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Abstract

Large-kernel convolutional neural networks (ConvNets)
have recently received extensive research attention, but two
unresolved and critical issues demand further investiga-
tion. 1) The architectures of existing large-kernel Con-
vNets largely follow the design principles of conventional
ConvNets or transformers, while the architectural design
for large-kernel ConvNets remains under-addressed. 2)
As transformers have dominated multiple modalities, it re-
mains to be investigated whether ConvNets also have a
strong universal perception ability in domains beyond vi-
sion. In this paper, we contribute from two aspects. 1) We
propose four architectural guidelines for designing large-
kernel ConvNets, the core of which is to exploit the essential
characteristics of large kernels that distinguish them from
small kernels - they can see wide without going deep. Fol-
lowing such guidelines, our proposed large-kernel ConvNet
shows leading performance in image recognition (ImageNet
accuracy of 88.0%, ADE20K mIoU of 55.6%, and COCO
box AP of 56.4%), demonstrating better performance and
higher speed than the recent powerful competitors. 2) We
discover large kernels are the key to unlocking the excep-
tional performance of ConvNets in domains where they were
originally not proficient. With certain modality-related pre-
processing approaches, the proposed model achieves state-
of-the-art performance on time-series forecasting and audio
recognition tasks even without modality-specific customiza-
tion to the architecture. All the code and models are pub-
licly available on GitHub and Huggingface.

1. Introduction
The design paradigm of convolutional neural networks

(ConvNets) with very large kernels originated from Re-

pLKNet [19] when the status of ConvNets was challenged

by Vision Transformers (ViTs) [20, 22, 50, 74, 80]. Inspired

*Equal contributions.

by ViTs that use global attention [20, 67, 80] or attention

with large windows [50, 62, 78], RepLKNet proposed to use

very large conv kernels. In contrast to the common practice

using small kernels (e.g., 3×3) [28, 31, 34, 61, 66, 71, 92],

which fails to obtain a large Effective Receptive Field

(ERF) [55] even with numerous small-kernel layers, Re-

pLKNet realizes large ERF and impressive performance,

especially on tasks such as object detection and semantic

segmentation.

Nowadays, ConvNets with very large kernels become

popular, which mostly focus on making the large ker-

nels even larger [48], ways to apply them to multiple

tasks [9, 54, 90], etc. However, we note that most archi-

tectures of the existing large-kernel ConvNets simply fol-

low other models, e.g., RepLKNet [19] follows the archi-

tecture of Swin Transformer [49], and SLaK [48] follows

ConvNeXt, which is a powerful architecture with medium-

sized (7×7) kernels. The architectural design for large-

kernel ConvNets remains under-explored.

We explore large-kernel ConvNet architecture by re-

thinking the design of conventional models that employ a

deep stack of small kernels. As we add a 3×3 conv to

a small-kernel ConvNet, we expect it to take three effects

simultaneously - 1) make the receptive field larger, 2) in-

crease the abstract hierarchy of spatial patterns (e.g., from

angles and textures to shapes of objects), and 3) improve

the model’s general representational capability via making

it deeper, bringing in more learnable parameters and non-

linearities. In contrast, we argue that such three effects in a

large-kernel architecture should be decoupled as the model

should utilize the substantial strength of a large kernel - the
ability to see wide without going deep. Since increasing the

kernel size is much more effective than stacking more lay-

ers in enlarging the ERF [55], a sufficient ERF can be built

up with a small number of large-kernel layers, so that the

compute budget can be saved for other efficient structures

that are more effective in increasing the abstract hierarchy

of spatial patterns or generally increasing the depth. For

example, when the objective is to extract higher-level local
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spatial patterns from lower-level ones, a 3×3 might be a

more suitable option than a large-kernel conv layer. The

reason is that the latter demands more computations and

may result in patterns no longer restricted to smaller local

regions, which could be undesirable in specific scenarios.

Concretely, we propose four architectural guidelines
for large-kernel ConvNets - 1) use efficient structures such

as SE Blocks [33] to increase the depth, 2) use a proposed

Dilated Reparam Block to re-parameterize the large-kernel

conv layer to improve the performance without inference
costs, 3) decide the kernel size by the downstream task and

usually use large kernels only in the middle- and high-level

layers, and 4) add 3×3 conv instead of more large kernels

while scaling up the model’s depth. A ConvNet built up

following such guidelines (Fig. 1) realizes the aforemen-

tioned three effects separately, as it uses a modest number of

large kernels to guarantee a large ERF, small kernels to ex-

tract more complicated spatial patterns more efficiently, and

multiple lightweight blocks to further increase the depth to

enhance the representational capacity.

Our architecture achieves leading performance on Im-

ageNet classification [12], ADE20K semantic segmenta-

tion [98], and COCO object detection [44], outperforming

the existing large-kernel ConvNets such as RepLKNet [19],

SLaK [48], and recent powerful architectures including

ConvNeXt V2 [85], FastViT [77], Swin V2 [51] and DeiT

III [75] in terms of both accuracy and efficiency. Moreover,

our architecture demonstrates significantly higher shape

bias [3, 76] than existing ConvNets and ViTs, i.e., it makes

predictions more based on the overall shapes of objects than

the textures, which agrees with the human visual system and

results in better generalization. This may explain its superi-

ority in downstream tasks. See the Appendix for details.

RepLKNet [19] was proposed partly “in defense of Con-

vNets” as ViTs dominated multiple image recognition tasks

that were once dominated by ConvNets. Moreover, consid-

ering transformers have shown universal perception capa-

bility in multiple modalities [93, 94], in this work, we seek

to not only reclaim the leading position in image recognition

tasks by surpassing ViTs’ performance but also contribute

to areas where ConvNets were not traditionally dominant.

