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Abstract

Although deep learning based object detection is of great
significance for various applications, it faces challenges
when deployed on edge devices due to the computation
and energy limitations. Post-training quantization (PTQ)
can improve inference efficiency through integer comput-
ing. However, they suffer from severe performance degra-
dation when performing full quantization due to overlook-
ing the unique characteristics of regression tasks in ob-
ject detection. In this paper, we are the first to explore
regression-friendly quantization and conduct full quantiza-
tion on various detectors. We reveal the intrinsic reason
behind the difficulty of quantizing regressors with empir-
ical and theoretical justifications, and introduce a novel
Regression-specialized Post-Training Quantization (Reg-
PTQ) scheme. It includes Filtered Global Loss Integration
Calibration to combine the global loss with a two-step fil-
tering mechanism, mitigating the adverse impact of false
positive bounding boxes, and Learnable Logarithmic-Affine
Quantizer tailored for the non-uniform distributed param-
eters in regression structures. Extensive experiments on
prevalent detectors showcase the effectiveness of the well-
designed Reg-PTQ. Notably, our Reg-PTQ achieves 7.6×
and 5.4× reduction in computation and storage consump-
tion under INT4 with little performance degradation, which
indicates the immense potential of fully quantized detectors
in real-world object detection applications.

1. Introduction

Object detection [10, 11, 23, 42, 45, 57] is one of the most
fundamental and challenging problems in computer vision.
The current popular architectures, including convolution
neural networks (CNNs) based [22, 46, 47, 50, 52, 53] and
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Figure 1. Comparison of FLOPs and parameters in full-precision
and W4A4 quantized detection models. Head structures take non-
neglectable percentage of computation and memory. And quanti-
zation significantly reduces the overall FLOPs and memory stor-
age.

transformer-based [7, 14, 30, 33–35, 60] detection models,
which are designed as powerful yet complex structures to
deal with the detection of visual objects [61]. However, the
existing detection models suffer from extremely high com-
putational costs, making them infeasible to deploy on edge
devices. This limits the broader application in practical
scenarios. To mitigate this gap, several compression tech-
niques [1, 15–17, 58] have been proposed to improve the
efficiency of networks, among which quantization reduces
the computational complexity and memory footprint by us-
ing lower bit-widths to represent network parameters. Post-
training quantization (PTQ) is a widely used approach be-
cause of its wide versatility and low production cost, which
directly applies quantization to a well-trained floating-point
model without time-consuming retraining.

However, although quantization techniques are proven
effective in classification, they still lack sufficient investi-
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gation for the object detection task. Most current PTQ ap-
proaches [12, 13, 26, 55] only evaluate the backbone and
neck of the detector while avoiding quantizing the detec-
tion head. However, it is meaningful to quantize the head
as well. Figure 1 (a) and (b) shows the FLOPs and mem-
ory footprints of different structures in typical detection
models, including RetinaNet [29], YOLOF [5] and Faster
RCNN [44]. We notice that detection heads take a consider-
able proportion of computation, and take almost half of the
memory footprint in various detectors. After full quantiza-
tion (Figure 1 (c) and (d)), we observe that both computa-
tion and memory footprint are significantly reduced. Com-
pared to solely quantizing the backbone and neck, quan-
tizing the head further achieves impressive compression
and acceleration ratios with little performance degradation.
However, directly applying classical PTQ algorithms on de-
tection heads leads to significant performance drops, espe-
cially at extremely low bit-width.

To this end, we aim to explore how to generate fully
quantized detectors with satisfactory performance, which is,
to the best of our knowledge, the first universal PTQ frame-
work to fully quantize various detection architectures. We
first analyze and reveal the challenges in quantizing regres-
sion models with theoretical and experimental justifications.
We observe that (1) compared with classification, regression
is more sensitive to quantization noise, (2) minimizing lo-
cal quantization error fails to select the optimal scaling fac-
tors for regressors. Hence, existing calibration metrics de-
signed for classification lead to sub-optimal scaling factors,
(3) regressors have non-uniform weight distribution, so uni-
form quantizers will cause coarse quantized representation
and lose much information after quantization. And we the-
oretically prove that the sensitivity of the detection model
with respect to quantization noise and the weight distribu-
tion is caused by the distance-based objective function (i.e.,
L1/L2-norm) in the regressor.

