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Figure 1. Our BiDiff can efficiently generate high-quality 3D objects. It alleviates all these issues in previous 3D generative models: (a)
low-texture quality, (b) multi-view inconsistency, and (c) geometric incorrectness (e.g., multi-face Janus problem). The outputs of our model
can be further combined with optimization-based methods (e.g., ProlificDreamer) to generate better 3D geometries with slightly longer
processing time (bottom row).

Abstract

Most 3D generation research focuses on up-projecting 2D
foundation models into the 3D space, either by minimizing
2D Score Distillation Sampling (SDS) loss or fine-tuning
on multi-view datasets. Without explicit 3D priors, these
methods often lead to geometric anomalies and multi-view
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inconsistency. Recently, researchers have attempted to im-
prove the genuineness of 3D objects by directly training on
3D datasets, albeit at the cost of low-quality texture gen-
eration due to the limited texture diversity in 3D datasets.
To harness the advantages of both approaches, we propose
Bidirectional Diffusion (BiDiff), a unified framework that
incorporates both a 3D and a 2D diffusion process, to pre-
serve both 3D fidelity and 2D texture richness, respectively.
Moreover, as a simple combination may yield inconsistent
generation results, we further bridge them with novel bidi-
rectional guidance. In addition, our method can be used
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as an initialization of optimization-based models to further
improve the quality of 3D models and the efficiency of opti-
mization, reducing the process from 3.4 hours to 20 minutes.
Experimental results have shown that our model achieves
high-quality, diverse, and scalable 3D generation. Project
website https://bidiff.github.io/.

1. Introduction
Recent advancements in text-to-3D generation [24] mainly
focus on lifting 2D foundation models into 3D space. One
of the most popular solutions [15, 30] uses 2D Score Dis-
tillation Sampling (SDS) loss derived from a 2D diffusion
model to supervise 3D generation. While these methods can
generate high-quality textures, they often lead to geometric
ambiguity, such as the multi-face Janus problem [25], due
to the lack of 3D constraints (Fig. 1(c)). Moreover, these
optimization methods are time-consuming, taking hours to
generate one object. Zero-123[18] tries to alleviate the prob-
lem by fine-tuning the 2D diffusion models on multi-view
datasets, but it still cannot guarantee geometric consistency
(Fig. 1(b)).

To ensure better 3D consistency, another solution is to
directly learn 3D structures from 3D datasets [12, 28]. How-
ever, many existing 3D datasets [1, 4] only contain hand-
crafted objects or lack high-quality 3D geometries, with
textures very different from real-world objects. Moreover,
3D datasets are often much smaller than, and also difficult
to scale up to, their 2D counterparts. As a result, the 3D dif-
fusion models (Fig. 1 (a)) normally cannot generate detailed
textures and complicated geometries, even if they have bet-
ter 3D consistency compared to up-projecting 2D diffusion
models.

Therefore, a straightforward way to leverage the advan-
tages of both methods is to combine both 2D and 3D diffu-
sion models. However, a simple combination may result in
inconsistent generative directions as they are learned in two
independent diffusion processes. In addition, the two diffu-
sion models are represented in separate 2D and 3D spaces
without knowledge sharing.

To overcome these problems, we propose Bidirectional
Diffusion (BiDiff ), a method to seamlessly integrate both
2D and 3D diffusion models within a unified framework.
Specifically, we employ a hybrid representation in which a
signed distance field (SDF) is used for 3D feature learning
and multi-view images for 2D feature learning. The two
representations are mutually transformable by rendering 3D
feature volume into 2D features and back-projecting 2D
features to 3D feature volume. Starting from pretrained 3D
and 2D diffusion models, the two diffusion models are jointly
finetuned to capture a joint 2D and 3D prior facilitating 3D
generation.

