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Instruction: What is the closest object to the back of the ego car?
Response: The <car> [c4,0.422,0.528,0.621,0.839]

Instruction: What is the next status for  
<car>[c1,0.554,0.529,0.611,0.630] ? Response: no turn and keep speed
Instruction: What is the motion for <car>[c5,0.000,0.256,0.913,1.000] ?
Please use Please use the format as Move to (x,y) where x-axis is
perpendicular, and y-axis is parallel to the direction the object facing.
Response: Move to (13.5,-0.66).

Instruction: Please give the next plan for the ego with the reasons.
Response: There are <car>[c1,0.554,0.529,0.611,0.630] and 
<car>[c5,0.000,0.256,0.913,1.000] overtaking the ego car, hence the ego 
car would stay still and waiting for them to leave. 

Instruction: Does any objects overtaking the ego car? If any, please list
all objects as format <class>[cn,x1,y1,x2,y2], class is the class label, cn
indicates the n-th camre, are the coordinates of the top-left and
bottom-right corners of the bounding box.
Response: <car>[c1,0.554,0.529,0.611,0.630]; <car>[c5,0.000,0.256,0.913,1.000]

Instruction: What is distance between <car>[c4,0.422,0.528,0.621,0.839] and
the ego car? Please use the format as (x,y) where x-axis is
perpendicular, and y-axis is parallel to the direction you're facing.
Response: (-6.15, -0.07)

Task: Perception Task: Prediction

Task: Risk Task: Planning

(a) Input: Multiview Videos

(b) Output: Various Tasks

Frame 
1

Frame N
Front RightFrontFront Left

Back RightBackBack Left

Front RightFrontFront Left

Back RightBackBack Left

Figure 1. Example of our proposed NuInstruct dataset for holistic language-based autonomous driving. (a) The input are multi-
view videos. (b) Various tasks are presented in instruction-response format. There are a total of four tasks, covering 17 subtasks (see in
Fig.4 (a)).

Abstract

The rise of multimodal large language models (MLLMs)
has spurred interest in language-based driving tasks. How-
ever, existing research typically focuses on limited tasks
and often omits key multi-view and temporal information
which is crucial for robust autonomous driving. To bridge
these gaps, we introduce NuInstruct, a novel dataset with
91K multi-view video-QA pairs across 17 subtasks, where
each task demands holistic information ( e.g., temporal,
multi-view, and spatial), significantly elevating the chal-
lenge level. To obtain NuInstruct, we propose a novel SQL-
based method to generate instruction-response pairs au-
tomatically, which is inspired by the driving logical pro-
gression of humans. We further present BEV-InMLLM,

∗Corresponding author

an end-to-end method for efficiently deriving instruction-
aware Bird’s-Eye-View (BEV) features, language-aligned
for large language models. BEV-InMLLM integrates multi-
view, spatial awareness, and temporal semantics to en-
hance MLLMs’ capabilities on NuInstruct tasks. More-
over, our proposed BEV injection module is a plug-and-play
method for existing MLLMs. Our experiments on NuIn-
struct demonstrate that BEV-InMLLM significantly outper-
forms existing MLLMs, e.g. 9% improvement on various
tasks. We release our NuInstruct at https://github.
com/xmed-lab/NuInstruct.

1. Introduction
Witnessing the success of multimodal large language mod-
els (MLLMs) [3, 5, 11, 13, 20, 22, 34–36, 45, 46], language-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

13668

https://github.com/xmed-lab/NuInstruct
https://github.com/xmed-lab/NuInstruct


Tasks InformationDataset
Perception Prediction Risk P w/ R Multi-view Temporal Multi-object Distance Position Road

Scale

BDD-X [16] ✗ ✗ ✗ ✔ ✗ ✔ ✗ ✗ ✗ ✗ 20K
Talk2Car [7] ✔ ✗ ✗ ✗ ✗ ✔ ✗ ✗ ✗ ✗ 11K
DRAMA [28] ✔ ✗ ✔ ✗ ✗ ✔ ✗ ✗ ✗ ✗ 100K
DRAMA-ROLISP [9] ✔ ✗ ✔ ✔ ✗ ✔ ✗ ✗ ✗ ✗ 35K
DriveGPT4 [44] ✔ ✗ ✔ ✗ ✗ ✔ ✔ ✗ ✗ ✔ 28K
Talk2BEV [8] ✔ ✔ ✗ ✔ ✗ ✗ ✔ ✔ ✔ ✗ 20K
Nuscenes-QA [37] ✔ ✗ ✗ ✗ ✔ ✗ ✔ ✔ ✔ ✗ 459K
NuPrompt [43] ✔ ✗ ✗ ✗ ✔ ✔ ✔ ✗ ✗ ✗ 35K
NuInstruct (Ours) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 91K

Table 1. Comparison of our NuInstruct with existing language-based driving datasets. ‘P w/ R’ indicates the planning with reasoning.
NuInstruct provides various tasks and comprehensive information ( e.g., including multi-view, temporal, distance, and so on) for compre-
hensive autonomous driving understanding.

based driving is one of the trends in various autonomous
driving tasks [8, 9, 28, 44]. For instance, some researchers
ground the instruction prompts to single or multiple ob-
jects for 2D or 3D object detection and tracking [7, 41–43].
Nuscenes-QA [37] offers numerous question-answer pairs
for multi-view perception tasks in driving scenes. Some
advancements, e.g., DRAMA [28] and HiLM-D [9], gen-
erating text descriptions for localizing risk objects. Except
for perception tasks, DriveGPT4 [44] and GPT-Driver [29]
leverage LLMs for interpreting vehicle actions and plan-
ning, respectively. Talk2BEV [8] formulate BEV into a
JSON file and input it into ChatGPT [30] to conduct au-
tonomous driving understanding.