Based on our observations and findings, we propose
a novel PTQ scheme named Regression-specialized Post-
Training Quantization (Reg-PTQ), the first universal PTQ
framework for accurate full-quantized detection models.
Reg-PTQ contains two novel techniques: Filtered Global-
Loss Integration Calibration (FGIC) strategy and Learnable
Logarithmic Affine Quantizer (LLAQ). To improve the cal-
ibration, FGIC combines the local reconstruction loss and
global prediction loss with a two-step filtering mechanism,
removing redundant predicted boxes and providing precise
gradients in fine-tuning the scaling factors. As for the non-
uniform distributed parameters, LLAQ applies logarithmic-
affine transformation, which better learns the quantization
factors for regression structures and preserves the charac-
teristics of the original representation.

In summary, our contributions are as follows:
• We first give an experimental and theoretical analysis of

quantizing regressors and discover the limitations of ex-
isting quantization methods for regression.

• We propose the first regression-specialized PTQ frame-
work named Reg-PTQ, a universal PTQ scheme for full
quantization on various detection architectures. Reg-PTQ
presents a novel Filtered Global-Loss Integration Calibra-
tion strategy for efficient fine-tuning with filtered losses,
and a Learnable Logarithmic Affine Quantizer for better
representation of non-uniform distributed parameters.

• We conduct comprehensive experiments on various detec-
tion models. Efficiency comparisons show that the fully
quantized detectors can achieve about 7.6× and 5.4× re-
duction in computation and storage without significant
performance loss.

2. Related Works
2.1. Object Detection

In recent years, many frameworks have been proposed for
object detection, which can be broadly classified into two
categories: two-stage and one-stage detectors. Two-stage
detectors propose candidate object regions first and refine
the bounding boxes. For example, Faster R-CNN [44]
introduces a region proposal network to remedy the cost
and finetunes the bounding boxes in second stage. Mask
R-CNN [18] adds a branch for predicting segmentation
masks. For one-stage detectors, RetinaNet [28] utilizes
the focal loss to address the class imbalance during train-
ing. YOLO [43] proposes to predict from full images
in one evaluation, significantly speeding up the detec-
tion process. However, these classic approaches require
significant computation, hindering the practical usage of
in real-world implementation. Efficient detection mod-
els have emerged recently, such as EfficientDet [48], Mo-
bileDets [58], YOLOv7 [49]. But they use full-precision
calculations, leaving room for further acceleration by quan-
tization. Therefore, we propose a post-training quantization
method to generate a fully quantized detector, which can
significantly reduce both the computation and storage bur-
den of these approaches.

2.2. Post-Training Quantization

The existing quantization methods can be classified into
Quantization-Aware Training (QAT) [9, 25, 37, 54] and
Post-Training Quantization (PTQ) [13, 19, 38]. QAT re-
quires significant GPU resources for training or fine-tuning
to achieve better accuracy performance. Instead, PTQ as
a training-free method has gained widespread attention in
real-world practice since it reduces production costs and
time consumption. PTQ techniques tailored for CNNs
[20, 21, 36, 40] and vision transformers [6, 33, 60] have
made remarkable achievements in the field of classifica-
tion. For example, Li et al. [24] proposed BRECQ to cal-
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Figure 2. Loss landscapes of classifier (blue lines) and regres-
sor (red lines) with (a) Gaussian distributed and (b) uniform dis-
tributed perturbations.

ibrate in the block-wise manner and reconstruct them se-
quentially. Wei et al. [56] studied the flatness of weight and
proposed QDrop to consider activation information in quan-
tizing weight. Cao et al. [3] introduced SSQL to pretrain
quantization-friendly models in a self-supervised style. Li
et al. [26] and Liu et al. [32] focused on the quantization
of transformer-based architectures named RepQ-ViT and
NoisyQuant. RepQ-ViT includes scale reparameterization
for Layernorm and Softmax operations. And NoisyQuant
analyzes the quantization noise theoretically, which pro-
vides novel insights in reducing the quantization error.

However, these works designed for the classification task
have seldom been evaluated on detection models or only
quantized the backbone and neck. Directly applying the
methods to detectors leads to a significant performance drop
since the architecture and objective of detection are differ-
ent from that of classification. For the quantization of the
detector, Q-DETR [59] proposed to quantize the DETR [4]
by solving the bi-level optimization problem using rectified
distillation. Q-YOLO [51] proposed a novel quantization
approach to tackle the unilateral distributed activation for
quantizing the YOLO [43] detector. DetPTQ [39] studied
the influence of Lp metric and performed NMS before cal-
culating the prediction loss. However, these works are ded-
icated to a specific detection architecture but not universal
to general detection models, or only quantize the backbone
and neck but leave the head structure unquantized. In con-
trast, our Reg-PTQ framework is the first universal PTQ
framework for fully quantized detection models, which can
be versatile to diverse detector architectures and bring sig-
nificantly higher compression and acceleration ratios.