However, correlating the 2D and 3D representations is

not enough to combine two diffusion processes, as they may
deviate from each other in the following diffusion steps. To
solve this problem, we further introduce bidirectional guid-
ance to align the generative directions of the two diffusion
models. At each diffusion step, the intermediate results from
the 3D diffusion scheme are rendered into 2D images as
guidance signals to the 2D diffusion model. Meanwhile, the
multi-view intermediate results from the 2D diffusion pro-
cess are also back-projected to 3D, guiding the 3D diffusion.
The mutual guidance regularizes the two diffusion processes
to learn in the same direction.

The proposed bidirectional diffusion poses several advan-
tages over the previous 3D generation models. First, users
can separately control the generation of 2D texture and 3D
geometry, as shown in Fig. 2, because the 2D diffusion model
focuses on texture generation and the 3D diffusion model
focuses on geometry. This is impossible for previous 3D
diffusion methods. Secondly, compared to 3D-only diffusion
models [12], our method takes advantage of a 2D diffusion
model trained on much larger datasets. Therefore, it can
generate more diversified objects and create a completely
new object like “A strong muscular chicken” illustrated in
Fig 2. Thirdly, compared to previous optimization meth-
ods [30, 41] that often take several hours to generate one
object, we utilize a fast feed-forward joint 2D-3D diffusion
model for scalable generation, which only takes about 40
seconds to generate one object.

Moreover, because of the efficacy of BiDiff , we also pro-
pose an optional step to utilize its output as an initialization
for the existing optimization-based methods (e.g., Prolific-
Dreamer [41]). This optional step can further improve the
quality of a 3D object, as demonstrated in the bottom row of
Fig. 1. Also, the good initialization from BiDiff helps to re-
duce optimization time from around 3.4 hours to 20 minutes,
and concurrently resolves geometrical inaccuracy issues,
like multi-face anomalies. Moreover, this two-step gener-
ation enables creators to rapidly adjust prompts to obtain
a satisfactory preliminary 3D model through a lightweight
feed-forward generation process, subsequently refining it
into high-fidelity results.

Through training on ShapeNet [1] and Objaverse 40K [4],
our framework is shown to generate high-quality textured
3D objects with strong generalizability. In summary, our
contributions are as follows: 1) We propose BiDiff, a joint
2D-3D diffusion model, that can generate high-quality, 3D-
consistent, and diversified 3D objects; 2) We propose a novel
training pipeline that utilizes both pretrained 2D and 3D gen-
erative foundation models; 3) We propose the first diffusion-
based 3D generation model that allows independent control
of texture and geometry; 4) We utilize the outputs from
BiDiff as a strong initialization for the optimization-based
methods, generating high-quality geometries while ensuring
that users receive quick feedback for each prompt update.
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A golden skull. A crystal skull. An ancient Chinese 
tower.

An ancient Gothic 
tower.

A strong 
muscular man.

A strong muscular 
chicken.

A blue and white 
porcelain teapot.

A blue and white 
porcelain burger.

A blue and red 
Superman clothes.

A bule and red 
Superman clothes 
style car.

A board with Van 
Gogh‘s starry sky 
style painting on it.

A house in Van 
Gogh starry sky 
style.

Figure 2. Texture Control (Top): we change the texture while maintaining the overall shape. Shape Control (Bottom): we fix texture
patterns and generate various shapes.

2. Related Work
Early 3D generative methods adopt various 3D representa-
tions, including 3D voxels [8, 37, 42], point clouds [29, 43],
meshes [16, 26], and implicit functions [2, 11] for category-
level 3D generations. These methods directly train the gener-
ative model on a small-scale 3D dataset, and, as a result, the
generated objects may either miss tiny geometric structures
or lose diversity. Although there are large-scale [4] or high-
quality 3D datasets [38] recently, they are still much smaller
than the datasets used for 2D image generation training.

