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Figure 1. WANDR starts from an arbitrary body pose and generates precise and realistic human motions that reach a specified 3D goal

(depicted as a red sphere). Employing a purely data-driven approach, WANDR is a conditional Variational Autoencoder guided by intention

features (depicted arrows) that steer the human’s orientation (yellow), position (cyan) and wrist (pink) towards the goal. WANDR is able

to reach a wide range of goals even if they deviate significantly from the training data.

Abstract

Synthesizing natural human motions that enable a 3D

human avatar to walk and reach for arbitrary goals in 3D

space remains an unsolved problem with many applica-

tions. Existing methods (data-driven or using reinforcement

learning) are limited in terms of generalization and motion

naturalness. A primary obstacle is the scarcity of training

data that combines locomotion with goal reaching. To ad-

dress this, we introduce WANDR, a data-driven model that

takes an avatar’s initial pose and a goal’s 3D position and

generates natural human motions that place the end effec-

tor (wrist) on the goal location. To solve this, we intro-

duce novel intention features that drive rich goal-oriented

movement. Intention guides the agent to the goal, and in-

teractively adapts the generation to novel situations without

needing to define sub-goals or the entire motion path. Cru-

cially, intention allows training on datasets that have goal-

oriented motions as well as those that do not. WANDR is

a conditional Variational Auto-Encoder (c-VAE), which we

train using the AMASS and CIRCLE datasets. We evaluate

our method extensively and demonstrate its ability to gener-

ate natural and long-term motions that reach 3D goals and

generalize to unseen goal locations. Our models and code

are available for research purposes at wandr.is.tue.mpg.de.

1. Introduction

Goals drive our motions. Even the simplest goal can give

rise to intricate motions. Consider reaching for a coffee cup

– it can be as straightforward as an arm extension or can in-

volve the coordinated action of our entire body. Actions like

bending down, extending our arm, and walking must come

together to achieve the goal. At a granular level, we continu-

ously make subtle adjustments to maintain balance and stay

on course towards our objective. The result is a fluid motion

that seamlessly integrates numerous smaller movements, all
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converging toward a common and simple goal: placing our

hand on the cup. Generating this hierarchy of motions, from

the overarching goal to the moment-to-moment individual

actions, remains a longstanding challenge in computer vi-

sion, graphics, and robotics.

Here we focus on a representative task, illustrated in

Fig. 1: given a goal location in space and a starting pose,

a humanoid agent must place an end effector (wrist joint)

on the goal location while moving in a natural human-like

way. To solve the task, the agent needs to be able to ap-

proach the goal, orient itself towards it, and reach out such

that its wrist makes contact with the goal. Our primary em-

phasis is on ensuring autonomy for human agents. Con-

sequently, we strive to minimize the guidance information

provided, limiting it only to the human’s initial pose and

the goal’s position. Diverging from prior data-driven ap-

proaches [4, 17], we choose to refrain from evaluating the

model solely on limited labeled data. Instead, we devise

an evaluation pipeline that requires agents to reach goals

positioned in diverse locations around them. Considering

the arbitrary selection of the goal during evaluation, and the

minimal guidance information provided, tackling this task

is challenging, demanding an approach with the capacity to

generalize beyond the distribution of the training dataset.

Existing methods approach this problem either using re-

inforcement learning (RL) [11, 15, 24, 43] or by captur-

ing task-specific datasets [4, 8, 32]. While RL provides

a principled way to explore the solution space, it comes

with considerable shortcomings. The “trial and error” of

exploratory learning, in combination with the high dimen-

sionality of human motion result in policies requiring an

enormous amount of training even to achieve simple tasks

such as walking to a waypoint [5, 43]. In addition, since

motion naturalness is better captured by data and not reward

functions, RL approaches tend to produce motions that lack

naturalness and expressiveness. Data-driven approaches on

the other hand, rely on plentiful training motions that are

acquired through motion capture and carefully curated for

the downstream tasks [4, 10]. Such approaches do not scale

and do not generalize well to out-of-distribution tasks.