3. Motivation

In this section, we elaborate the motivation for studying the
quantization of regression tasks. We demonstrate the cur-
rent quantization principles designed for the classification
task are ineffective for regression models.
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Figure 3. Quantization error measured by MSE (red lines) and
model performance (blue lines) with different scaling factors in
quantized classifer and regressor.

3.1. Empirical Observation

To find the difference in quantizing regressor and classifier,
we first design a toy experiment which can reach the same
conclusion with the real one, and eliminate irrelevant vari-
ables to focus on the fundamental differences. We provide
the detailed advantage of toy models in Supplementary ??.
Specifically, we designed 4-layer networks for both regres-
sion and classification while controlling approximately the
same amount of parameters. For regression, we generate
training data from a quadratic equation. For classification,
we use the Iris flower dataset 1 with three species, and each
sample has four features. We train both models on corre-
sponding datasets until convergence.

Observation 1: Regressor is more sensitive to pertur-
bation than classifier. To evaluate the robustness of the
regressor and classifier, we superpose perturbations on the
well-trained models in two cases. In the vanilla hard quan-
tization, the rounding operation can be considered as a ran-
dom noise on the parameters, which is sampled from a uni-
form distribution on the interval [−0.5, 0.5). On the other
hand, soft quantization means training with differentiable
functions before rounding and can be approximated as a
noise approximated to the Gaussian distribution.

As shown in Figure 2, we add perturbation on the model
parameters sampled from (a) Gaussian distribution N(0, σ)
and (b) uniform distribution on the interval [−σ, σ). We
use mean squared error (MSE) to measure the output er-
ror between the perturbed models and the original ones.
The blue line represents the loss curve of the classifier, and
the red line represents the regressor’s. It can be seen from
the figure that (1) both Gaussian and uniform noise have
larger impacts on the regressor compared to the classifier,
which means that the regressor is more sensitive to pertur-
bations than the classifier, (2) the regressor is more sensitive
to uniform noise than Gaussian noise, which means that the
vanilla rounding operation may lead to severe quantization
error in regressors.

Observation 2: Minimizing local quantization error
1https://www.kaggle.com/datasets/arshid/iris-flower-dataset
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Figure 4. Histogram of the original weight of (a) classifier and (b)
regressor. The red points are truncated position for the minimal
reconstruction error in INT4 quantization.

selects sub-optimal scaling factors for regressor. We
apply quantization on classifier and regressor, calculate the
local quantization error, and test the model performance for
each scaling candidate in Figure 3. The red lines are the
quantization error, and the blue lines are the final perfor-
mance of the network. Figure 3 (a) shows the quantiza-
tion error and accuracy of the classifier. We can see that
the classifier is robust to quantization, and the scaling fac-
tor with minimal quantization error results in the best accu-
racy performance. However, for the regressor, the scaling
factor with minimal error cannot guarantee the best perfor-
mance, which indicates that the local quantization error is
not the optimal calibration strategy for detection models. It
reminds us to rethink the calibration principles for regres-
sion models to also consider the global quantization error.

Observation 3: Regressor has non-uniform weight
distributions, which differs from the classifier. To ana-
lyze the difference in weight distribution between classifier
and regressor, we further visualize them in Figure 4 with
truncated positions selected by minimized quantization er-
ror. As shown in the figure, it is evident that the weight
distribution of the classifier and regressor is significantly
different. The classifier’s weight distribution approximates
the uniform distribution with few margins. However, the
regressor’s appears non-uniform, with more values concen-
trated to the middle. Furthermore, when taking the minimal
quantization error as the calibration metric, a large num-
ber of weights would be truncated in the regressor (see red
points in the figure), resulting in performance degradation.
Therefore, it is desirable to design a novel quantizer tailored
to the unique distribution of regressors.

3.2. Theoretical Analysis

In the following, we provide a theoretical analysis to explain
the cause of non-uniform weight distribution.

To simplify the demonstration, we take a dataset (X,Y )
and consider the simple regression function: f(X) =
XW⊤ + b. We use distance-based metrics such as least
squares or absolute values to train the network weight W .
We expect the weights to maximize the probability of get-
ting the gt (ground truth), equivalent to minimizing the dis-

tance between the model output and the gt:

W ∗ = argmax
W

(P (Y |X,W )) = argmin
W

(∥f(X)− Y ∥p) ,
(1)

where p ∈ {1, 2} represents the least absolute and least
squares value. It is easy to derive that the predicted f(X)
has an zero-mean error towards Y , i.e., P (Yi|Xi,W ) =
1
λ1

exp
(
−∥f(Xi)−Yi∥p

λ2

)
, where λ1 and λ2 describe the

probability density function of Y .
Assuming that the weight W is an unknown variable.