With the powerful text-to-image synthesis models [32–
34], a new paradigm emerges for 3D generation without
large-scale 3D datasets by leveraging 2D generative model.
One line of works utilizes 2D priors from pre-trained text-
to-image model (known as CLIP) [10, 13] or 2D diffusion
generative models [15, 24, 39] to guide the optimization
of underlying 3D representations. However, these mod-
els could not guarantee cross-view 3D consistency and the
per-instance optimization scheme suffers both high com-
putational cost and over-saturated problems. Later on, re-
searchers improve these models using textual codes or depth
maps [5, 23, 35], and [41] directly model 3D distribution
to improve diversity. These methods alleviate the visual
artifacts but still cannot guarantee high-quality 3D results.

Another line of works learn 3D priors directly from 3D
datasets. As the diffusion model has been the de-facto net-
work backbone for most recent generative models, it has been
adapted to learn 3D priors using implicit spaces such as point
cloud features [28, 45], NeRF parameters [6, 12], or SDF
spaces [3, 20]. The synthesized multi-view images rendered
from 3D datasets were also utilized to provide cross-view 3D
consistent knowledge, thereby achieving image-to-3D gener-

ation under given single image condition [18, 19, 22]. These
methods normally highlight fast inference and 3D consistent
results. However, due to inferior 3D dataset quality and size,
these methods generally yield geometric lower-quality re-
sults with limited diversity. Recently a few methods [31, 36]
explored to combine 2D priors and 3D priors from individ-
ual pre-trained diffusion models, but they often suffer from
inconsistency between two generative processes.

3. Method
As many previous studies [18, 31] have illustrated, both
2D texture and 3D geometry are important for 3D object
generation. However, incorporating 3D structural priors and
2D textural priors is challenging: i) combining both 3D and
2D generative models into a single cohesive framework is
not trivial; ii) in both training and inference, two generative
models may lead to opposite generative directions.

To tackle these problems, we propose BiDiff , a novel
bidirectional diffusion model that marries a pretrained 3D
diffusion model with another 2D one using bidirectional
guidance. Fig. 3 illustrates the overall architecture of our
framework. Details of each component will be discussed
below. Specifically, in Sec. 3.1, we will introduce our novel
hybrid representation that includes both 2D and 3D informa-
tion, and the bidirectional diffusion model built on top of this
hybrid representation. In Sec. 3.2 and Sec. 3.3, to ensure the
two generative models lead to the same generative direction,
we will introduce how to add bidirectional guidance to both
3D and 2D diffusion models. In Sec. 3.4, we discuss one
advantage of BiDiff , which is independent control of texture
and geometry generation, as shown in Fig. 2. Finally, in
Sec. 3.5, we discuss another advantage of BiDiff , which is
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Figure 3. The BiDiff framework operates as follows: (a) At each step of diffusion, we render the 3D diffusion’s intermediate outputs into
2D images, which then guide the denoising of the 2D diffusion model. Simultaneously, the intermediate multi-view outputs from the 2D
diffusion are re-projected to assist the denoising of the 3D diffusion model. Red arrows show the bidirectional guidance, which ensures
that both diffusion processes evolve coherently. (b) We use the outcomes of the 2D-3D diffusion as a strong starting point for optimization
methods, allowing for further refinement with fewer optimization steps.

to use the results from BiDiff as a strong initialization for
optimization-based methods to obtain more delicate results
efficiently.

3.1. Bidirectional Diffusion

To incorporate both 2D and 3D priors, we represent a 3D
object using a hybrid combination of two formats: Signed
Distance Field (SDF) F and multi-view image set V ={
Ii
}M

i=1
, where F is computed from signed distance values

on an N × N × N grid, and Ii is the i-th image from a
multi-view image set of size M . This hybrid representation
is shown on the left side of Fig. 3.