In prioritizing both motion realism and training effi-

ciency, we adopt a data-driven approach. However, cur-

rent data-driven methods lack the ability to learn both from

smaller datasets that provide high-quality human reaching

motions with goal labels, and from unlabeled larger scale

datasets that contain necessary motion skills such as navi-

gating to a goal position. This raises two key challenges.

First, how do we model human motion in a way that gen-

erated motions can combine skills from different datasets?

Second, what should the training objective be in the cases

where goal labels are absent?

To address these challenges, we propose WANDR

(Wrist-driven Autonomous Navigation for Data-based goal

Reaching). We observe that by modeling human motion

generation as an autoregressive stochastic process that pro-

duces motions frame by frame, WANDR is able to combine

pieces of different dataset distributions when generating a

motion sequence. Each generation step is conditioned on

goal-related information that we call intention (visualized

arrows in Fig. 1). We carefully design intention in a way

that strikes a balance between being informative enough to

guide the avatar to reach the goal, while also being abstract

enough to promote generalization to unseen goals. This al-

lows our generated motions to reach goals that were never

encountered during the training phase in a completely zero-

shot evaluation scenario. By generating the motion in an

autoregressive way, we disentangle the spatial and tempo-

ral dimensions of motion. This is necessary as it allows our

model to generate novel long-term sequences while being

realistic in terms of local dynamic details.

In more detail, our method is based on a conditional Vari-

ational Auto-Encoder (c-VAE) that learns to model motion

as a frame-by-frame generation process by auto-encoding

the pose difference between two adjacent frames. The con-

dition signal consists of the human’s current pose and dy-

namics along with the intention information. Intention is a

function of both the current pose and the goal location and

therefore actively guides the avatar during the motion gener-

ation in a closed loop manner. Through training, the c-VAE

learns the distribution of potential subsequent poses condi-

tioned on the current dynamic state of the human and its

intention towards a specific goal. We train WANDR using

two datasets: AMASS [18], which captures a wide range

of motions including locomotion, and CIRCLE [4], which

captures reaching motions.

Although AMASS is large, it lacks any explicit label of

goals or intentions. To address this, inspired by the Hind-

sight Experience Replay paradigm in robotics [3], we define

intention using a hallucinated goal derived from the ground-

truth wrist position in a future frame. This approach allows

us to establish a unified training objective spanning AMASS

and CIRCLE. Consequently, our model learns to combine

motions from both datasets, enabling it to effectively reach

arbitrary goals during testing.

In summary, we present WANDR, a data-driven method

that combines an autoregressive motion prior with a novel

intention guiding mechanism and is able to generate avatars

that realistically move in space and reach arbitrary goals.

We experimentally evaluate our approach, including the

benefit of combining multiple datasets as well as the gen-

eralization capabilities of our motion generator. Our results

underscore the efficacy of the intention mechanism as an el-

egant way of guiding the motion generation process while

also enabling the incorporation of pseudo goal labels for

datasets lacking explicit goal annotations. The model and

code are available for research purposes.
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2. Related Work

Early research in motion generation focuses on tasks like

motion prediction [1, 2, 7, 9, 19, 27] and unconstrained mo-

tion generation [6, 16, 21, 23, 28, 29, 36–38, 40]. More

recently, significant effort has been devoted into improving

controllability, with a focus on motion generation condi-

tioned on different types of goals [25, 39], enabling interac-

tions with scenes [12, 13, 20] and objects [31, 33, 42, 45].

Methods that attempt goal-driven motion generation can be

broadly divided into reinforcement learning or data-driven

approaches.

2.1. Reinforcement Learning for Motion Synthesis

Many existing works employ Reinforcement Learning

(RL) for the generation of task-specific long motion se-

quences. Representative work includes MotionVAE [15]