Although remarkable progress has been achieved, cur-
rent language-based driving research still exhibits two main
shortcomings as shown in Table 1. (i) Partial tasks. Ex-
isting benchmarks only cover a subset of autonomous driv-
ing tasks. However, autonomous driving comprises a se-
ries of interdependent tasks, each indispensable to the sys-
tem’s overall functionality [2]. For instance, it is challeng-
ing to make reliable predictions when lacking accurate per-
ception. (ii) Incomplete information. The information uti-
lized by existing methods for executing these tasks is often
incomplete. Specifically, existing datasets [9, 44] usually
consist of single-view-based images, without considering
temporal and multi-view information. However, safe driv-
ing decisions require a holistic understanding of the envi-
ronment, e.g., only concerning on the front may neglect an
overtaking vehicle in the left [39].

To address the above two problems, we first create NuIn-
struct, a comprehensive language-driving dataset with 91K
multi-view video-QA pairs across 17 subtasks (Fig. 4). Our
dataset presents more complex tasks than existing bench-
marks, demanding extensive information like multi-view,
temporal, distance and so on, as shown in Fig. 1 and Table 4.
To obtain NuInstruct, we introduce a SQL-based method
for the automated generation of instruction-response pairs.
This method transforms instruction-response creation into
a process utilizing structured query languages (SQLs) [6]

from a database. Our rationale for the tasks and their
corresponding SQL design follows the logical progression
of human drivers: ❶ initially observing surrounding ob-
jects (Perception), ❷ predicting their behavior (Predic-
tion), ❸ assessing potential threats such as overtaking vehi-
cles (Risk), and ❹ ultimately using the previous information
to plan a safe route with justified reasoning (Planning with
Reasoning). Finally, to ensure the quality of our NuInstruct,
we conduct human or GPT-4 [30] verification to eliminate
the erroneous instruction-response pairs. Compared with
other data generation methods, e.g., ChatGPT-based [30] or
human-based [8], this structured design ensures the gener-
ation of instruction-response pairs is both reliable and scal-
able.

To address the challenging tasks of the proposed NuIn-
struct, we further extend the current MLLMs to receive
more holistic information. Existing MLLMs are con-
strained by their design for single-view inputs. To over-
come this, we provide a Multi-View MLLM (MV-MLLM)
with a specialized Multi-view Q-Former capable of process-
ing multi-view video inputs. Although MV-MLLM allows
for the capture of Multi-view temporal appearance features,
they often miss out on critical information (e.g., distance,
spatial) as well as suffer from occlusions. BEV’s feature, a
formulation of multi-view inputs, has been widely adopted
in traditional autonomous driving models since they can
clearly represent object locations and scales (essential for
distance/spatial-sensitive tasks) [15]. Leveraging this, we
integrate BEV into MV-MLLM to create BEV-InMLLM,
enhancing perception and decision-making in autonomous
driving by capturing a comprehensive information spec-
trum. Inspired by this, we integrate BEV into MV-MLLM,
obtaining BEV-InMLLM to capture a full spectrum of in-
formation for reliable perception and decision-making in
autonomous driving. BEV-InMLLM uses a BEV injection
module to effectively obtain BEV features aligned with lan-
guage features for LLMs. This approach is more resource-
efficient than training a BEV extractor from scratch with
visual-language data like CLIP [38]. Notably, our BEV in-
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jection module serves as a plug-and-play solution for exist-
ing MLLM

Overall, our contributions can be summarized as follows:
• We curate NuInstruct, a new language-driving dataset

with 91K multi-view video-instruction-response pairs
across 17 subtasks, using a novel SQL-based method.
NuInstruct is currently the most holistic language-driving
dataset, to our knowledge. We plan to release our NuIn-
struct for future research development.

• We propose BEV-InMLMM to integrate instruction-
aware BEV features with existing MLLMs, enhancing
them with a full suite of information, including tempo-
ral, multi-view, and spatial details. Notably, our BEV
injection module serves as a plug-and-play solution for
existing MLLM.

• Our experiments with NuInstruct demonstrate our pro-
posed methods significantly boost MLLM performance
in various tasks, notably outperforming state-of-the-art
by 9% on various tasks. Ablation studies show that MV-
MLLM enhances multi-view tasks, and BEV-InMLLM is
vital for most tasks, emphasizing the importance of spa-
tial information.