With this representation, we learn a joint distribution
{F ,V} utilizing two distinct diffusion models: a 3D diffu-
sion model D3d in the SDF space (the green 3D denoising
block in Fig. 3) and a 2D multi-view diffusion model D2d

within the image domain (the blue 2D denoising block in
Fig. 3). Specifically, given a timestep t, we add Gaussian
noises to both SDF and multi-view images as

Ft =
√
αtF0 +

√
1− αtϵ3d and

Ii
t =

√
αtIi

0 +
√
1− αtϵ

i
2d for ∀i,

(1)

where ϵ ∼ N (0, I) is random noise, and αt is a noise
schedule which is different in 3D and 2D. Subsequently,
the straightforward way is to separately train these two dif-
fusion models by minimizing the following two objectives:

Lsimple3d = EFt,ϵ3d,t∥ϵ3d −D3d(Ft, t)∥22,

Lsimple2d =
1

N

N∑
i=1

(EIi
t ,ϵ

i
2d,t

∥ϵi2d −D2d(Ii
t , t)∥22),

(2)

where ϵ3d and ϵ2d are Gaussian noises ϵ3d, ϵi2d ∼ N (0, I),
SDF and image set are sampled from forward diffusion pro-
cesses Ft ∼ q(Ft), Ii

t ∼ q(Ii
t), and timestep is uniformly

sampled t ∼ U [1, T ].
However, this simple combination does not consider the

correlations between 3D and 2D diffusion, which may hinder
the understanding of 2D and 3D consistency, leading to
inconsistent generation between 3D geometry and 2D multi-
view images.

We resolve this problem by a novel Bidirectional Dif-
fusion. In this model, the consistency between 3D and
2D diffusion output is enforced through bidirectional guid-
ance. First, we add guidance from the 2D diffusion pro-
cess to the 3D generative process, which is the red arrow
pointing to the “2D-3D Control”. Specifically, during each
denoising step t, we feed the denoised multi-view images
V ′
t+1 =

{
Ii
t+1

}N

i=1
in previous step into the 3D diffusion

model as ϵ′3d = D3d(Ft,V ′
t+1, t). This guidance steers

the current 3D denoising direction to ensure 2D-3D con-
sistency. It’s worth mentioning that the denoised output
V ′
t+1 from the previous step t + 1 is inaccessible in train-

ing, therefore we directly substitute it with the ground truth
Vt. During inference, we utilize the denoised images from
the previous step. Then we could obtain the denoised radi-
ance field F ′

0 given the 3D guided noise prediction ϵ′3d by
F ′

0 = 1√
αt
(Ft −

√
1− αtϵ

′
3d).
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Secondly, we also add guidance from the 3D diffusion
process to the 2D generative process. Specifically, us-
ing the same camera poses, we render multi-view images
Hi

t derived from the radiance field F ′
0 by the 3D diffu-

sion model: Hi
t = R(F ′

0,Pi), i = 1, ...M , where Pi is
the ith camera pose. These images are further used as
guidance to the 2D multi-view denoising process D2d by
ϵ′2d = D2d(Vt,

{
Hi

t

}N

i=1
, t).. This guidance is the red arrow

pointing to the “3D-2D control” in Fig. 3.
Our method can seamlessly integrate and synchronize

both the 3D and 2D diffusion processes within a unified
framework. In the following sections, we will delve into
each component in detail.

3.2. 3D Diffusion Model with 2D Guidance
Our 3D diffusion model aims to generate a neural surface
field (NeuS) [21], with novel 2D-to-3D guidance derived
from the denoised 2D multi-view images. To train our 3D
diffusion model, at each training timestep t, we add noise
to a clean radiance field, yielding a noisy one Ft. This
field, combined with the timestep t embeddings and the
text embeddings, is then passed through 3D sparse con-
volutions to generate a 3D feature volume M as: M =
Sp3DConv(Ft, t, text). Then we sample N ×N ×N grid
points from M and project these points onto all denoised
multi-view images V ′

t+1 from the previous step of the 2D
diffusion model. At each grid point p, we aggregate the inter-
polated 2D feature at its 2D projected location on each view,
and calculate the mean and variance over all N interpolated
features to obtain the image-conditioned feature volume N :

N (p) = [Mean(V ′
t+1(π(p))),Var(V ′

t+1(π(p)))], (3)

where π denotes the projection operation from 3D to 2D
image plane. We fuse these two feature volumes with further
sparse convolutions for predicting the clean F0.