Specifically, on audio, video, point cloud, and time-series

tasks, we achieve impressive performance with amazingly

universal and simple solutions. We use modality-specific

preprocessing approaches to transform all the data into 3D

embedding maps just like what we do with images and use

the same architecture as the backbone to process the embed-

ding maps. Our model shows universal perception ability
across multiple modalities with a unified architecture so

it is named UniRepLKNet.
Impressively, UniRepLKNet achieves remarkable results

even on modalities that were not considered the stronghold

of ConvNet, e.g., audio and temporal data. On a huge-
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Figure 1. Architectural design of UniRepLKNet. A LarK Block

comprises a Dilated Reparam Block proposed in this paper, an SE

Block [33], an FFN, and Batch Normalization (BN) [37] layers.

The only difference between a SmaK Block and a LarK Block is

that the former uses a depth-wise 3×3 conv layer in replacement

of the Dilated Reparam Block in the latter. Stages are connected

by downsampling blocks implemented by stride-2 dense 3×3 conv

layers. We may flexibly arrange the blocks in different stages and

the details of our provided instances are shown in Table 5.

scale time-series forecasting task that predicts the global

temperature and wind speed, UniRepLKNet, a generalist

model originally designed for image recognition, even out-

performs the latest state-of-the-art transformer customized

for the task. Such results not only signify a “comeback”
for ConvNet in its original domain but also showcase large-

kernel ConvNet’s potential to “conquer” new territories,

expanding its applicability and versatility in various tasks.

2. Related Work
Large kernels in early ConvNets. Classic ConvNets such

as AlexNet [42] and Inceptions [68–70] used 7×7 or 11×11

in the low-level layers, but large kernels became not pop-

ular after VGG-Net [66]. Global Convolution Network

(GCN) [57] used very large conv layers (1×K followed by

K×1) for semantic segmentation. Local Relation Networks

(LR-Net) [32] adopted a spatial aggregation operator (LR-

Layer) to replace the standard conv layer, which can be

viewed as a dynamic convolution. LR-Net benefited from

a kernel size of 7×7 but degraded with 9×9. With a kernel

size as large as the feature map, its top-1 accuracy signifi-

cantly reduced from 75.7% to 68.4%.

Explorations with large kernels. The concept of ker-

nel may be generalized beyond spatial convolution. Swin

Transformer [50] used shifted attention with window sizes

ranging from 7 to 12, which can be seen as a dynamic

kernel. Han et al. [27] replaced the attention layers in

Swin with static or dynamic 7×7 conv and still maintained

comparable results. MetaFormer [91] suggested large-

kernel pooling layer was an alternative to self-attention.

Another representative work was Global Filter Network
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(GFNet) [63], which optimized the spatial connection

weights in the Fourier domain. It is equivalent to circular

global convolutions in the spatial domain.

Modern ConvNets with very large kernels. RepLKNet

first proposed that simply scaling up the kernel size of ex-

isting ConvNets resulted in improvements, especially on

downstream tasks [19]. It proposed several guidelines while

using large kernels, which were focused on the microstruc-

tural design (e.g., using shortcut alongside large kernel) and

application (large-kernel ConvNets should be evaluated on

downstream tasks). In terms of the architecture, RepLKNet

merely followed Swin Transformer for simplicity. In the

past two years, large-kernel ConvNets have been intensively

studied. Some works succeeded in further enlarging the

kernel sizes [48], generalizing the idea to 3D scenarios [9]

and many downstream tasks, e.g., image dehazing [54] and

super-resolution [90]. However, we note that the architec-

tural design for ConvNets with very large kernels remains

under-explored. For example, SLaK [48] followed the ar-

chitecture developed by ConvNeXt, which is a powerful ar-

chitecture of medium-sized (7×7) kernels.

3. Architectural Design of UniRepLKNet
We first summarize the architectural guidelines as follows.

1) Block design: use efficient structures that perform both

inter-channel communications and spatial aggregations to

increase the depth. 2) Re-parameterization: use dilated

small kernels to re-parameterize a large kernel. 3) Kernel

size: decide kernel size according to the downstream task

and usually use large kernels in middle- and high-level lay-

ers. 4) Scaling Rule: while scaling up the depth, the added

blocks should use small kernels. We describe the proposed

Dilated Reparam Block in Sec. 3.1 and details in Sec. 3.2.

3.1. Dilated Reparam Block

It is reported a large-kernel conv should be used with a

parallel small-kernel one because the latter helps capture

the small-scale patterns during training [19]. Their out-

puts are added up after two respective Batch Normalization

(BN) [37] layers. After training, with the Structural Re-

parameterization [13–18] methodology, we merge the BN

layers into the conv layers so the small-kernel conv can be

equivalently merged into the large-kernel one for inference.

In this work, we note that except for small-scale patterns,

enhancing the large kernel’s capability to capture sparse pat-

terns (i.e., a pixel on a feature map may be more related to

some distant pixels than its neighbors) may yield features

of higher quality. The need to capture such patterns ex-

actly matches the mechanism of dilated convolution - from

a sliding-window perspective, a dilated conv layer with a

dilation rate of r scans the input channel to capture spatial

patterns where each pixel of interest is r − 1 pixels away

from its neighbor. Therefore, we use dilated conv layers

parallel to the large kernel and add up their outputs.

To eliminate the inference costs of the extra dilated conv

layers, we propose to equivalently transform the whole

block into a single non-dilated conv layer for inference.