2. Related Work

Language-driving datasets and models. CityScapes-
Ref [41], Talk2Car [7] perform language-grounding tasks.
ReferKITTI [42] and NuPrompt [37] leverage temporal
data for 2D or 3D referring object detection and tracking.
Nuscenes-QA [37] offers numerous question-answer pairs
for multi-view perception tasks in driving scenes. Some
advancements, e.g., DRAMA [28] and HiLM-D [9], gen-
erating text descriptions for localizing risk objects. Beyond
perception, DriveGPT4 [44] and GPT-Driver [29] leverage
LLMs for interpreting vehicle actions and planning, respec-
tively. Talk2BEV [8] formulate BEV into a JSON file and
input it into ChatGPT [30] to conduct autonomous driv-
ing understanding. Despite these advancements, a common
limitation persists: most datasets and models address only
part of the autonomous driving tasks with incomplete in-
formation. As shown in Table 1 and Fig. 1, in this paper,
we propose a challenging dataset containing various tasks
that require holistic information, i.e., temporal, multi-view,
spatial and so on, to address.

Multimodal Large Language Models. Leveraging the ca-
pabilities of pre-trained LLMs like LLaMA [40] and Vi-
cuna [4], Multimodal LLMs (MLLMs) are expanding their
application spectrum, handling inputs from images [1, 3,
18, 19, 46], videos [20, 45], and 3D data [13] to med-
ical data [17]. In the domain of autonomous driving,
DriveGPT4 [44] and Talk2BEV [8] have integrated MLLMs
for comprehension. However, these approaches have limi-
tations; DriveGPT4 is confined to single-view inputs, and

1. Filter & 
Construction

(a) Original Annotations 

2. Sampling
4. Saving

3. retrieval (b) Scene Database

Scene Information
Frame Information

Instance Information
Ego Information

(d) Generated
Pairs

Instruction:……
Response:………
………………………

Prediction SQLs
Plaining w/ 

R SQLs

(c) Task  SQLs

Risk SQLsPerception SQLs 5. Verifying

Figure 2. Procedure of SQL-based data generation. We for-
mulate the data generation into an SQL-based process, using dif-
ferent task SQLs to retrieve the response from the scene informa-
tion database. The design of SQLs follows the logical flow of au-
tonomous driving tasks [14], which is represented in blue dashed
arrows. ‘Planning w/ R’ indicates the planning with reasoning.

Talk2BEV lacks temporal dynamics and an end-to-end
framework. Addressing these gaps, our BEV-InMLLM
model assimilates comprehensive temporal, multi-view, and
spatial data, for reliable decisions.

3. NuInstruct
In this section, we will illustrate the details of our con-
structed NuInstruct dataset. In Section 3.1, we will discuss
the process of data generation. We will then go deeper and
provide statistics on our dataset in Section 3.2. Finally, Sec-
tion 3.3 shows the evaluation metrics to evaluate the perfor-
mance of different models on the new NuInstruct.

3.1. Instruction Data Generation

Our NuInstruct is built on one of the most popular
datasets, i.e., Nuscenes [2]. There are six view records for
samples of Nuscenes, i.e., Front, Front Left, Front Right,
Back Right, Back Left, and Back. These views have some
areas of overlap with one another. In NuScenes, the col-
lected data is annotated with a frequency of 2Hz, and each
annotated frame is referred to as a keyframe with annota-
tions.

In our research, we propose an SQL-based approach for
the automated generation of four types of instruction-follow
data, namely: Perception, Prediction, Risk, and Planning
with Reasoning. This methodology aligns with the sequen-
tial decision-making stages of human drivers, categorized
as follows: 1. Perception: The initial stage of recognizing
surrounding entities. 2. Prediction: Forecasting the future
actions of these entities. 3. Risk: Identifying imminent dan-
gers, such as vehicles executing overtaking manoeuvres. 4.
Planning with Reasoning: Developing a safe travel plan
grounded in logical analysis.

The detailed process is shown in Fig. 2. Specifically,
1). The filter & construction step leverages the (a) origi-
nal annotations to generate the scene information database
(see Fig. 2 (b)). 2). The sampling step first samples
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Status SubTask

Instruction prompt:
What is the next status

for the <instance>?

Predict_Status(<instance>)

Distance SubTask

Instruction prompt:
What is the distance

between <instance> and
the ego car? Please use
the format as (x,y)
where…

Find_Distance(<instance>)

Response: <pedestrian> 
[c1, 0.15, 0.45, 0.37, 0.59] 

Response: There are 
<pedestrian> [c1,242, 407,
605, 936] acrossing the 
ego car, hence the ego 
car should stay still, 
and waiting for leaving. 

Planning(Frame i – i+2)

Find_Acrossing(Frame i – i+2)

Response: (4, -8)

Find_Distance(<pedestrian> 
[c0, 0.25, 0.31, 0.31, 0.39] )

Response: go 
straightforward and keep 
speed

Predict_Status(< pedestrian> 
[c1, 0.15, 0.45, 0.37, 0.59] )

Response: (4, -1)

Find_Distance (<pedestrian> 
[c1, 0.15, 0.45, 0.37, 0.59])

Response: (4, -3)

Find_Distance(< pedestrian> 
[c2, 0.23, 0.31, 0.41, 0.61])

Front Left

Front Left

Front Left

Front Front Right

Front Right

Front Right

Front

Front

<pedestrian> [c1, 
0.15, 0.45, 0.37, 
0.59] 

<pedestrian> [c2, 
0.23, 0.31, 0.41, 
0.61] 

<pedestrian> [c0, 
0.25, 0.31, 0.31, 
0.39] 

Frame 𝑖
Previous

Frame 𝑖 + 1
Current

Frame 𝑖 + 2
Future

Planning SubTask

Instruction prompt:
What is the next plain
for the ego? Please give
the reason.