One important design of our 3D diffusion model is that it
incorporates geometry priors derived from the 3D foundation
model, Shap-E [12]. Shap-E is a latent diffusion [24] model
trained on several millions 3D objects, and thus ensures the
genuineness of generated 3D objects. Still, we do not want
Shap-E to limit the creativity of our 3D generative model,
and try to preserve the capability of generating novel objects
that Shap-E cannot.

To achieve this target, we design a feature volume G to
represent a radiance field converted from the Shap-E latent
code C. It is implemented using NeRF MLPs by setting their
parameters to the latent code C: G(p) = MLP(λ(p); θ = C),
where λ denotes the positional encoding operation.

One limitation of directly introducing Shap-E latent code
is that the network is prone to shortcut the training process,
effectively memorizing the radiance field derived from Shap-
E. To generate 3D objects beyond Shap-E model, we add
Gaussian noise at level t0 to the clean latent code, resulting in

the noisy latent representation Ct0 , where t0 represents a pre-
defined constant timestep. Subsequently, the noisy radiance
field Gt0 is decoded by substituting C with Ct0 . This design
establishes a coarse-to-fine relationship between the 3D prior
and the ground truth, prompting the 3D diffusion process to
leverage the 3D prior without excessively depending on it.

In this way, we can get the fused feature volume as:

S = U([M,Sp3DConv(N ),Sp3DConv(Gt0)]), (4)

where U denotes 3D sparse U-Net. Then we can query
features from S for each grid point p and decode it to SDF
values through several MLPs: F ′

0(p) = MLP(S(p), λ(p)),
where S(p) represents the interpolated features from S at
position p. In Sec. 4.2 and Fig. 4, our experiments also
demonstrate that our model can generate 3D objects beyond
Shap-E model.

3.3. 2D Diffusion Model with 3D Guidance
Our 2D diffusion model simultaneously generates multi-
view images by jointly denoising multi-view noisy images
Vt =

{
Ii
t

}M

i=1
. To encourage 2D-3D consistency, the 2D

diffusion model is also guided by the 3D radiance field output
from 3D diffusion process mentioned above. Specifically, for
better image quality, 2D multi-view diffusion model is built
on the multiple independently frozen 2D foundation models
(e.g., DeepFloyd [7]) to harness the potent 2D priors. Each
of these frozen 2D foundation models (the blue network in
Fig. 3) is modulated by view-specific 3D-consistent residual
features and responsible for the denoising of a specific view,
as described below.

First, to achieve 3D-to-2D guidance, we render multi-
view images from the 3D denoised radiance field F ′

0 and feed
them to 2D denoising model. Note that the radiance field
consists of a density field and a color field. The density field
is constructed from the signed distance field (SDF) generated
by our 3D diffusion model using S-density introduced in
NeuS [40]. To obtain the color field, we apply another color
MLP to the feature volume in the 3D diffusion process.

Upon obtaining the color field c and density field σ, we
conduct volumetric rendering on each ray r(m) = o+md
which extends from the camera origin o along a direction d

to produce multi-view consistent images
{
Hi

}M

i=1
:

Ĉ(r) =

∫ ∞

0

T (m)σ(r(m)))c(r(m)),d)dm, (5)

where T (m) = exp(−
∫m

0
σ(r(s))ds) handles occlusion.

Secondly, we use these rendered multi-view images as
guidance for the 2D foundation model. We first use a shared
feature extractor E to extract hierarchical multi-view con-
sistent features from these images. Then each extracted
feature is added as residual to the decoder of its correspond-
ing frozen 2D foundation denoising U-Net (the red arrow
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pointing to “3D-2D Control” in Fig. 3), achieving multi-view
modulation and joint denoising following ControlNet [46]
as f̂ i

k = f i
k + ZeroConv(E(Hi)[k]), where fk

i denotes the
original feature maps of the k-th decoder layer in 2D foun-
dation model, E(Hi)[k] denotes the k-th residual features
of the i-th view, and ZeroConv [46] is 1 × 1 convolution
which is initialized by zeros and gradually updated during
training. Experimental results show that this 3D-to-2D guid-
ance helps to ensure multi-view consistency and facilitate
geometry understanding.

