) 4.64 87.36 96.72 96.01 95.84 95.93 91.80 82.96 77.28 85.10 67.07 86.19 88.46 72.40 83.27 91.73 93.30 93.75
Interactive Setup
iSegFormer† [81] - - - 92.14† 91.07† 93.86† - 72.01† 73.37† - 69.52† - - 69.91† 48.13† - - -
Mem3D† [4] - - - 94.88† 93.55† 93.96† - 77.38† 80.61† - 76.29† - - 74.57† 73.37† - - -
SwinMM† [56] - - - 95.78† 94.27† 95.11† - 82.26† 80.33† - 78.54† - - 72.96† 85.12† - - -
S2VNet (Ours) 3.28 91.41 96.91 96.37 96.15 96.22 94.79 87.23 86.32 88.51 83.91 90.50 91.17 77.73 90.73 94.35 95.85 95.82

†: An independent model is trained for each class as prior work can only handle binary segmentation. Given substantial workload, we evaluate 8 classes.
Table 1. Quantitative segmentation results with comprehensive scoring for each organ on WORD[23] test.

Avg
Method

DSC
Gal Eso IVC PSV RAG LAG

Automatic Setup
TransUNet [50] 76.72 59.84 70.96 77.23 71.47 65.24 64.06
TransBTS [57] 81.31 68.38 75.61 82.48 74.21 67.23 67.03
UNETR [53] 76.00 58.23 71.21 76.51 70.37 66.25 63.04
Swin-UNETR [55] 80.44 65.37 75.43 81.61 76.30 68.23 66.02
nnFormer [58] 81.62 65.29 76.22 80.80 75.97 70.20 66.05
3D-UX-Net [119] 80.76 64.32 75.17 80.42 75.39 69.52 65.77
S2VNet (Ours) 83.81 65.63 78.29 84.41 79.77 68.38 72.28
Interactive Setup
iSegFormer† [81] - - 69.37† 72.78† - 64.40† 66.89†

Mem3D† [4] - - 74.84† 79.52† - 68.45† 67.88†

nnFormer† [58] - - 82.47† 83.65† - 70.41† 67.34†

S2VNet (Ours) 86.11 69.94 87.92 89.96 81.64 72.23 73.22
†: An independent model is trained for each target class.

Table 2. Quantitative segmentation results on BTCV[24] val.

riority of our interaction-aware centroid initialization strat-
egy. Especially, our approach boosts the performance up to
83.91% for the class ‘Duo.’, surpassing both existing inter-
active and adapted automatic approaches by a large margin.
BTCV [24]. Table 2 compares our method against sev-
eral top-leading approaches on BTCV [24] val. As seen,
S2VNet achieves the best performance on both automatic
and interactive setups. In particularly, compared with nn-
Former [58] which is the previous SOTA, our approach
earns 2.19% improvement in terms of averaged DSC score
for the automatic setup. This indicates that S2VNet can
generalize well to different datasets with various challeng-
ing scenarios. We also provide detailed scores for six rep-
resentative organs with poor performance, where S2VNet
gives 2%∼6% performance gain compared to prior work.
AMOS[25]. Table 3 confirms again the exceptional perfor-
mance of S2VNet in the segmentation of both CT and MRI
images. Specifically, our algorithm achieves an improve-
ment of 0.52%/6.41% over 3D-UX-Net [119] in terms of
DSC/NSD. Moreover, with the incorporation of interaction-
aware query initialization, S2VNet consistently surpasses
existing methods across all modalities and metrics.

Average CT MRI
Method

DSC↑ NSD↑ DSC↑ NSD↑ DSC↑ NSD↑
Automatic Setup
CoTr [54] 77.31 67.12 77.13 64.15 77.50 70.10
UNETR [53] 76.81 63.40 78.33 61.49 75.30 65.3
TransUNet [50] - - 85.05 73.86 - -
TransBTS [57] - - 86.52 75.49 - -
nnFormer [58] 83.12 74.07 85.63 74.15 80.60 74.00
Swin UNETR [55] 81.04 70.60 86.37 75.32 75.70 65.80
3D-UX-Net [119] - - 87.28 76.48 - -
S2VNet (Ours) 86.22 77.23 87.80 82.89 84.64 71.57
Interactive Setup
S2VNet (Ours) 88.75 80.94 89.65 85.27 87.84 76.61

Table 3. Quantitative segmentation results on AMOS[25] val.