Planning(Frame i – i+2)

Crossing SubTask

Instruction prompt:
Are any objects acrossing
in front of the ego car?

Find_Crossing(Frame i – i+2)

(a) Sampled Key Frames with Annotations (b) Sampled SubTask SQLs (c) Retrieved Responses

Figure 3. The illustration of an example for Step 3 retrieval in the data generation process. (a) Sampled keyframes with annotations.
Three keyframes with annotations are randomly sampled, and we only select one instance, i.e., the pedestrian (box), in this example for
clarity. (b) Sampled subtask SQLs. Each subtask SQL consists of two parts, i.e., the subtask function and the instruction prompt. (c)
Retrieved Responses. The subtask function receives the specific input and retrieves the responses from the scene information database.

three keyframes from the original dataset. Then, as shown
in Fig. 2 (c)), we construct a series of pre-defined task
SQLs. Each task SQL consists of several subtasks, each
of them consisting of a subtask function and an instruction
prompt. 3). The retrieval step uses the instruction prompt
and the task SQL to retrieve the corresponding response
from the scene database. 4). The saving step saves all
instruction-response pairs (see Fig. 2 (d)). 5). The verifying
step employs either human analysis or LLM-based meth-
ods (e.g., GPT-4 [30]) to eliminate erroneous instruction-
response pairs, thereby guaranteeing the quality of NuIn-
struct. Our task SQL design is logically sequenced, and
based on the inherent relational flow of autonomous driving
tasks, i.e., ‘Perception → Prediction, (Perception, Predic-
tion) → Risk, (Risk, Prediction) → Planing with Reason-
ing’, where a → b indicates the b SQL is derived from the
a SQL (blue dashed arrows in Fig. 2 (c)).

We show a more detailed example for Step 2 and Step 3
in Fig. 3. Specifically, three keyframes (i.e., from frame
i to frame i + 2) with annotations are randomly sam-
pled from the original dataset, and we only select one in-
stance, i.e., the pedestrian (box) for clarity (Fig. 3 (a)). In
this case, we choose distance, status, crossing, and planning
subtask SQLs from the perception, prediction, risk, and
planning with reasoning task SQLs, respectively (shown
in Fig. 3 (b)). The status subtask is based on the dis-
tance task, since the next status (e.g., speed, direction) for
the instance is computed based on the distances of previ-
ous, current, and future frames. Each subtask SQL con-
sists of two parts, i.e., the subtask function and the in-
struction prompt. For example, the distance subtask SQL
has Find Distance(<instance>) function and the instruc-
tion prompt is ”What is the distance between <instance>
and the ego car? Please use the format as (x,y) where..”,
where <instance> is the input. Finally, as shown in
Fig. 3 (c), we use the instance information or frame in-

formation as the input for different subtask functions to re-
trieve the response from the scene database. Compared with
other data generation methods, e.g., ChatGPT-based [44] or
human-based [8], this structured design ensures the gener-
ation of instruction-response pairs is both reliable and scal-
able.

We only describe the overview of the data generation in
this section. Please refer to the supplementary material for
more details about the scene information database, the task
SQLs, and the retrieval process.

3.2. Data Statistics

To construct our NuInstruct, we sampled a total of
11, 850 keyframes from 850 videos within the NuScenes
dataset [2]. Subsequent filter yields 55, 204 unique in-
stances, which collectively appear 295, 828 times across
all keyframes. This culminates in an average of approxi-
mately 24.96 instances per keyframe. By employing our
SQL-based method (Section 3.1), we generated a total
of 91, 355 instruction-response pairs, encompassing four
primary tasks—namely, Perception, Prediction, Risk, and
Planning with Reasoning. These tasks are further delin-
eated into 17 sub-tasks. The quantities of task categories
are statistically presented in Fig. 4 (a).

Compared with other single-view benchmarks, our
dataset covers multi-view information. Hence, we also con-
duct a statistical analysis of the relations of different views
and constructed instruction-response pairs. Fig. 4 (b) shows
the distribution of the numbers of the responses based on the
views, i.e., for a given view, we record how many responses
are derived from information from the view. Through such
statistics, we find that to answer the instructions, the sys-
tem needed to look at multiple views, instead of just a sin-
gle one. In Fig. 4 (c), for each task, the proportions of re-
sponses obtained based on different views are calculated.
We find two observations: (i) in the case of perception and
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Figure 4. Statistics of NuInstruct. (a) Proportions of different tasks. The size of the arc represents the proportions of each task, while
the same color indicates tasks of the same category. Our task encompasses a diverse range of tasks including perception, prediction, risk,
and planning. (b) Response numbers under different views. The horizontal axis represents different views, and the vertical axis indicates
the number of responses requiring information from the corresponding view. (c) View percentages within different tasks. The horizontal
and vertical axes represent the proportion of different views and task classes, respectively.