3.4. Separate Control of Geometry and Texture
One advantage of BiDiff is that it naturally separates 2D tex-
ture generation using 2D diffusion model from 3D geometry
generation using 3D diffusion model. Because of this, users
can separately control geometry and texture generation, as
shown in Fig. 2.

To achieve this, we first propose a prior enhancement
strategy to empower a manual control of the strength of 3D
and 2D priors independently. Inspired by the classifier-free
guidance [9], during training, we randomly drop the infor-
mation from 3D priors by setting condition feature volume
from G to zero and weaken the 2D priors by using empty
text prompts. Consequently, upon completing the training,
we can employ two guidance scales, γ3d and γ2d, to inde-
pendently modulate the influence of these two priors.

Specifically, to adjust the strength of 3D prior, we calcu-
late the difference between 3D diffusion outputs with and
without conditional 3D feature volumes, and add them back
to 3D diffusion output:

ϵ̂3d =D3d(Ft,V ′
t+1, t) + γ3d · ((D3d(Ft,V ′

t+1, t|G)−
D3d(Ft,V ′

t+1, t)).
(6)

Then we can control the strength of 3D prior by adjusting
the weight γ3d of this difference term. When γ3d = 0, it will
completely ignore 3D prior. When γ3d = 1, this is just the
previous model that uses both 3D prior and 2D prior. When
γ3d > 1, the model will produce geometries close to the
conditional radiance field but with less diversity.

Also, we can similarly adjust the strength of 2D priors by
adding differences between 2D diffusion outputs with and
without conditional 2D text input:

ϵ̂2d =D2d(Vt,
{
Hi

t

}M

i=1
, t)+

γ2d · ((D2d(Vt,
{
Hi

t

}M

i=1
, t|text))−

D2d(Vt,
{
Hi

t

}M

i=1
, t)).

(7)

Increasing γ2d results in more coherent textures with text,
albeit at the expense of diversity. It is worth noting that while
we adjust the 3D and 2D priors independently via Eq. (6)
and Eq. (7), the influence inherently propagates to the other

domain due to the intertwined nature of our bidirectional
diffusion process.

With these two guidance scales γ3d and γ2d, we can easily
achieve a separate control of geometry and texture. First, to
only change texture while keeping geometry untouched, we
just fix the initial 3D noisy SDF grids and the conditional
radiance field Ct0 , while enlarge their influence by Eq. (6).
On the other hand, to only change geometry while keeping
texture style untouched, we can maintain keywords in text
prompts and enlarge its influence by Eq. (7). By doing so,
the shape will be adjusted by the 3D diffusion process.

3.5. Optimization with BiDiff Initialization
The generated radiance field F0 using BiDiff can be further
used as a strong initialization of the optimization-based meth-
ods [41]. This additional step can further improve the quality
of the 3D model, as shown in Fig. 1 and Fig. 5. Importantly,
compared to the geometries directly generated by optimiza-
tion, our BiDiff can output more diversified geometry which
better aligns with users’ input text, and also has more accu-
rate 3D structure. Therefore, the optimization started from
this strong initialization can be rather efficient (≈ 20min)
and avoid incorrect geometries like multi-face and floaters.