and AMP [24]. MotionVAE [15] employs a two-step pro-

cess where it initially leverages an autoregressive condi-

tional Variational Autoencoder (VAE) to construct a latent

space that encapsulates possible human movements. Sub-

sequently, it utilizes RL to sample from this action space

to reach a designated target location while avoiding ob-

stacles by monitoring the area ahead. Similar to Motion-

VAE, GAMMA [43] learns a policy to extract samples from

a latent space and then employs a tree-based search algo-

rithm to find viable motions that steer clear of obstacles by

considering the environmental geometric constraints. DI-

MOS [44] further extends the GAMMA framework by in-

troducing two specialized policy networks: one for locomo-

tion and one for interaction. Together these networks gen-

erate goal-conditioned motion sequences that dynamically

interact with objects and the environment. AMP [24] learns

an adversarial motion prior from unstructured datasets and

then applies goal-conditioned RL. This approach involves

the formulation of a style reward to encourage the resem-

blance of the generated sequences to those in the dataset,

complemented by a task-specific reward aimed at achieving

a particular objective. Hassan et al. [11] extend AMP to

produce motions that facilitate interactions with the scene,

by conditioning both the discriminator and the policy net-

work on the scene context. However, RL requires signifi-

cant computation and struggles to generate natural and ex-

pressive motion sequences.

2.2. Data­driven Approaches for Motion Synthesis

Most data-driven approaches use existing motion capture

(MoCap) datasets [18, 35] to train their models through su-

pervised learning. The pioneering Neural State Machine

method [30] is a data-driven technique for generating mo-

tion with character-scene interactions, focusing on scenar-

ios with a limited number of objects and interactions. Hu-

MoR [26] proposes a robust model for 3D human shape and

temporal pose estimation, yet it falls short of generating mo-

tions that are conditioned on specific goals. The SAMP [10]

method, designed for real-time stochastic motion synthe-

sis, generates diverse human-scene interaction movements

by breaking down the process into predicting goals, plan-

ning paths, and generating motion along a predefined route.

The GOAL [32] method, trained on the GRAB dataset [31],

produces motion sequences in which humans walk towards

and grasp 3D objects. However, the generated motions ex-

hibit minimal movements, especially in the feet. To ad-

dress these constraints, the newly introduced CIRCLE [4]

dataset provides a collection of reaching motion data. This

dataset is used to train a neural network that generates di-

verse scene-aware reaching motions. Recently, diffusion

models have seen the most success at generating motions

conditioned on textural input [34, 41] and spatial data [14].

This advancement enables the synthesized motion to accu-

rately reach specified target locations or navigate around

obstacles. Nevertheless, the effectiveness of data-driven ap-

proaches is constrained by the amount of training data and

they lack generalization to out-of-distribution scenarios.

3. Method

Our goal is to have a virtual human that can autonomously

and realistically move from an initial pose to an arbitrary

goal position and accurately place its right hand on the tar-

get. This challenge requires a nuanced understanding of

human motion and the intricate dynamics involved in goal-

oriented motions. For example, when the human tries to

reach a distant goal, the motions are mostly focused on the

legs and navigating the body to approach the object, but

when it gets close to the object, the focus will be on mov-

ing the arms and upper body to reach the target. Using these

observations, we develop a method named WANDR, which,

although trained in a supervised setting on motion capture

data, exhibits generalization in reaching unseen goal loca-

tions during test time. WANDR is designed to generate hu-

man motion in an autoregressive frame-by-frame fashion,

conditioned on novel intention features. During training,

these features are extracted by picking a future frame as the

goal for the wrist. During inference, the intention features

are dynamically computed based on the goal’s position in a

feedback loop, guiding the virtual human to reach the goal.

See Fig. 2 for the network overview.

In this section, we first consider the different distribu-

tions of the datasets we will be using (section 3.1). Follow-

ing this, we detail the components of the intention features

and how they are computed during both the training and in-

ference phases (Section 3.2). Finally, we define the motion

representation and motion generator network (Section 3.3).
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Figure 2. WANDR architecture. During training, our model conditions on the intention vectors Ip, Ir and Iw, learning to associate them

with actions that result into reaching goals realistically. When the training data has no defined goal, we create a goal based on the wrist

location in future frames; see Sec. 3.2. The state of the avatar, p
dyn
i expresses the SMPL-X local pose parameters pi, as well as the deltas

di−1 the body parameters have in frame i − 1. During inference, WANDR takes the intention features, the state, and random noise and

returns the change in pose, d̂i. The next pose, p̂i is obtained by integrating the d̂i with the previous pose p̂i−1.
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Figure 3. In training, if goals are not specified, they are determined

by the future wrist location at a randomly selected future timestep,

compensating for the lack of paired ground-truth data in AMASS

and direct human motion through intention vectors. During in-

ference, target locations are used as goals with intention vectors

calculated based on these specific locations.