Task SubTask Metrics

Perception Distance, Speeds, Instance Number MAE ↓
Closest, Status, Same Road Accuracy ↑

Prediction Motion Ego, Motion Others MAE ↓
Status Ego, Status Others Accuracy ↑

Risk All MAP ↑
Reasoning All BLEU [32] ↑

Table 2. Evaluation metrics for different tasks. ↓ represents the
lower the scores, the better the results, while ↑ means the higher
the scores, the better the results. ‘MAE’ indicates the mean abso-
lute error. ‘All’ means the all subtasks.

prediction tasks, the distribution across views is relatively
even, showing that our data generation method produces
balanced multi-view information; (ii) When it comes to rea-
soning and risk tasks, the responses predominantly draw on
information from the front, left-front, and right-front views.
This is reasonable since drivers normally base their ahead
or sides to decide the next actions, seldom looking behind.

3.3. Evaluation Protocols
Evaluation Metrics. Our NuInstruct consists of diverse
tasks, making it hard to evaluate the different tasks using
one metric. We summarize the evaluation metrics for dif-
ferent tasks in Table 2. For tasks evaluated by MAE, we
use the regular expression [10] to obtain values. More de-
tailed computations for different metrics please refer to the
supplementary material.
Data Split. Our NuInstruct contains a total of 850 videos
from NuScenes [2]. We split the all videos into train-
ing/validation/testing sets (7.5:1.5:1.5). We train all models
in the training set and report the model with the best perfor-
mance in the validation set on the test set.

4. Method
In Section. 4.1, we first give a preliminary for our frame-
work, i.e., input, output, task definition and notations.
Then, in Section 4.2, we provide Multi-view MLLM
(MV-MLLM), a baseline that extends current multimodal
large language models (MLLMs) for processing multi-view
video inputs. Finally, in Section 4.3, we propose BEV-
InMLLM, which injects the bird’s-eye-view (BEV) repre-
sentations into current MLLMs for better panorama under-
standing for NuInstruct.

4.1. Preliminaries

Different from current MLLMs, the visual inputs for our
model are the multi-view videos {Vi}Nview

i=1 , where Nview

is the total number of camera views, Vi = {vi
t}

Nframe
t=1 , vi

t

is the t-th frame in Vi and Nframe is the total number of
frames. Instead of the predefined several tasks, we give
a specific language instruction, we use a unified model to
obtain its corresponding language response, as shown in
Fig. 1. For clarity in the following, we use LinstRNinst×Dinst

and Lresp ∈ RNresp×Dresp to denote the language instruc-
tion tokens and the response tokens respectively, which are
generated by the language tokenizer [40]. Ninst/Nresp and
Dinst/Dresp are numbers of tokens and dimensions for the
instruction/response.

4.2. Multi-View MLLM

Existing MLLMs [5, 18, 20, 46] generally consist of three
parts: a vision encoder fvision(·) to receive the visual in-
put; a connection module (e.g., Q-Former [19]) fconnect(·)
to transfer the visual representations to the visual tokens
aligned with the language; a large language model (LLM)
fLLM(·) to receive visual and language instruction tokens to
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Multi-view Videos

Instruction: Please give the next 
plan for the ego with the 
reasons.

Instruction-Aware
BEV Q-Former Instruction Tokens

Response: There are…overtaking the ego
car, hence the ego car would stay still
and waiting for them to leave.
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(a)

Multiview video 
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Multi-view
Q-Former Injection Module (b)

Instruction 
Tokens

Learnable Multi-view Queries

Concatenation

BEV Tokens

Figure 5. The overall pipeline of our proposed BEV-InMLLM.
(a) The base multimodal large language model (MLLM) tailored
for processing the multi-view videos. (b) The bird’s-eye-view in-
jection module (BEV-In) to inject BEV representations into base
MLLM to boost autonomous driving understanding.

generate the response. Since they can only receive single-
view input, we propose a baseline model named Multi-view
MLLM (MV-MLLM) to enable the current MLLMs to pro-
cess the multi-view videos, as shown in Fig. 5 (a). Specif-
ically, for a video from a specific view, i.e., Vi, we feed it
into the vision encoder followed by the connect module to
obtain the visual tokens, which can be formulated as:

Fi
vis = fconnect(fvision(V

i)) ∈ RNvis×Dvis , (1)

where Nvis and Dv are the numbers of the visual tokens
and the dimensions respectively. Then, we introduce a
multi-view Q-Former (similar to BLIP-2 [18]) to capture
the MV visual semantics Fmv from {Fi

vis}
Nview
i=1 . We con-

catenate {Fi
vis}

Nview
i=1 along the view dimension to obtain

Fmv ∈ R(Nview∗Nvis)×Dvis . The input to the multi-view Q-
Former contains a set of Kmv learnable multi-view queries
Qmv ∈ RKmv×Dvis , which interact with Fmv through the
cross attention, formulated as follows:

Fmv = CrossAttn(Qmv,Fmv) ∈ RKmv×Dvis . (2)

The output Fmv then goes through a linear projection
(omitted in Fig. 5), and is fed to the LLM. Note that in our
MV-MLLM, only the MV Q-Former is trainable and other
parameters are frozen to fully retain the knowledge of the
pre-trained models.