Since ignoring pixels of the input is equivalent to insert-
ing extra zero entries into the conv kernel, a dilated conv
layer with a small kernel can be equivalently converted into
a non-dilated (i.e., r = 1) layer with a sparse larger ker-
nel. Let k be the kernel size of the dilated layer, by insert-

ing zero entries, the kernel size of the corresponding non-

dilated layer will be (k − 1)r + 1, which is referred to as

the equivalent kernel size for brevity. We further note that

such transformation from the former kernel W ∈ Rk×k to

the latter W′ ∈ R((k−1)r+1)×((k−1)r+1) can be elegantly

realized by a transpose convolution with a stride of r and an

identity kernel I ∈ R1×1, which is scalar 1 but viewed as a

kernel tensor. 1 With pytorch-style pseudo code, that is

W′ = conv transpose2d(W, I, stride = r) . (1)

The equivalency can be easily verified - given an arbitrary

W ∈ Rk×k and an arbitrary input channel, a convolution

with W and a dilation rate r always yields identical results

to a non-dilated convolution with W′. 2

Based on such equivalent transformations, we propose

a Dilated Reparam Block, which uses a non-dilated small-

kernel and multiple dilated small-kernel layers to enhance

a non-dilated large-kernel conv layer. Its hyper-parameters

include the size of large kernel K, sizes of parallel conv

layers k, and the dilation rates r. The shown case (Fig. 2)

with four parallel layers is denoted by K=9, r=(1,2,3,4),

k=(5,5,3,3). For a larger K, we may use more dilated lay-

ers with larger kernel sizes or dilation rates. The kernel

sizes and dilation rates of the parallel branches are flexible

and the only constraint is (k − 1)r + 1 ≤ K. For example,

with K=13 (the default setting in our experiments), we use

five layers with k=(5,7,3,3,3), r=(1,2,3,4,5), so the equiva-

lent kernel sizes will be (5,13,7,9,11), respectively. To con-

vert a Dialted Reparam Block into a large-kernel conv layer

for inference, we first merge every BN into the preceding

conv layer, convert every layer with dilation r > 1 with

function 1, and add up all the resultant kernels with appro-

priate zero-paddings. For example, the layer in Fig. 2 with

k=3,r=3 is converted into a sparse 7×7 kernel and added to

the 9×9 kernel with one-pixel zero paddings on each side.

1We showcase a single-channel conv and it is easy to generalize the

transformation to multi-channel cases. See the Appendix for details.
2In common cases where the shape of output equals that of input, i.e.,

the padding of the former is k−1
2

, note the padding of the latter should be
(k−1)r

2
since the size of the equivalent sparse kernel is (k − 1)r + 1.
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Figure 2. Dilated Reparam Block uses dilated small-kernel conv layers to enhance a non-dilated large-kernel layer. Such dilated layers are

equivalent to a non-dilated conv layer with a larger sparse kernel, as shown from the parameter perspective, so that the whole block can be

equivalently transformed into a single large-kernel conv. This example shows K=9, and we may use more dilated layers for larger K.

3.2. Architectural Guidelines for Large Kernels

Vanilla architecture. We first construct the vanilla archi-

tecture to experiment on. As a common practice, the main

body of the model is split into four stages connected by

downsampling blocks. Specifically, the first downsampling

block uses two stride-2 3×3 conv layers to transform the

raw input into C-channel feature maps, where C is an ar-

chitectural hyper-parameter and the other three downsam-

pling blocks each use one stride-2 3×3 conv layer perform-

ing 2× channel expansion so that the numbers of channels

of the four stages are C, 2C, 4C, and 8C, respectively.

A stage comprises blocks whose vanilla design resembles

ConvNeXt, i.e., a depthwise (DW) conv layer and a Feed-
Forward Network (FFN) with GRN unit [85], but we use

BN instead of LayerNorm [1] after the conv layer as BN can

be equivalently merged into the conv layer to eliminate its

inference costs. We use another BN after the FFN, which

can also be equivalently merged into the preceding layer

(i.e., the second linear layer in FFN). The numbers of such

blocks in the four stages are denoted by N (N1,N2,N3,N4),

respectively. Following ConvNeXt-T, the vanilla architec-

ture uses C=96 and N=(3,3,9,3). By default, the last three

stages use 13×13 Dilated Reparam Block as the DW layer,

which means K=13, k=(5,7,3,3,3) and r=(1,2,3,4,5); the

first stage uses DW 3×3 conv as the DW layer.

Experimental settings and metrics. It has been em-

phasized in the literature [19] that large-kernel ConvNets

should be evaluated on downstream tasks, as their full po-

tential may not be accurately reflected by the ImageNet ac-

curacy alone. Therefore, except for the ImageNet-1K accu-

racy after 100-epoch training, we transfer the trained model

with UPerNet [89] to ADE20K to examine its performance

on semantic segmentation and report the single-scale mIoU

after a 160k-iteration standard finetuning process [10]. Be-

sides the parameters and FLOPs, we test the actual through-

put on an A100 GPU with a batch size of 128 and input reso-

lution of 224×224, which is measured in images per second

(img/s). See the Appendix for detailed configurations.

Architectural Guideline 1 on Block Design: use efficient
structures that perform both inter-channel communica-
tions and spatial aggregations to increase the depth. We

multiply

ReLU

sigmoid

avg-poolDW

BN

FFN
BN

add

DW 3 3

add add

DW 3 3

DW 3 3

(A) (B) (C) (D)

Figure 3. Options of the extra structures to increase the depth.

Table 1. Models with different efficient extra structures to increase

the depth. We report the ImageNet accuracy (Acc), ADE20K

mIoU, and actual throughput (Img/s).
Extra structure Params FLOPs Img/s Acc mIoU

None 31.3M 4.92G 1954 81.2 45.1

(A) Bottleneck 32.9M 5.18G 1716 81.5 46.3

(B) Two 1×1 32.9M 5.17G 1745 81.3 46.2

(C) Two DW 3×3 31.4M 4.96G 1659 81.3 45.4

(D) SE Block 32.9M 4.92G 1863 81.6 46.5

first seek to insert some structures to universally boost the

model’s representational capacity, which is required to com-

prise nonlinearity and efficient trainable transformations.