Therefore, maximizing the posterior probability density
of W can be P (W |X,Y ) ∝ P (Y |X,W )P (W ), where
P (W ) is the priori of the distribution of W . We usually
initialize W from the uniform or Gaussian probability. We
take the uniform distribution as the priori to simplify the
demonstration. The case of non-uniform distribution is in
Supplementary ??. Since each data in (X,Y ) is indepen-
dent, the posterior probability of W is

P (W |X,Y ) ≈
∏
i

1

λ1
exp

(
−∥f(Xi)− Yi∥p

λ2

)
. (2)

It indicates that given training data (X,Y ), the weight W
have an arbitrary distribution that is more likely to gather
around the center. Typically, when p = 1, λ2 = 2λ1, it is a
standard Laplace distribution. When p = 2, λ2 = λ21/π, it
is a Gaussian distribution. And p can be bigger than two in
the loss function. As for the classifier, the prediction output
is the probability of independent events. It is irrelevant to
distance but relative to magnitude counts. Therefore, the
weight in the classifier hardly exhibits the phenomenon of
clustering towards the center. However, regression is a task
that converges in the continuous numerical space and has
geometric meaning from the spatial perspective, such as the
distance-basedLpmetric in Eq. 1. The exponential function
in Eq. 2 indicates the non-uniform weight distribution if no
additional regularization is applied.

4. Method

4.1. Overall Framework

Based on above observations and theoretical analysis,
we design a novel regression-specialized PTQ framework
named Reg-PTQ. Figure 5 shows the overall framework,
which consists of the Filtered Global Loss Integration Cal-
ibration (FGIC) strategy and Learnable Logarithmic Affine
Quantizer (LLAQ). When quantization, we first apply the
LLAQ to detection head, then initialize all the scaling fac-
tors following the typical search strategy [55, 60], and fine-
tune all the learnable parameters by FGIC. We describe the
two proposed methods in the following.
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Figure 5. Overview of the regression-specialized post-training quantization framework. Left is the Filtered Global Loss Integration
Calibration (FGIC), which combines the local and global loss with a two-step filtering mechanism. Right is the Learnable Logarithmic
Affine Quantizer (LLAQ), which projects variables to the logarithmic space and learns the quantization factors for regression structures.

4.2. Filtered Global Loss Integration Calibration

As discussed in Observation 2, minimizing the local quan-
tization error cannot guarantee the optimal scaling factor
for quantization. To overcome this problem, a typical prac-
tice is to use the Hessian-guided metric calibration. We use
Diagonal Fisher Information to accelerate the calculation of
the Hessian matrix, which is one of the widely used approx-
imation methods [24, 60]:

LHk =
∑
i

[
(Ôki −Oki )⊤

(
∂L
∂Oki

)2

(Ôki −Oki )

]
, (3)

where Ok and Ôk are the output of the k-th layer in full-
precision and quantized networks, respectively. LHk de-
notes Hessian-guided loss which accumulates the second-
order term in Taylor expansion of all the values.

However, directly using existing Hessian-guided met-
rics does not work well on detector quantization. Figure 6
(a) shows the curves of Diagonal Fisher Information (red
line) and the performance of the quantized regression model
(blue line) under different scaling candidates. We find that
the scaling factor with minimal Hessian metric also cannot
guarantee the best performance. Since the toy model has
only <1k parameters in each layer, it is practical to calcu-
late the precise Hessian matrix (w− ŵ)⊤H(w)(w− ŵ) us-
ing the second-order gradient of w in the neural network. In
Figure 6 (b), we zoom in on a clip of scaling candidates and
compare the approximated (red line) and precise Hessian-
guided metrics (green line). We observe that the precise
Hessian is consistent with the model performance, while the
approximate Diagonal Hessian Information fails to reflect
the impact of quantization. It indicates that the approxima-
tion error brought by Hessian calculation cannot be ignored
in the regression tasks.