Specifically, we first convert generated radiance field F0

by BiDiff into a higher resolution one F0 that supports
512 × 512 resolution image rendering, as shown on the
right of Fig. 3. This process is achieved by a fast NeRF
distillation operation (≈ 2min). The distillation first bounds
the occupancy grids of F0 with the estimated binary grids
(transmittance > 0.01) from the original radiance field F0,
then overfits F0 to F0 by minimizing both the L1 distance
between two density fields and L1 distance between their
renderings 2D images under random viewpoints. Thanks
to this flexible and fast distillation operation, we can effi-
ciently convert generated radiance field by BiDiff into any
3D representations an optimization-based method requires.
In our experiments, since we are using ProlificDreamer [41],
we use the InstantNGP [27] as the high-resolution radiance
field.

After initialization, we optimize F0 by SDS loss follow-
ing the previous methods [30, 41]. It is noteworthy that since
we already have a good initialized radiance field, we only
need to apply a small noise level SDS loss. Specifically, we
set the ratio range of denoise timestep topt to [0.02, 0.5]
during the entire optimization process.

4. Experiment
In this section, we described our experimental results. We
train our framework on the ShapeNet-Chair [1] and Ob-
javerse LVIS 40k datasets [4]. We use the pre-trained
DeepFloyd-IF-XL [7] as our 2D foundation model and Shap-
E [12] as our 3D priors. We adopt the SparseNeuS [21] as
the neural surface field presentation with N = 128. For the

5120



A chair made of Minecraft bedrock blocks. The blocks should be seamlessly integrated into the chair's structure.

A chair designed in the shape of a cactus, with prickly spines and a green, desert-inspired texture.

A beautiful dress made out of fruit, on a mannequin.

A red Volkswagen Beetle car. 

Ours Shap-E
Figure 4. Qualitative sampling results of Bidirectional Diffusion model, including multi-view images and 3D mesh from diffusion sampling.
The top two rows are the results on the Shapenet-Chair, and the bottom two rows are the results on the Objaverse. We compared the results
of Shap-E in the last column.

3D-to-2D guidance, We follow the setup of ControlNet [46]
to render M = 8 multi-view images with 64× 64 resolution
using SparseNeuS. We train our framework on 4 NVIDIA
A100 GPUs for both ShapeNet and Objaverse 40k experi-
ments with a batch size of 4. During sampling, we set the
3D and 2D prior guidance scale to 3.0 and 7.5 respectively.
More details on data processing and model architecture are
included in supplementary material. We discuss the evalua-
tion and ablation results below. Please refer to supplementary
webpages and videos for more visual results.

4.1. Text-to-3D Results

ShapeNet-Chair results. The first and second rows of
Fig. 4 present our results trained on the ShapeNet-Chair
dataset. Although the chair category often contains com-
plicated geometric details, our framework demonstrates the
capability to capture those fine details. Concurrently, our ap-
proach exhibits a remarkable capability to produce rich and
diverse textures by merely modulating the textual prompts,
leading to compelling visual outcomes.
Objaverse results. Scaling to a much larger 3D dataset,
Objaverse, our framework’s efficacy becomes increasingly
pronounced. The bottom two rows of Fig. 4 are results
from the Objaverse dataset. Compared to objects generated
by Shap-E, our model closely adheres to the given textual
prompts. This again shows that the proposed BiDiff learns to
model both 2D textures and 3D geometries better compared
with 3D-only solutions, and is capable of generating more
diverse geometries.
Decouple geometry and texture control. Lastly, we il-
lustrate that our BiDiff can separately control geometry and

texture generation. First, as illustrated in the first row of
Fig. 2, when the 3D prior is fixed, we have the flexibility
to manipulate the 2D diffusion model using varying textual
prompts to guide the texture generation process. This capa-
bility enables the generation of a diverse range of textured
objects while maintaining a consistent overall shape. Second,
when we fix the textual prompt for the 2D priors (e.g., "a
xxx with Van Gogh starry sky style"), we can adjust the 3D
diffusion model by varying the conditional radiance field
derived from the 3D priors. This procedure results in the
generation of a variety of shapes, while maintaining a similar
texture, as shown in the second row of Fig. 2.

4.2. Comparison with other Generation Models

Table 1. CLIP R-precision.