4.3. BEV-Injected MLLM

The BEV approach has become pivotal in autonomous
driving for its precise depiction of object positioning, es-
sential for tasks like perception and planning [21, 27]. In-
tegrating BEV into our MV-MLLM offers enhanced visual-
spatial analysis for autonomous driving. While BEV can
be constructed from the multi-view features {Fi

vis}
Nview
i=1

by physical transformations such as LSS [33], similar to
NuScenes-QA [37], the plain of ViTs in current MLLMs
limits their perception capabilities [31]. Replacing the
VIT with BEV-specific backbones, e.g., ResNet [12] or
Swin Transformer [23], diminishes visual-language align-
ment [9]. Furthermore, the limited input resolutions gen-
erate small feature maps, which are hard to scale up to the
high-resolution BEV representation.

To address the above problems, we propose the BEV-
injected MLLM (BEV-InMLLM), which uses a BEV in-
jection module (BEV-In) to obtain the BEV information
aligned with LLMs in a data-efficient and resource-light
way. As shown in Fig. 5 (b), we obtain the high-quality
BEV features Fbev ∈ RW×H×Dbev from the pre-trained
BEV extractor [15, 33], where W , H and Dbev denote the
width, height and dimensions. The following are two key
components of BEV-In, i.e., an instruction-aware BEV Q-
Former and an injection module.
Instruction-aware BEV Q-Former. We introduce the
instruction-aware BEV Q-Former to ignore the redundant
and irrelevant to the given instructions from Fbev. The input
queries for the instruction-aware BEV Q-Former blend two
parts: the instruction tokens Linst for instruction-related as-
pects, and the learnable BEV queries for extracting the use-
ful information pertinent to the instruction from Fbev. The
process of the instruction-aware BEV Q-Former is defined
as:

Finstbev = CrossAttn(Qbev

⊕
Linst,Fbev) (3)

where
⊕

indicates the concatenation, Qbev ∈ RKbev×Dvis

and Kbev indicates and the BEV queries and their the num-
bers, Finstbev ∈ R(Kbev+Ninst)×Dvis are the instruction-aware
BEV tokens.
Injection module. Our injection module fuses multi-view
features Fmv with instruction-aware BEV tokens Finstbev
through cross-attention:

Fmv = Fmv + CrossAttn(Fmv,Finstbev), (4)

where the enhanced Fmv contains both (i) temporal multi-
view cues for scene comprehension and (ii) spatial-aware
BEV information for precise perception and planning tasks.
We keep our BEV-In module efficient by making only two
components trainable: the BEV Q-Former and the injection
module, while the BEV feature extractor remains frozen to
maintain feature quality.

5. Experiments
Implementation and training details. We experiment
on three base MLLMs, i.e.We evaluated our MV-MLLM
and BEV-InMLLM on three base MLLMs: BLIP2 [19],
Video-LLama [45], and MiniGPT-4 [46]. To adapt BLIP2
and MiniGPT-4, which are image-centric, for video in-
put, we used the spatiotemporal adapter (ST-Adapter)[31],
following[9], while preserving their pre-trained parameters.
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Perception Prediction RiskMethod Dis↓ Sped ↓ # Ins ↓ Clos ↑ Sta ↑ SameR ↑ Mot ↓ Sta ↑ App ↑ LaneC ↑ Onco ↑ Cro ↑ Over ↑ Brak ↑
Planning

with Reasoning ↑

BLIP-2∗ [18] 29.3 5.6 4.4 18.5 15.9 23.8 8.7 38.7 6.1 10.6 15.4 16.7 3.7 21.5 24.9
MV-MLLM 26.8 5.3 3.9 28.2 17.7 31.5 6.8 43.6 15.2 19.3 18.4 22.7 9.6 22.7 30.1
BEV-InMLLM 23.3 3.6 3.2 33.6 18.9 31.6 3.8 45.2 16.8 21.0 19.7 23.9 10.5 27.5 33.3

MiniGPT-4∗ [46] 30.2 6.2 6.3 20.2 17.3 24.2 8.7 39.6 7.8 12.5 16.9 18.7 4.8 21.8 26.3
MV-MLLM 28.6 4.7 4.1 27.5 18.5 30.7 7.2 44.2 15.5 18.9 19.1 23.3 8.2 23.1 32.3
BEV-InMLLM 23.6 3.1 3.8 32.9 19.2 31.5 4.2 46.5 17.3 20.5 21.5 24.5 9.4 26.8 35.6

Video-LLama [45] 29.9 6.5 5.4 22.3 16.7 20.9 9.3 39.3 6.2 10.9 16.2 18.4 4.1 21.3 25.3
MV-MLLM 28.9 6.2 4.4 27.9 19.6 30.9 9.3 44.3 16.5 18.7 19.9 23.0 6.5 26.6 31.4
BEV-InMLLM 24.5 3.5 4.2 31.6 19.0 34.6 4.1 44.7 17.7 22.5 21.4 26.1 8.7 27.9 35.2