We naturally try a bottleneck composed of a 1×1 conv that

reduces the channels to 1/4, a DW 3×3 conv, and another

1×1 conv to expand the channels back (Fig. 3). We use BN

and ReLU after conv layers as a common practice. Table 1

shows that the performance improves with acceptable costs

(+1.2 mIoU with 12% slow down). The performance de-

grades as we remove the DW 3×3 conv so that only two

1×1 conv layers remain, or replace the bottleneck structure

with two DW 3×3 layers, suggesting that such structures re-

quire both spatial aggregation transformations and channel

mixing. Motivated by this, considering that SE Block [33]

elegantly realizes both transformations in a more efficient

way (i.e., global average pooling and nonlinear mapping of

the pooled vectors), we try it also with 1/4 channel reduc-

tion and observe a better performance and higher through-

put. We therefore use SE Block as a substructure of our

block design in the following explorations.

Architectural Guideline 2 on Re-parameterization: use
dilated small kernels to re-parameterize a large kernel.
For a fair comparison with Dilated Reparam Block, we try

two variants with the same numbers of parallel branches

composed of non-dilated layers with A) the same kernel

sizes or B) the same equivalent kernel sizes. For our

default setting of K=13, r=(1,2,3,4,5), k=(5,7,3,3,3), the

kernel sizes of the five branches will be k=(5,7,3,3,3) or
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Table 2. Different forms of Structural Re-parameterization on the

13×13 conv layers. We report the mean±std of three runs.
Re-param k r Acc mIoU

None N/A N/A 81.44±0.04 45.78±0.05

Dilated Reparam 5,7,3,3,3 1,2,3,4,5 81.63±0.02 46.37±0.10

Same kernel size 5,7,3,3,3 1,1,1,1,1 81.55±0.01 46.07±0.07

Same eq kernel size 5,13,7,9,11 1,1,1,1,1 81.59±0.02 46.17±0.04

(5,13,7,9,11) for the two variants, respectively. All the mod-

els end up with the same inference structure but the train-

ing structures differ. Table 2 shows lower performance of

variants, suggesting that large kernel benefits from the par-

allel dilated conv layers’ abilities to capture sparse patterns,

rather than merely the extra small kernels (variant A) or the

combination of different receptive fields (variant B). We use

Dilated Reparam Block in the following explorations. 3

Architectural Guideline 3 on Kernel Size: decide kernel
size according to the downstream task and usually use
large kernels in middle- and high-level layers. As intro-

duced above, the baseline model uses 3×3 conv in the first

stage and 13×13 in the last three stages. Table 3 shows that

replacing the large kernels in the last three stages with 3×3

or changing K from 13 to 11 degrades the models, espe-

cially in the ADE20K mIoU, which highlights the signifi-

cance of large kernels. Interestingly, using 13×13 in Stage

1 or enlarging K from 13 to 15 makes almost no difference

in the ImageNet accuracy but reduces the ADE20K mIoU.

Remark. We argue that this phenomenon does not mean

larger kernels result in lower feature quality. It is due to the

structural priors of UPerNet, which takes the features ex-

tracted by the low-level layers of the backbone and assumes

they should only encode local information so that combin-

ing them with the high-level features extracted from the last

layers of the backbone results in better segmentation. With

larger kernels in lower stages, the low-level features are no

longer confined to small local areas so the UPerNet benefits

less from combining them with the high-level features. We

verify this explanation by making the UPerNet only use the

high-level features (i.e., outputs of Stage 4) to evaluate the

quality of the eventual features alone. Under this setting,

K=15 delivers the best mIoU (42.7), the model with large

kernels in Stage 1 performs as well as the baseline (42.4),

and K=11 performs the worst (41.9). Such observations

confirm that large kernels, even when they are used inap-

propriately, do not damage the feature quality of ConvNet

but merely make the low-level features less favorable for
certain downstream models that require local low-level fea-
tures, suggesting we should decide the kernel size according

to the specific downstream tasks and framework. In our spe-

cific use cases (i.e., representative image recognition tasks

with common downstream frameworks), we employ 13×13

kernels in the middle- and high-level stages by default.

Architectural Guideline 4 on the Scaling Rule: while
3While describing the architecture in this paper, using a K×K (K≥9)

conv means a K×K Dilated Reparam Block, unless otherwise noted.

Table 3. Models with different kernel sizes in the four stages de-

noted by S1 - S4. Numbers in parentheses are obtained with the

UPerNet only taking the outputs of S4.
S1 S2 S3 S4 Params FLOPs Img/s Acc mIoU

3 13 13 13 32.9M 4.92G 1863 81.6 46.5 (42.4)

3 11 11 11 32.6M 4.86G 1876 81.6 45.5 (41.9)

3 3 13 13 32.8M 4.85G 2006 81.7 46.1

3 13 3 13 32.4M 4.81G 2015 81.6 45.9

3 13 13 3 32.5M 4.90G 1884 81.4 45.8

3 15 15 15 33.3M 4.99G 1851 81.7 45.9 (42.7)

13 13 13 13 33.0M 5.06G 1547 81.6 44.9 (42.4)

Table 4. Different numbers of LarK and SmaK Blocks in Stage 3.
N3 LarK SmaK Params FLOPs Img/s Acc mIoU