#
S2V Interaction Adaptive Recurrent

HD95 ↓ DSC ↑
Propagation Initialization Sampling Aggregation

1 16.63 78.67
2 ✓ 5.03 86.19
3 ✓ ✓ 4.64 87.36
4 ✓ ✓ 4.30 89.70
5 ✓ ✓ ✓ 3.79 90.64
6 ✓ ✓ ✓ ✓ 3.28 91.41

Table 4. Analysis of essential component on WORD[23] test.

4.3. Qualitative Comparison Result

Fig. 4 depicts visual comparison on WORD [23] test.
As seen, S2VNet yields more accurate results compared to
SwinMM[56], and the interactive mode can handle various
challenging cases with small objects or distortions.

4.4. Diagnostic Experiments

To evaluate the core designs and gain further insights, we
conduct a series of ablative studies on WORD[23] test.
Key Component Analysis. We first examine the efficacy
of each component in Table 4, where the row #1 indicates
directly segmenting each slice using 2D networks without
any form of association. Upon the integration of clustering-
based slice-to-volume propagation (i.e., row #2), both DSC
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Figure 4. Visual comparison results on WORD[23] test. See §4.3 for detailed analysis.

Method Memory (G) ↓ Volume Per Minute ↑ HD95 ↓ DSC ↑
CoTr [54] 26 0.18 12.83 84.66
Swin UNTER [55] 23 0.21 14.24 84.34
SwinMM [56] 27 0.15 9.35 86.18
Baseline 11 2.69 16.63 78.67
S2VNet 14 2.33 4.64 87.36

Table 5. Comparison of running efficiency on WORD[23] test.
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Figure 5. Convergence analysis on WORD[23] test. We report
the DSC score with different round of user interactions.

and HD95 exhibit noteworthy improvement which demon-
strate the effectiveness of our design. For interactive seg-
mentation, as seen in row #4, our interaction-aware cen-
troid initialization strategy can bring up to 3.51% perfor-
mance gains in DSC. With adaptive pixel-feature sampling
(i.e., row #5) to fuse different rounds of user interactions,
the performance further boosts to 90.64%. Finally, after in-
corporating recurrent centroid aggregation, S2VNet obtains
the best performance on both setups (i.e., row #3 and #6),
underscoring the general compatibility of this module.
Run-Time Analysis. Next we probe the running efficiency
of S2VNet during inference. Here ‘Baseline’ represents 2D
segmentation network without association. As evidenced in
Table 5, S2VNet achieves nearly 15 times faster inference
speed in terms of FPS and saves 48.2% memory usage com-
pared to the previous state-of-the-art (i.e., SwinMM [56]).
Moreover, our association strategy incurs minor additional
cost compared to the baseline method while elevating the
performance by an impressive 8.69% in DSC scores. All of
the above confirms the urgency of shifting the traditional
3D segmentation paradigm to a more efficient one, with
S2VNet providing a pragmatic and effective answer.
Convergence Analysis. We study the correlation between
the number of refinement rounds and resulting DSC scores
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Figure 6. Analysis of unified training on WORD[23] test.

on WORD [23] val. As seen in Fig. 5, the performance of
S2VNet exhibits a stable improvement as the rounds of re-
finement increase, and consistently outperforms the variant
that without adaptive feature sampling to consider interac-
tions in prior rounds. To strike a balance between accuracy
and efficiency, we constrain the average refinement rounds
to 15 from which there is no significant gain in performance.
Unified Training. We provide the network parameters and
training time comparison between task-specific models for
automatic/interactive segmentation and the universal model
in Fig. 6. As seen, our universal model requires only half
of parameters and training times. Furthermore, the perfor-
mance under such a unified training paradigm even enjoys
improvement compared to task-specific training strategies.

5. Conclusion
We present S2VNet, a unified framework to tackle auto-

matic/interaction medical image segmentation in a slice-to-
volume propagation manner. It makes use of the clustering-
based methods, wherein the knowledge pertaining to targets
is compressed within centroids and passed to next slices
to produce coherent and robust predictions with merely 2D
segmentation networks. On this basis, we realize interactive
segmentation by initialize the cluster centers with respect to
user guidance. This also facilitates concurrent interaction
across multiple classes which overcomes the limitation of
prior work confined to binary setups. Finally, to eliminate
the impact of outliers and enhance the awareness to preced-
ing slice cues, a recurrent aggregation approach is proposed
to collect historic centroids. All of the above contributes to
a flexible solution for volumetric image segmentation char-
acterized by remarkable speed and state-of-the-art accuracy.
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