Therefore, we first introduce a Global-Loss Integra-
tion Calibration (GIC) strategy, which combines the local
layerwise/block-wise reconstruction loss LH and the global
regression-aware loss LG to finetune the parameters. Typi-

D
istance to gt

D
ia

go
na

l H
es

si
an

 In
fo

rm
at

io
n

minimal error

Best performance

scaling candidates

Precise H
essian

2.0

1e-4

1.5

1.0

0.5

0.0

1e-4

1.4

1.0

0.6

0.2

0.0

0.4

0.8

1.2

D
ia

go
na

l H
es

si
an

 In
fo

rm
at

io
n

scaling candidates Best performance

minimal error

Precise H
essian

2.0

1e-4

1.5

1.0

0.5

0.0

1e-4

1.4

1.0

0.6

0.2

0.0

0.4

0.8

1.2

D
ia

go
na

l H
es

si
an

 In
fo

rm
at

io
n

scaling candidates

Distance to gt

Best performance

minimal error D
istance to gt

D
ia

go
na

l H
es

si
an

 In
fo

rm
at

io
n

1e-4

0.0

1.0

1.5

2.0

0.5

scaling candidates

(a) Diagonal Hessian Information 
and distance to gt (ground truth)

(b) Diagonal Hessian Information 
and precise Hessian

Best performance

minimal error
0.510

0.508

0.506

0.504

0.502

0.024       0.026       0.028       0.030 0.024    0.025    0.026    0.027     0.028

Figure 6. Quantization error measured by Diagonal Fisher Infor-
mation (red line) and the performance of regressor (blue line) and
the precise Hessain (green line).

cally, LG compares the head output between full-precision
and quantized detectors. It consists of classification loss
Lcls by the cross-entropy (CE) of classification logits y and
ŷ, and the regression loss Lreg by Lp loss of regressed
bounding boxes b and b̂, respectively:

LG =
1

n

n∑
i=1

(
LCE(yi, ŷi) + λLp(bi, b̂i)

)
, (4)

where λ is used to balance the two losses, n is the number
of predicted bounding boxes. Therefore, the complete loss
to calibrate the k-th layer is:

Ltotk = LHk + LG. (5)

However, integrating the global loss LG is non-trivial.
The detection head outputs a large amount of bounding
boxes with classification scores, including those with low
confidence scores and low IoUs. These false positive boxes
will introduce useless information or even harmful noise in
optimizing the scaling factors. Specifically, boxes with low
confidence scores will be ignored in the post-process, so
they bring useless information in gradients. And boxes with
low IoUs from quantized and original networks have high
probabilities that they may correspond to different objects.
Directly aligning them is also unreasonable.
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To solve the two issues, we propose a two-step bound-
ing boxes filtering mechanism to select high-confidence and
high-intersection boxes. As shown in Figure 5, when using
the full-precision detector to calibrate the quantized one, we
only preserve the boxes with high classification confidence
above a predefined threshold θC . In this way, we can ef-
fectively remove the bounding boxes with low confidence
scores. After that, we calculate the Intersection-of-Union
(IoU) of corresponding boxes from the quantized and full-
precision models filtered by the first step. IoUs larger than
the threshold θI are more likely to bound the same object
and will be preserved to calculate the global loss. Moreover,
those that have low intersections will be removed since they
may provide meaningless information or even perturbation
to the finetuning. Let us suppose b, b̂ are the bounding boxes
obtained from full-precision and quantized detectors. The
whole process can be expressed as:

b′ = b · IHC · IHI , b̂′ = b̂ · IHC · IHI , (6)

where IHC and IHI are position indicators indicating
whether the bounding box b and b̂ is filtered:

IHC =

{
1, if y ≥ θC
0, otherwise,

IHI =

{
1, if IoU(b, b̂) ≥ θI
0, otherwise.

(7)
Therefore, the global loss in Eq. 4 becomes

LG =
1

n

n∑
i=1

(
LCE(yi, ŷi) + λLp(b

′
i, b̂

′
i)
)
,

=
1

n

n∑
i=1

(
LCE(yi, ŷi) + λLp(bi · IHC · IHI , b̂i · IHC · IHI)

)
.

(8)
In this way, we can filter out the negative effect from the
low-confidence and low-intersection bounding boxes in the
calibration process, which can provide more accurate gradi-
ents and help find optimal scaling factors for quantization.
The complete calibration process is in Algorithm 1. Φ and
ϕk are the full-precision network and a single k-th layer. Φ̂
and ϕ̂k are the quantized counterparts. hook(·) is the hook
function in forward and backward propagation. Ni is the
total number of iterations.

4.3. Learnable Logarithmic Affine Quantizer

As discussed in Observation 3 in Sec. 3.1 and theoretical
analysis in Sec. 3.2, the regression of object location is typ-
ically trained by distance-based loss functions, in which the
weight distribution is more likely to gather around and be-
comes a quasi Laplace or Gaussian distribution, and is not
friendly for uniform quantizer.