9 9 0 32.9M 4.92G 1863 81.6 46.5
27 27 0 56.7M 9.31G 1145 82.3 49.0

27 14 13, 3×3 55.9M 9.15G 1229 82.3 48.8

27 9 18, 3×3 55.6M 9.10G 1264 82.3 48.8

27 9 18, w/o 3×3 55.5M 9.08G 1289 82.2 47.8

scaling up the depth, the added blocks should use small
kernels. The scaling rule of existing large-kernel ConvNets

follows the traditional ConvNets, i.e., stacking more large

kernels to build up a deeper model, but we argue that a

large-kernel ConvNet may not benefit from more large ker-

nels. In this group of experiments (Table 4), we scale up

N3 from 9 to 27, following ConvNeXt-S [52]. Considering

that nine 13×13 blocks may have already built up sufficient

receptive field, we examine if the added blocks should also

use large kernels. Specifically, we refer to the block with

a Dilated Reparam Block as the Large Kernel Block (LarK
Block) and name a block that uses a DW 3×3 conv as a

Small Kernel Block (SmaK Block) so that there are 3 SmaK

Blocks in Stage 1 and 3/9/3 LarK Blocks in Stage 2/3/4 of

the shallow model. While scaling up the depth of Stage 3,

we tried the following options. A) All of the 27 blocks are

LarK Blocks. B) We interleave SmaK with LarK Blocks so

that Stage 3 has 14 LarK Blocks and 13 SmaK Blocks. C)
We place two SmaK Blocks after a LarK Block so that the

resultant model will have the same 9 LarK Blocks as before

but 18 extra SmaK Blocks. D) We remove the DW 3×3

layers in SmaK Blocks. Table 4 shows that scaling up the

depth brings significant improvements, which is expected,

and 9 LarK Blocks are sufficient. Though 27 LarK Blocks

perform slightly better in the ADE20K mIoU, the inference

speed is observably slowed down. Besides, the model with-

out 3×3 conv in SmaK Blocks shows significantly lower

mIoU with only minor improvements in the throughput,

suggesting such small kernels in SmaK Blocks are useful

while scaling up the depth of large-kernel ConvNet as they

increase the abstract hierarchy of spatial patterns, though

they may not effectively enlarge the ERF [19, 55]. This ob-

servation supports our motivation to decouple the effects of

conv layers in enlarging the ERF and extracting more com-

plicated spatial patterns, as discussed in Sec. 1.

3.3. Architectural Specifications

Following our proposed guidelines, we instantiate a series

of models (Table 5). For a fair comparison with ConvNeXt

V2 [85], UniRepLKNet-A/F/P/N follows its configurations.
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Table 5. Architectural hyper-parameters of UniRepLKNet in-

stances, including the number of blocks in the four stages

N1, N2, N3, N4 and channels C of the first stage. Stage 1 uses

SmaK Blocks, and Stages 2 and 4 use LarK Blocks only. For Stage

3, e.g., “9 + 18” means 9 LarK Blocks and 18 SmaK Blocks.
N1 N2 N3 N4 C Params

UniRepLKNet-A 2 2 6 + 0 2 40 4.4M

UniRepLKNet-F 2 2 6 + 0 2 48 6.2M

UniRepLKNet-P 2 2 6 + 0 2 64 10.7M

UniRepLKNet-N 2 2 8 + 0 2 80 18.3M

UniRepLKNet-T 3 3 9 + 9 3 80 31.0M

UniRepLKNet-S 3 3 9 + 18 3 96 55.6M

UniRepLKNet-B 3 3 9 + 18 3 128 97.9M

UniRepLKNet-L 3 3 9 + 18 3 192 218.3M

UniRepLKNet-XL 3 3 9 + 18 3 256 386.4M

We scale up the depth to build UniRepLKNet-T/S and scale

up the width to construct UniRepLKNet-S/B/L/XL.

3.4. Generalizing UniRepLKNet beyond Image

To utilize the universal perception ability of UniRe-

pLKNet, we preprocess the data of different modalities into

B × C ′ ×H ×W embedding maps, where B is the batch

size and C ′ is determined by the modality, and configure the

input channel of the first layer of UniRepLKNet to C ′. For

simplicity, the other parts of the models are the same as the

UniRepLKNet initially designed for the image without any

modality-specific customization. By doing so, we directly

apply a ConvNet typically used for image tasks to deal with

data of other modalities. In other words, the UniRepLKNet

for image tasks can be seen as a general UniRepLKNet

with C ′=3 and no such preprocessing. We introduce how

to transform the data into such embedding maps as follows.

Time-series. Let L and D be the length and dimensions of

a time-series sequence xT ∈ R
B×L×D, we adopt the em-

bedding layer in Corrformer [86] to split it into n nodes then

project it into a latent space R
Bn×L×D′

(D′ and n are con-

figurable hyper-parameters of the embedding layer). Then

we simply reshape it into a single-channel embedding map.

xT ∈ R
B×L×D → R

Bn×L×D
n → R

Bn×L×D′

→ R
Bn×1×H×W s.t.HW = LD′.

(2)

Audio. Let T and F be the numbers of time frames and

frequency bins, we use xA ∈ R
B×T×F to represent audio

data. A sample is seen as a 1× T × F embedding map that

resembles a single-channel image so C ′=1, H=T , W=F .

xA ∈ R
B×T×F → R

B×1×T×F . (3)

Point cloud. Assume a sample comprises P points each

represented by the X/Y/Z coordinates, we use a series of

conv layers to generate three-view projections [93]. We

configure the resolution of the generated projections to be

224 so that H=W=224, C ′=3.

xP ∈ R
B×P×3 → R

B×3×224×224 . (4)

Video. We represent a video as NF frames and each frame

is a 3 × h × w image. We reshape it by merging the frame

dimension into the height and width dimensions so that

we obtain a representation that can be viewed as a single

image created by laying out (i.e., concatenating) the NF

frames. For example, in our experiments, we have NF =16

and h=w=224 so that H=W=896. Generally,

xV ∈ R
B×NF×3×h×w → R

B×3×H×W s.t.
HW

hw
= NF .