Method R-P time

DreamFusion 0.67 1.1h
ProlificDreamer 0.83 3.4h
Ours-sampling 0.79 40s

Ours-post 0.85 20min

Comparison with opti-
mization methods. Our
framework is capable of
simultaneously generating
multi-view consistent im-
ages alongside a 3D mesh
in a scalable manner. In
contrast, the SDS-based methods [30, 41] utilize a one-
by-one optimization approach. Tab. 1 reports the CLIP
R-Precision [12] and inference time on 50 test prompts manu-
ally derived from the captioned untrained Objaverse to quan-
titatively evaluate these methods. Also, optimization meth-
ods, Dreamfusion [30] and ProlificDreamer [41], are expen-
sive, taking several hours to generate an object. Moreover,
these optimization methods may lead to more severe multi-
face problems. In contrast, our method can produce realistic
objects with reasonable geometry in only 40 seconds. Fur-
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Zero-1-to-3 PolificDreamer
Input(by SD 2.1) 90° -150°

Bidirectional Diffusion Results Refinement Results

A golden skull

time ≈ 20min

time ≈ 6h

Figure 5. Comparison with other optimization or multi-view diffusion based works. We show both multi-view images (left) and 3D results
(right). Zero-1-to-3 [18] is not good at predicting results from a large perspective, and PolificDreamer [41] suffers from the multi face
problem. Our method has excellent robustness and can obtain high-quality results in a short period of time.

w/o 
2D prior

w/o 
3D prior

normal

An oral cavity style chair, includes oral cavity 
elements like red tongue and white teeth.

w/o prior 
enhancement

Figure 6. Ablation of prior and prior enhancement.

thermore, BiDiff can serve as a strong prior for optimization-
based methods and significantly boost their performance.
Initializing the radiance field in ProlificDreamer [41] with
our outputs shows remarkable improvements in both quality
and computational efficiency, as shown in Fig. 5.
Comparison with multi-view methods Given one refer-
ence image, the multi-view method Zero-1-to-3 [18] pro-
duces images from novel views by fine-tuning a pre-trained
2D diffusion model on multi-view datasets. However, this
method employs cross-view attention to establish multi-view
correspondence without an inherent understanding of 3D
structures, inevitably leading to inconsistent multi-view im-
ages as shown in Fig. 5. Moreover, the Zero-1-to-3 series
cannot directly generate the 3D mesh, requiring substantial
post-processing to acquire the geometry. In contrast, our
framework also incorporates 3D priors, in addition to 2D
priors, and thus can generate more accurate 3D geometries.

4.3. Abalation Studies
We perform comprehensive ablation studies on the ShapeNet-
Chair dataset [1] to evaluate the importance of each com-

ponent below. More ablation results can be found in the
supplementary material.

3D priors. To assess the impact of 3D priors, we eliminate
the conditional radiance field from Shap-E and train the 3D
geometry generation from scratch. The experimental results
in the second row of Fig. 6 demonstrate that in the absence
of the 3D priors, our framework can only generate common
objects in the training set.

2D priors. To delve into the impact of 2D priors, we ran-
domly initiate the parameters of the 2D diffusion model,
instead of fine-tuning on a pretrained model. The results in
the first row of Fig. 6 show that in the absence of 2D priors,
the textures generated tend to fit the stylistic attributes of the
synthetic training data. Conversely, with 2D priors, we can
produce more realistic textures.

Prior enhancement strategy. As discussed in Sec. 3.4,
we can adjust the influence of both 3D and 2D priors by the
prior enhancement strategy. Fig. 6 also shows the results
without this strategy. The prior enhancement strategy plays
a vital role in achieving diverse and flexible 3D generation.

5. Conclusion
In this paper, we propose Bidirectional Diffusion, which in-
corporates both 3D and 2D diffusion processes into a unified
framework. Furthermore, Bidirectional Diffusion leverages
the robust priors from 3D and 2D foundation models, achiev-
ing generalizable geometry and texture understanding.
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