Therefore, we propose the Learnable Logarithmic-Affine
Quantizer (LLAQ) to handle the non-uniform distribution.
Specifically, consider a variable with Laplace distribution

Algorithm 1 Local and Global Loss-Alignment Calibration

Input: Full-precision detector Φ, calibration set Scalib,
Sprep = ∅.

Output: Quantized model Φ̂.
1: for ϕkq in Φq do
2: ϕ̂kq ← ϕkq .open quant()
3: for s in Scalib do
4: (y, b), (ŷ, b̂)← Φ(s), Φ̂(s)
5: (Ik, Ok), (Îk, Ôk)← hook(ϕk), hook(ϕ̂k)
6: gok ← ∂LG

∂Ôk

7: Sprep ← Sprep ∪ {(s, y, b, Ok, Îk, gok)}
8: end for
9: for i← 1 to Ni do

10: sampling s, y, b, Ok, Îk, gok from Sprep
11: ŷ, b̂, Ôk ← Φ̂(s), ϕ̂k(Îk)
12: use Eq. 3 to update LHk

13: use Eq. 8 to update LG
14: Ltot ← LHk + LG
15: Ltot.backward()
16: end for
17: end for

(a) Weight distribution after 
logarithmic-affine

(b) Weights after dequantization

Layer.1.weight Layer.2.weight

Layer.0.weight Layer.3.weight
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Figure 7. Visualizations of the weight (a) after logarithmic-affine
transformation and (b) in the original linear space. It can be seen
that weight in (a) is more uniformly distributed. The red lines are
the quantization levels.

f(x|µ, λ) = 1
2λ exp

(
− |x−µ|

λ

)
, where µ, b are location and

scale parameters. We first divide the parameters into two
parts according to the position parameter µ, and apply a
logarithmic-affine transformation ψ(·) to project them into
a logarithmic space:

ψ(x) = k∗logx+ a∗, (9)

where k∗, a∗ are learnable scale and offset that we use
k+, a+ when x ≥ µ and k−, a− otherwise. We
update k+, a+, k−, a− during finetuning to learn better
logarithmic-affine transformations. Theoretically, applying
ψ(·) on Laplace probability density function, we have

ψ(f(x|µ, λ)) =

{
k+

λ (µ− x)− k+log2λ+ a+ if x ≥ µ,
k−

λ (x− µ)− k−log2λ+ a− otherwise.
(10)
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Method #Bit(W/A)
RetinaNet YOLOF Faster RCNN Mask RCNN

ResNet-50 ResNet-101 ResNet-50 ResNet-50 ResNet-101 ResNet-50 ResNet-101
Full-precision 32/32 37.4 38.9 37.5 38.5 39.8 39.2 40.8

BRECQ 2/4 14.0 18.7 10.8 12.5 13.0 11.0 12.0
PD-Quant 2/4 19.3 20.6 15.4 1.7 6.1 11.8 10.8

QDrop 2/4 19.9 22.9 17.4 17.8 19.9 18.2 19.9
Reg-PTQ (Ours) 2/4 23.9 24.8 19.3 19.1 21.5 19.1 20.7

AdaRound 3/3 19.3 20.7 7.7 21.2 22.8 21.6 22.6
AdaQuant 3/3 21.1 19.9 13.3 4.8 5.8 4.5 4.4
BRECQ 3/3 22.8 24.6 18.4 16.7 16.5 15.9 15.2

PD-Quant 3/3 24.5 25.6 22.2 14.0 14.0 18.7 17.3
QDrop 3/3 26.5 26.8 25.8 23.6 24.1 24.4 24.7

Reg-PTQ (Ours) 3/3 28.1 28.3 27.3 28.1 29.1 28.4 28.8
AdaRound 4/4 20.5 20.8 17.1 0.6 23.8 24.3 24.8
AdaQuant 4/4 33.5 34.5 25.6 12.8 14.5 12.0 14.6
BRECQ 4/4 34.2 35.8 29.0 28.8 30.8 31.7 30.1

PD-Quant 4/4 33.2 33.4 31.4 25.7 28.3 27.6 27.5
QDrop 4/4 34.1 35.1 33.4 33.7 34.4 34.5 35.6

SubSetQ 4/4 33.4 35.0 31.8 33.3 35.4 34.9 36.8
Reg-PTQ (Ours) 4/4 36.7 35.9 34.3 36.7 36.2 36.4 37.2

AdaQuant 4/8 36.5 38.1 35.0 16.9 19.2 14.2 18.4
BRECQ 4/8 36.8 38.6 36.2 20.0 22.0 21.2 23.4

PD-Quant 4/8 36.8 38.5 36.5 24.1 24.2 27.4 26.9
QDrop 4/8 37.0 38.5 36.7 37.6 38.9 38.2 39.9

SubSetQ 4/8 36.7 38.3 36.2 36.1 38.7 38.1 39.8
Reg-PTQ (Ours) 4/8 37.4 38.6 36.8 37.8 39.1 38.3 40.0

Table 1. Comparison with other PTQ methods on various detectors with ResNet-50/101 as the backbone on COCO dataset.