(5)

4. UniRepLKNet for Image Recognition

ImageNet classification. Following ConvNeXt [52],

we use the widely adopted 300-epoch receipt to train

UniRepLKNet-A/F/P/N/T/S on ImageNet-1K; we pretrain

UniRepLKNet-S/B/L/XL on ImageNet-22K using the 90-

epoch receipt and fine-tune with ImageNet-1K for 30

epochs (see the Appendix for details). As our goal is to

develop models that run with high actual speed, we eval-

uate the actual throughput on the same A100 GPU using

a batch size of 128. Table 6 shows the top-1 accuracy on

the ImageNet-1K validation set where the results are sorted

by the throughput. We split the results into seven segments

for better readability. 1) UniRepLKNet-A/F outperforms

ConvNeXt-V2-A/F by 0.8/0.6 in the accuracy and runs

19%/17% faster, respectively. 2) UniRepLKNet-P/N out-

performs FastViT-T12/S12 and ConvNeXt V2-P/N by clear

margins. 3) UniRepLKNet-T outperforms multiple small-

level competitors. 4) UniRepLKNet-S outperforms a se-

ries of small-level and even base-level models in both speed

and accuracy and runs almost as fast as InternImage-T. 5)
With ImageNet-22K pretraining, UniRepLKNet-S even ap-

proaches the accuracy of RepLKNet-31L and runs 3× as

fast as the latter. UniRepLKNet-B outperforms CoAtNet-

2 and DeiT III-B by clear margins. UniRepLKNet-L out-

performs InternImage-L in both accuracy and throughput.

6) On the XL-level, UniRepLKNet-XL outperforms in both

accuracy and throughput, running more than 2× as fast as

CoAtNet-3 and 3× as DeiT III-L.

COCO object detection and instance segmentation. We

transfer the pretrained UniRepLKNets as the backbones

of Cascade Mask R-CNN [4, 29] and adopt the stan-

dard 3x (36-epoch) training configuration with MMDetec-

tion [8]. Table 7 shows UniRepLKNet outperforms Swin,

ConvNeXt, RepLKNet, and SLaK, which are representa-

tives of ViTs, modern medium-kernel ConvNets, and ex-

isting large-kernel ConvNets, respectively, and shows com-

parable performance to InternImage [82], which is a latest

powerful architecture with deformable convolution.

ADE20K semantic segmentation. We use the pretrained

UniRepLKNets as the backbones of UPerNet [89] on

ADE20K [98] and adopt the standard 160k-iteration train-

ing receipt with MMSegmentation [10]. Table 8 reports the

mIoU on the validation set. Impressively, UniRepLKNet

outperforms InternImage and the other models.
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Table 6. ImageNet classification. Throughput is tested with an

A100 GPU and batch size of 128. “T/C” denote transformer/Con-

vNet. “‡” indicates ImageNet-22K [12] pretraining.

Method Type
Input Params FLOPs Throughput Acc
size (M) (G) (img/s) (%)

UniRepLKNet-A C 2242 4.4 0.6 5942 77.0
UniRepLKNet-F C 2242 6.2 0.9 5173 78.6
ConvNeXt V2-A [85] C 2242 3.7 0.5 5054 76.2
FastViT-T8 [77] T 2562 3.6 0.7 5025 75.6
ConvNeXt V2-F [85] C 2242 5.2 0.8 4329 78.0

UniRepLKNet-P C 2242 10.7 1.6 3949 80.2
FastViT-T12 [77] T 2562 6.8 1.4 3407 79.1
ConvNeXt V2-P [85] C 2242 9.1 1.4 3339 79.7
FastViT-S12 [77] T 2562 8.8 1.8 3162 79.8
UniRepLKNet-N C 2242 18.3 2.8 2807 81.6
ConvNeXt V2-N [85] C 2242 15.6 2.4 2405 81.2

UniRepLKNet-T C 2242 31 4.9 1804 83.2
FastViT-SA24 [77] T 2562 21 3.8 1670 82.6
PVTv2-B2 [81] T 2242 25 4.0 1620 82.0
CoAtNet-0 [11] T 2242 25 4.2 1613 81.6
DeiT III-S [75] T 2242 22 4.6 1485 81.4
SwinV2-T/8 [51] T 2562 28 6 1406 81.8
SLaK-T [48] C 2242 30 5.0 1312 82.5
InternImage-T [82] C 2242 30 5 1292 83.5

UniRepLKNet-S C 2242 56 9.1 1265 83.9
ConvNeXt-S [52] C 2242 50 8.7 1182 83.1
HorNet-T [64] C 2242 23 3.9 1162 83.0
FastViT-SA36 [77] T 2562 30 5.6 1151 83.6
CoAtNet-1 [11] T 2242 42 8.4 969 83.3
SLaK-S [48] C 2242 55 9.8 967 83.8
FastViT-MA36 [77] T 2562 43 7.9 914 83.9
SwinV2-S/8 [51] T 2562 50 12 871 83.7
RepLKNet-31B [19] C 2242 79 15.3 859 83.5
PVTv2-B5 [81] T 2242 82 11.8 802 83.8

UniRepLKNet-S‡ C 3842 56 26.7 435 86.4
ConvNeXt-S‡ [52] C 3842 50 25.5 415 85.8

UniRepLKNet-B‡ C 3842 98 47.2 314 87.4
ConvNeXt-B‡ [52] C 3842 89 45.1 304 86.8

UniRepLKNet-L‡ C 3842 218 105.4 190 87.9
ConvNeXt-L‡ [52] C 3842 198 101 185 87.5

CoAtNet-2‡ [11] T 3842 75 49.8 163 87.1

RepLKNet-31L‡ [19] C 3842 172 96.0 158 86.6

InternImage-L‡ [82] C 3842 223 108 143 87.7

DeiT III-B‡ [75] T 3842 87 55.5 138 86.7

UniRepLKNet-XL‡ C 3842 386 187 131 88.0
ConvNeXt-XL‡ [52] C 3842 350 179 129 87.8