Table 3. Performance comparison with state-of-the-arts on NuInstruct. Optimal scores are highlighted in bold. Note that all models
are fine-tuned on the training set of NuInstruct in the same setting. ‘∗’ means we use the spatiotemporal adapter to enable the image-
based MLLM to receive the video input. For clarity, we employ abbreviations to denote the names of subtasks instead of their full
designations, i.e., Dis = Distance, Sped = Speeds, # Ins = Instance number, Clos = Closest, Sta = Status, SameR = In the same road, Mot =
Motion, App = Approach, LaneC = Lane changing, Onco = On coming, Cro = Crossing, Over = Overtaking, Brak = Braking. Best results
are reported in Bold.

We initialized all MLLMs with their official pre-trained
weights, freezing these during training and only training
the parameters of ST-Adapters and our additional modules
(MV Q-Former, BEV Q-Former, and injection module). We
choose LSS [33] and BEVFormer [21] as our BEV extrac-
tors, and W and H are both set to 200. Nview, Kmv, Kbev
are set to 6, 32 and 32 respectively. The dimensions Dvis
and Dresp are both set to 1408, the same as the dimension of
the same as EVA CLIP hidden feature dim used by BLIP-
2. The input is resized and cropped to the spatial size of
224 × 224, and each video is uniformly sampled 3 frames.
We use AdamW [26] as the optimizer and cosine annealing
scheduler [25] as the learning rate scheduler with an ini-
tial learning rate of 1e-4, and all models are trained in 20
epochs.

5.1. State-of-the-art Comparison

We select three advanced MLLMs, i.e., BLIP-2 [19],
MiniGPT-4 [46] and Video-LLama [45] as our base models.
For each MLLM, we apply our proposed modules to obtain
MV-MLLM and BEV-InMLLM. All models are finetuned
in the same setting. We report our results on NuInstruct test
set in Table 3. To conserve space, we aggregate the report-
ing of two subtasks, ‘motion ego’ and ‘motion others’. A
similar approach is adopted for ‘status ego’ and ‘status oth-
ers’. From Table 3, we observe that equipped with our pro-
posed modules, there is a significant increase in the evalu-
ation metrics on all tasks, demonstrating its effectiveness.
More specifically, the integration of temporal and multi-
view information (MV-MLLM) substantially improves risk
and planning tasks by 5% and 6%, respectively. Further-
more, injecting BEV into MV-MLLM, i.e., BEV-InMLLM,
benefits tasks sensitive to distance and position, e.g., per-
ception and prediction. For perception tasks, a comparison
between ours and existing BEV SOTAs without LLMs can
be found in the supplementary material.

Task Temporal Multi-view Spatial Holistic

SubTask Sped, Mot, Sta # Ins, SameR Dis, Mot, Sta, Clos Risk, Planning

Table 4. Reclassified tasks. To better analyze the impact of each
module on autonomous driving tasks, we reclassify the sub-tasks
into four main tasks based on their dependency on different types
of information. ‘#’ indicates the numbers. ‘Holistic’ means those
tasks that require all information, i.e., temporal, multi-view, and
spatial.

Temporal Multi-view Spatial
Model ↓ ↑ ↓ ↑ ↓ ↑ Whole ↑

(a) Full 3.7 32.8 3.8 31.5 13.9 32.9 22.2

(b) w/o Video 7.4 28.5 4.2 30.4 14.2 30.8 21.0
△ -3.7 -4.3 -0.4 -1.1 -0.3 -1.1 -1.2

(c) w/o MV 5.2 31.2 6.0 28.3 14.4 32.5 21.6
△ -1.5 -1.6 -2.2 -3.2 -0.5 -0.4 -0.6

(d) w/o BEV 6.0 31.4 4.1 30.7 18.0 30.0 20.1
△ -2.3 -1.4 -0.3 -0.8 -4.1 -2.9 -2.1

(e) Base 10.3 25.8 6.7 22.7 20.8 27.6 12.4
△ -6.6 -7.0 -2.9 -8.8 -6.9 -5.3 -9.8

Table 5. The ablation study of different proposed modules.
‘w/o’ indicates the without the specific module. ‘Video’, ‘MV’
and ‘BEV’ indicate video input, MV Q-Former (Section 4.2) and
BEV injection module (Section 4.3) respectively. The results of
performance degradation exceeding 2 are reported in green. △ is
the difference between a specific model with full model, i.e., line
(a).

5.2. Ablation Study

In this section, we conduct experiments to evaluate the
effect of different proposed modules and different input
information. Here, we use MiniGPT-4 [46] as our base-
line model. To better analyze the impact of each module
on autonomous driving tasks, we reclassify the sub-tasks
into four main tasks based on their dependency on different
types of information. These are categorized as temporal-
related (temporal), multi-view-related (multi-view), spatial-
related (Spatial), and holistic-related tasks, as shown in Ta-
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extractor Spatial↓ Whole↑
LSS [33] 13.9 21.0
BEVDet [15] 13.6 21.3
BEVFusion [24]† 13.2 21.5

(a) BEV extractor. We select three ad-
vanced BEV extractors. Powerful ex-
tractors are more effective.
†: using additional lidar-modal data.