It means that by Eq. 9, we transform the probability density
function from an exponential function to a segmented linear
space.

We apply the transformation on the weights of the toy
regressor and visualize them in Figure 7. It can be seen
that the logarithmic-affine transformation makes the param-
eters close to a uniform distribution compared to that in Fig-
ure 4 (b). It satisfies the presupposition of uniform quan-
tization that the variables are expected to spread evenly.
And then, we apply uniform quantization on them (red
dotted lines in Figure 7 (a)). We prestore the quantized
⌊ψ(W )⌉ and s∗w in checkpoint to avoid on-the-fly compu-
tation. In inference, the product of activation and weight
is X⊤W ≈ X⊤2⌊ψ(W )⌉s∗w = s∗wX

⊤<< ⌊ψ(W )⌉, where
s∗w = 1

HW ΣiΣj
Wij

Wk∗
ij 2a∗ are channel-wise vectors. << can

be implemented by BitShift operator.

5. Experiments

5.1. Settings

Detection Task and Networks: To demonstrate the versa-
tility of our Reg-PTQ, we evaluate our Reg-PTQ framework
on the most representative one-stage and two-stage detec-
tion frameworks in the literature, including RetinaNet [28],
YOLOF [2], Faster RCNN [44] and Mask RCNN [18] with
ResNet-50/101 as backbones. We showcase the mAP re-
sult of the above detectors on the large-scale COCO object
detection dataset [27]. Due to limited space, we also pro-
vide experimental results on small-scale PASCAL VOC [8]
dataset and transformers-architecture detectors in the sup-

plementary material.
Implementation Details: We follow [56] to adopt the

widespread PTQ pipeline, and follow [36] to use the stan-
dard pipeline for weight-tuning. We adopt the uniform set-
tings for all methods, use block-wise calibration for the
backbone and layer-wise calibration for other structures,
and finetune each block or layer for 2k iterations with a
batch size of 256. The quantized bit-width is denoted as
WwAa, meaning w-bit weight and a-bit activation. Unlike
previous works that only quantize the backbone, we quan-
tize all the intermediate layers to WwAa, the first layer to 8-
bit, and keep the last prediction layer to full-precision. Be-
sides, additive operators are full-precision and Batch Nor-
malization is folded into previous convolution. We dubbed
it full quantization.

5.2. Results on COCO Object Detection Dataset

We compare our Reg-PTQ framework with several clas-
sical and recent PTQ methods including AdaRound [36],
AdaQuant [21], BRECQ [24], QDrop [55], PD-Quant [31]
and SubSetQ [41]. Table 1 showcases results on COCO ob-
ject detection dataset. We evaluate under diverse bit-width
settings, including W2A4, W3A3, W4A4 and W4A8. We
do not report the results of baseline methods if their perfor-
mance collapse after quantization. Numbers in bold are the
results of our method.

As Table 1 shows, Reg-PTQ has consistent improve-
ments over various detection models and bitwidth. It
achieves almost lossless accuracy under W4A8, which is
38.6% on RetinaNet ResNet-101, with only a 0.3% drop
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baseline: 23.0 θC
0 (w/o) 5e-5 2e-4 1e-3 1e-2

θI

0 (w/o) 23.5 23.9 23.8 23.5 23.2
0.1 23.8 23.9 23.9 23.8 23.5
0.5 23.8 23.8 23.8 23.8 23.2

Table 2. Ablation study of FGIC and sensitivity analysis of its
hyperparameters, θC and θI , on RetinaNet ResNet-50 on COCO
under W2A4 quantization. Baseline means solely using local loss.

Model Quantizer W2A4 W3A3 W4A4
One-Stage

(Bbox Head)
Uniform 23.0 27.2 35.2
LLAQ 23.6 28.0 35.7

Two-Stage
(Rpn+Roi Heads)

Uniform 22.3 28.8 34.3
LLAQ 23.7 31.7 36.4

Table 3. Comparison of uniform and LLAQ quantizers under var-
ious bitwidth on COCO. Models used here are RetinaNet ResNet-
50 and Faster RCNN ResNet-50.

compared with the full-precision counterpart. And the per-
formance of Faster RCNN is also noteworthy with only
0.7% drops, which is 37.8% and 39.1% using ResNet-
50/101 as backbones. Under more challenging W4A4 set-
ting, Reg-PTQ also achieves comparable performance that
less than 1.0% drop when quantizing RetinaNet ResNet50,
and about 3.0% drop on other detection models.