HorNet-L‡ [64] C 3842 202 102 127 87.7

InternImage-XL‡ [82] C 3842 335 163 114 88.0

CoAtNet-3‡ [11] T 3842 168 107 103 87.6

SwinV2-L/24‡ [51] T 3842 197 115 88 87.6

CoAtNet-4‡ [11] T 3842 275 190 58 87.9

DeiT III-L‡ [75] T 3842 305 191 42 87.7

5. Universal Perception on other Modalities

Time-series. Following Corrformer [86], we conduct ex-

periments on the Global Temperature and Wind Speed Fore-

casting challenge 4 using the dataset collected from the Na-

tional Centers for Environmental Information (NCEI). This

huge-scale dataset contains hourly averaged wind speed and

temperature data from 3,850 stations with different geo-

graphical scales and densities, spanning from 2019 to 2021.

For a fair comparison with Corrformer, which was the pre-

4https://codeocean.com/capsule/0341365/tree/v1

Table 7. Object detection on COCO validation set. FLOPs are

measured with 1280×800 inputs. “‡” ImageNet-22K pretraining.

Method Params (M) FLOPs (G) APbox APmask

UniRepLKNet-T 89 749 51.8 44.9
Swin-T [49] 86 745 50.4 43.7
ConvNeXt-T [52] 86 741 50.4 43.7
SLaK-T [48] - - 51.3 44.3
UniRepLKNet-S 113 835 53.0 45.9
Swin-S [49] 107 838 51.9 45.0
ConvNeXt-S [52] 108 827 51.9 45.0

UniRepLKNet-S‡ 113 835 54.3 47.1
UniRepLKNet-B‡ 155 978 54.8 47.4
Swin-B‡ [49] 145 982 53.0 45.8

ConvNeXt-B‡ [52] 146 964 54.0 46.9

RepLKNet-31B‡ [19] 137 965 52.2 45.2

UniRepLKNet-L‡ 276 1385 55.8 48.4

Swin-L‡ [49] 253 1382 53.9 46.7

ConvNeXt-L‡ [52] 255 1354 54.8 47.6

RepLKNet-31L‡ [19] 229 1321 53.9 46.5

InternImage-L‡ [82] 277 1399 56.1 48.5
UniRepLKNet-XL‡ 443 1952 56.4 49.0
InternImage-XL‡ [82] 387 1782 56.2 48.8

ConvNeXt-XL‡ [52] 407 1898 55.2 47.7

Table 8. Semantic segmentation on ADE20K validation set.
The FLOPs are measured with 512×2048 or 640×2560 inputs ac-

cording to the crop size. “SS” and “MS” mean single- and multi-

scale testing, respectively. “‡” ImageNet-22K [12] pretraining.

Method
Crop Params FLOPs mIoU mIoU

size (M) (G) (SS) (MS)

UniRepLKNet-T 5122 61 946 48.6 49.1
Swin-T [49] 5122 60 945 44.5 45.8

ConvNeXt-T [52] 5122 60 939 46.0 46.7

SLaK-T [48] 5122 65 936 47.6 -

InternImage-T [82] 5122 59 944 47.9 48.1

UniRepLKNet-S 5122 86 1036 50.5 51.0
Swin-S [49] 5122 81 1038 47.6 49.5

ConvNeXt-S [52] 5122 82 1027 48.7 49.6

SLaK-S [48] 5122 91 1028 49.4 -

InternImage-S [82] 5122 80 1017 50.1 50.9

UniRepLKNet-S‡ 6402 86 1618 51.9 52.7
UniRepLKNet-B‡ 6402 130 1850 53.5 53.9
Swin-B‡ [49] 6402 121 1841 50.0 51.7

ConvNeXt-B‡ [52] 6402 122 1828 52.6 53.1

RepLKNet-31B‡ [19] 6402 112 1829 51.5 52.3

UniRepLKNet-L‡ 6402 254 2507 54.5 55.1
Swin-L‡ [49] 6402 234 2468 52.1 53.5

RepLKNet-31L‡ [19] 6402 207 2404 52.4 52.7

ConvNeXt-L‡ [52] 6402 235 2458 53.2 53.7

InternImage-L‡ [82] 6402 256 2526 53.9 54.1

UniRepLKNet-XL‡ 6402 425 3420 55.2 55.6
ConvNeXt-XL‡ [52] 6402 391 3335 53.6 54.0

InternImage-XL‡ [82] 6402 368 3142 55.0 55.3

vious state-of-the-art method, we use its embedding layer

(as introduced in Sec. 3.4) and decoder and only replace its

encoder transformer with UniRepLKNet-S. We also com-

pare UniRepLKNet-S against a wide range of methods,

including statistical and numerical approaches. Table 9

shows UniRepLKNet delivers a new state-of-the-art fore-

casting precision, achieving the lowest errors of 7.602,

1.832, 3.865, and 1.301 for MSE and MAE in forecasting

global temperature and wind speed, respectively, with fewer

parameters than existing deep learning methods. It is partic-
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Table 9. Time-series forecasting performance on Global Temper-

ature and Wind Speed Forecasting challenge. UniRepLKNet de-

livers a new state-of-the-art performance in Mean Squared Error

(MSE) and Mean Absolute Error (MAE). GFS (https://www.
ncei.noaa.gov/) stands for the Global Forecasting System.