Linst Spatial↓ Whole↑
w/o 15.3 20.1
w/ 13.9 21.5

(b) Instruction tokens Linst.
‘w/o’ and ‘w/’ indicate without
and with. Linst (Eq. 3) can ex-
tract the instruction-aware BEV.

Kbev Spatial↓ Whole↑
16 14.5 21.0
32 13.9 21.5
64 13.9 21.6

(c) BEV query number
Kbev. More numbers for
BEV queries Qbev (Eq. 3)
benefit the model.

feature Spatial ↓ Whole↑
Fmv 15.1 20.8
Fmv 13.9 21.5

(d) Injection feature. BEV fea-
tures Finsbev can be injected into
Fmv or Fmv (Eq. 4). The latter is
better due to more information.

Table 6. BEV Injection module ablation experiments on NuInstruct. Best results and default settings are reported in Bold and gray .

ble 4. ‘Temporal’ indicates subtasks related to temporal
cues, e.g., the vehicle’s status is determined based on its
positions at various times, and so do others. Note that some
subtasks may be classified into different tasks, e.g., the sta-
tus task is in both temporal and spatial tasks. We will report
the results of different models under the reclassified tasks in
the following.

5.2.1 Effect of different proposed modules
In our study, we explore different modules to capture differ-
ent information for autonomous driving tasks: ST-Adapter
accepts videos for temporal, MV-Q Former for multi-view,
and BEV Injection module for location, distance, and spa-
tial information in BEV features. We use BEV-InMLLM
as a full model including comprehensive information types,
then sequentially remove each module to derive the follow-
ing distinct models: (a) The full model, i.e., BEV-InMLLM
introduced in Section 4.3. (b) BEV-InMLLM without tem-
poral cues, i.e., the input is image. (c) BEV-InMLLM with-
out multi-view information, i.e., only single-view input.
(d) BEV-InMLLM without BEV information, i.e., with-
out BEV injection module. (e) The baseline model, i.e.,
MiniGPT-4 [46]. We report the results of different mod-
els in Table 5. From the table, we observe the following
findings: (i) Compared with (a) and (b), without temporal
information, the performance of tasks highly dependent on
temporal cues would degrade clearly, proving the impor-
tance of video input. We can also observe a similar phe-
nomenon when comparing the results with (a) and (c). (ii)
Information contained in BEV is very important for most
of autonomous driving tasks, since it clearly presents the
surroundings of the ego vehicle, thus aiding the model in
making informed decisions.
5.2.2 Analysis of BEV Injection Module
We ablate our BEV injection module (BEV-In) (Fig. 5 (b))
using the default settings in Table 6 (see caption). Several
intriguing properties are observed.
BEV extractor. We compare the performance of different
BEV extractors in Table 6a. Our results show that more
strong extractor, e.g., BEVDet [15], outperforms the weak
one LSS [33]. Furthermore, BEVFusion [24] uses RGB and
lidar modality for best performance. Here, we use RGB
images for efficiency.
Intruction tokens Linst in BEV-In. Table 6b studies the
effect of Linst in Eq. 3. ‘w/o’ indicate only using Qbev to in-

teract with Fbev. Results show that using instruction tokens
can capture more related BEV features, thus improving the
performance by 1.4 for both spatial tasks and holistic tasks.
BEV query number Kbev. In Table 6c, we study the in-
fluence of BEV query numbers, i.e., Kbev in Qbev (Eq. 3).
As the number increases, the performance would be im-
proved, e.g., 0.6 on the spatial performance with Kbev arise
from 16 to 32. Considering setting Kbev to 64 only brings
a small improvement, we use 32 as the default settings for
computation efficiency.
Injection feature. The key design of our BEV-InMLLM
is to inject instruction-aware BEV features ( i.e., Finsbev
in Eq. 4) to the MV-MLLM. In Table 6d, we compare
the performance of different features to inject with the
Finsbev. Specifically, the multi-view visual semantics Fmv
(Section 4.2) and the output of multi-view Q-Former Fmv
(Eq. 2). We find injecting into Fmv achieves better, 0.7%
improvement over Fmv on the holistic tasks. The reason is
that Fmv is the filtered visual tokens, losing much spatial
information.

6. Conclusion
In this study, we investigate language-based driving for au-
tonomous drivingtasks. We introduce NuInstruct, featur-
ing 91K multi-view video-instruction-response pairs across
17 subtasks, created via a novel SQL-based method. Our
proposed BEV-InMLMM integrates instruction-aware BEV
features into MLLMs, enhancing temporal, multi-view,
and spatial detail processing. BEV-InMLMM, as a plug-
and-play enhancement, boosts MLLM performance on au-
tonomous drivingtasks. Our empirical results on NuIn-
struct confirm our method’s efficacy.
Limitations. The current dataset lacks traffic light informa-
tion and tasks related to 3D object detection, which we plan
to address in future work.
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