We highlight that Reg-PTQ framework outperforms
other PTQ methods by a wide margin, especially under
lower bit-width, such as W2A4 and W3A3. For instance,
for one-stage detectors, Reg-PTQ achieves 23.9% on Reti-
naNet ResNet-50 under W2A4, up to 4.0% higher than cur-
rent state-of-the-art methods. As for two-stage detectors,
Reg-PTQ achieves remarkable 4.0-5.0% improvements on
Faster RCNN and Mask RCNN under W3A3. Experimental
results forcefully demonstrate that our Reg-PTQ framework
retains the accuracy for quantized detectors, which means
that the proposed two regression-specialized techniques are
more suitable for quantizing detection models.

5.3. Ablation Study

We perform detailed ablation study and analysis for the pro-
posed techniques, i.e., FGIC and LLAQ.

Effect of FGIC. We use two hyperparameters θC and
θI as the thresholds to filter out the low confidence and low
IoU boxes. To better understand the effect, in Table 2, we
report the performance of FGIC, and the impact of differ-
ent θC and θI . From the results, we observe: (1) Compared
with solely using local loss, introducing global loss without
filtering can improve 0.5% of the performance. (2) It is ef-
fective to filter out the low-confidence and low-intersection
bounding boxes in calculating the loss, which is 0.4% better
than that without using the filtering strategy. (3) Our Reg-
PTQ is not sensitive to the value of θC and θI . We find that
when θC = 2e− 4, θI = 0.1, our Reg-PTQ can achieve the
best result. Therefore, we use these values as default.

Effect of LLAQ. We report the results when applying

#Bit(W/A)
Quantize Backbone & Neck Fully Quantize
FLOPs (G) Storage (M) FLOPs (G) Storage (M)

2/4 25.48 21.78 12.14 5.97
4/4 35.24 23.46 22.65 8.70
4/8 54.75 23.46 43.95 8.70

(a) Faster RCNN ResNet-50. The full-precision one has 171.8 GFLOPs
and 46.91 M Storage while processing one sample.

#Bit(W/A)
Quantize Backbone & Neck Fully Quantize
FLOPs (G) # Storage (M) FLOPs (G) Storage (M)

2/4 8.06 37.11 7.89 14.9
4/4 14.73 39.08 14.46 18.42
4/8 28.07 39.08 27.84 18.42

(b) RetinaNet ResNet-50. The full-precision one has 108.10 GFLOPs and
66.60 M Storage while processing one sample.

Table 4. The FLOPs (G) and the Storage (M) of different detectors
under different bit-width settings.

uniform quantizer and LLAQ quantizers on detection head
only for one/two-step detectors, and the results are shown in
Table 3. Compared with the others, LLAQ exhibits consis-
tent improvement in various bit-width settings and detection
heads. It shows impressive improvements, especially under
lower bit-width settings. For example, it increases 1.6 mAP
under W2A4 for the one-stage detector, and 2.9 mAP under
W3A3 for the two-stage detector.

5.4. Efficiency

We evaluate the computational complexity and storage of
fully quantized detectors using thop 2. We take the Faster
RCNN and RetinaNet with ResNet-50 as examples. Table 4
compares the FLOPs (G) and storage (M) between quantiz-
ing backbone and neck and full quantization. Full quan-
tization pushes the acceleration and compression ratio to
the impressive 14.2× and 7.8× on Faster RCNN ResNet-
50 under W2A4, which has an additional 2.1× and 3.6×
reduction in FLOPs and storage compared to only quantize
the backbone and neck. For RetinaNet, the computation
decrease in FLOPs is not noticeable, but the storage con-
sumption is significantly reduced. Therefore, detectors can
benefit a lot from full quantization and have great potential
to achieve efficient inference if deployed on hardware.

6. Conclusion
In this paper, we devote ourselves to the regression-
specialized PTQ methods. We reveal the fundamental cause
of quantizing detectors and propose the first universal full
quantization framework for detection named Reg-PTQ. The
impressive accuracy and efficiency performance demon-
strate the effectiveness of our method. We provide primary
attempts and insights in quantizing the regression struc-
tures, making it promising to produce and implement full
quantized detectors in real object detection scenarios.

2https://github.com/Lyken17/pytorch-OpCounter
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