Method Type Params
Temperature Wind speed

MSE ↓ MAE ↓ MSE ↓ MAE ↓
Statistics-based
Holt–Winters [36] - - 13.241 2.262 5.912 1.664

Prophet [72] - - 11.626 2.946 9.691 2.382

GDBT [NeurIPS’17] [40] - - 9.706 2.214 4.101 1.417

Numerical Simulation
GFS (reanalysis) - - 14.933 2.287 9.993 2.340

ERA5 (reanalysis) [30] - - 13.448 1.908 4.999 1.587

DeepAR [65] - - 32.249 4.262 5.248 1.602

N-BEATS [56] - - 9.203 2.117 4.124 1.390

Deep Learning Specialist
StemGNN [NeurIPS’20] [6] GNN 180M 13.926 2.746 4.066 1.389

Pyraformer [ICLR’21] [47] Transformer 158M 23.326 3.669 4.614 1.514

Corrformer [Nat. Mach. Intell.’23] [86] Transformer 155M 7.709 1.888 3.889 1.304

Generalist
UniRepLKNet-S ConvNet 132M 7.602 1.832 3.865 1.301

Table 10. Audio recognition on Speech Commands V2 dataset.

Method Pretrain Type Acc. (%) Params

PANNS [41] - ConvNet 61.8 -

PSLA [25] IN-1K ConvNet 96.3 -

AST [24] AS-2M Transformer 96.2 86.9M

SSAST [26] AS-2M Transformer 97.8 89.3M

Audio-MAE [35] AS-2M Transformer 98.3 86.2M

Meta-Transformer [93] LAION-2B Transformer 97.0 86.6M

UniRepLKNet-S - ConvNet 98.5 55.5M

ularly noteworthy that UniRepLKNet, a generalist model,

outperforms time-series specialists such as Pyraformer [47]

and Corrformer [86] in both precision and efficiency. The

significant advantages of UniRepLKNet open up new av-

enues for architectural discussions in time-series forecast-

ing, presenting a viable alternative to transformer models.

Audio. We use Speech Commands V2 [84], which contains

105,829 one-second recordings of 35 common speech com-

mands. Table 10 shows UniRepLKNet seamlessly adapts

to audio and delivers an impressive accuracy of 98.5%,

even without pretraining. Compared to transformers such as

AST [24] and Audio-MAE [35], UniRepLKNet stands out

with fewer parameters. Compared to previous ConvNets

designed for audio, UniRepLKNet achieves better perfor-

mance without customizations to the structure, highlighting

the untapped potential of ConvNets in the realm of audio.

Video. Kinetics-400 [39] contains 240k training videos

and 20k validation videos, spanning 400 classes for action

recognition. Though the top-1 accuracy of 54.8% is some-

what behind state-of-the-art architectures like MViT [43],

we note that UniRepLKNet is a generalist model without

pretraining. Compared to the latest generalist methods, Im-

ageBind [23] and Meta-Transformer [93], UniRepLKNet

shows higher accuracy and requires no pretraining.

Point cloud. We explore the versatility of UniRepLKNet by

assessing its proficiency in learning 3D patterns, extending

beyond the conventional 2D signals of images and audio.

We use the ModelNet-40 [88] 3D shape classification task

with 9,843/2,468 training/validation samples of CAD mod-

els from 40 classes. Table 12 shows UniRepLKNet achieves

Table 11. Video recognition accuracy on Kinetics-400.

Method Pretrain Type Acc (%) Params

Specialist
SlowFast-101 [21] IN-1K ConvNet+RNN 79.8 62.8M

MViTv2-B [43] IN-1K Transformer 81.2 51.2M

TimeSFormer [2] K400 Transformer 80.7 122M

Generalist
Meta-Transformer [93] LAINON-2B Transformer 47.3 86.9M

ImageBind [23] CLIP Data Transformer 50.0 632M

UniRepLKNet-S - ConvNet 54.8 55.5M

Table 12. Point cloud analysis on ModelNet-40 dataset.

Method Type
ModelNet-40

mAcc (%) OA (%)

PointNet [59] MLP 86.0 89.2

PointNet++ [60] MLP - 91.9

PointConv [87] ConvNet - 92.5

KPConv [73] ConvNet - 92.9

DGCNN [83] ConvNet 90.2 92.9

OpenShape [46] Transformer 83.4 -

UniRepLKNet-S ConvNet 90.3 93.2

Table 13. Universal perception performance with other ConvNets

or UniRepLKNet with a smaller kernel size.

Modality
Time-Series Point Cloud Audio Video

MAE↓ OA (%) Acc (%) Acc (%)

ResNet-101 [28] (K=3) 7.846 92.6 73.6 41.3

ConvNeXt-S [52] (K=7) 7.641 92.7 94.3 48.5

UniRepLKNet-S (K=11) 7.751 92.9 94.7 51.7

UniRepLKNet-S (K=13) 7.602 93.2 98.5 54.8

an Overall Accuracy (OA) of 93.2% and a mean Accuracy

(mAcc) of 90.3%. Such outcomes highlight the potential of

further developing ConvNets in this domain.

Impact of kernel size on the performance. To investi-

gate the influence of different kernel sizes on performance,

we compare UniRepLKNet with models of smaller ker-

nels. We adopted the same modality-specific preprocess-

ing approaches and training configurations for a fair com-

parison. We take ResNet-101 as a representative small-

kernel ConvNet because it has comparable parameters to

UniRepLKNet-S. Table 13 shows large kernels are crucial

for universal perception, at least in our specific cases.

6. Conclusion
UniRepLKNet shows a leading performance in image

recognition and achieves remarkable results on audio and

time-series data, outperforming multiple specialist models

on those modalities. Such results signify a “comeback” for

ConvNet in its original domain and showcase large-kernel

ConvNet’s potential to “conquer” new territories. The lim-

itations are noticeable, e.g., the dilated branches require

more training resources, which may be upgraded with sim-

pler [5] or gradient [18] re-parameterization; the applica-

tions to large vision-language models [38, 45, 79], cross-

attention-based scenarios [7, 96], and generation tasks [58,

95] remain under-explored.
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