3.1. Two Complementing Datasets

For the development of WANDR, we use two key datasets:

AMASS and CIRCLE. AMASS is a large-scale dataset that

offers a broad range of general human motions but lacks

a specific focus on goal-reaching tasks. Its diverse collec-

tion of movements provides a solid base for understanding

human locomotion and body movement when the person is

far away from the goal location. In contrast to AMASS,

CIRCLE is tailored towards movements involving reach-

ing specific target positions, particularly capturing the nu-

ances of upper body and arm movements. By integrating

AMASS’s general motion diversity with CIRCLE’s targeted

goal-reaching data, we equip WANDR with the ability to

generate the entire process of reaching a distant goal, from

the initial navigation to the precise target-reaching actions.

3.2. Intention Features

We represent 3D human motion as a sequence of

SMPL-X [22] body poses p = {p1, ..., pN}. Each pose

pi ∈ R
135 consists of three concatenated components: the

body’s translation ti ∈ R
3, root orientation ri ∈ R

6, and

the body pose θi ∈ R
21×6, both in 6D format [46].

For the avatar to reach the goal, it is important to be in-

formed about the spatial relation of the goal location with

respect to its current pose, as well as to have a sense of time

to reach the goal promptly. We achieve this by introducing

the intention features, which are central to our approach.

To define the intention features Ii at timestep i, it is

crucial to first establish the selection criteria for the goal

G ∈ R
3, within a motion sequence. Our training involves

both label-available scenarios (e.g., CIRCLE dataset) and

label-absent scenarios (e.g., AMASS dataset). In label-

available cases, where the goal position G and the frame

index tG which it is reached are known, calculating Ii is

straightforward. Conversely, for label-absent scenarios like

in AMASS, we pick a random future frame as the tG and

define the human’s right wrist joint location as the goal G

(Fig. 3).

In both scenarios, the intention features are defined as:

Ii = Ii(pi, G, tG, i).

These features are essentially a function of the current body

pose, the goal position, and time, offering both spatial and

temporal insights required for the motion to reach the goal.

They are designed to provide sufficient information to reach

goals while also enabling test-time generalization. We de-

fine them as three distinct components:

Ii = (Iwi , Iri , I
p
i ).
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These components represent wrist intention, body orienta-

tion intention, and pelvis intention, respectively.

Wrist Intention: This is the main time-dependent compo-

nent that guides the wrist to reach the goal. It is calculated

as the necessary average velocity for the wrist to be at the

goal location in time, defined as:

Iwi =
G−Wi

tG − i

where tG is the frame when the goal should be reached.

During training, we know the goal frame and the time to

reach it. At test time, we know the goal location but need an

externally-supplied time to reach it. An emergent behavior

of this formulation is that, at inference, the model is able to

adjust its movement speed and reach the goal just in time.

Orientation Intention: This component captures the body

orientation when reaching the goal location. By condition-

ing on this, we ensure that the human model orients towards

the goal and smoothly navigates towards it, preventing un-

natural motions during inference, like walking backward.

During training, this is defined as the difference between

the forward direction of the current body frame, H
xy
i , and

the goal body, H
xy
tG

where xy signifies removing the z com-

ponent. During inference, since we do not have the goal

body, we use the pelvis position Pi to calculate the pelvis-

to-goal direction as the desired orientation. This feature is

formulated as:

Iri =

{

H
xy
tG

−H
xy
i during training

(G− Pi)
xy −H

xy
i during inference.

Pelvis Intention: This feature captures information about

the position of the goal relative to the body. It is the dif-

ference between the goal and the pelvis joint, excluding the

z (height) component. Following the approach in [32], we

scale this distance by an exponential function that saturates

this vector to have a maximum norm of 2. This formulation

helps the method generalize to navigating towards the goal

during longer motions and helps the model learn since the

distance from the goal does not grow indefinitely in extreme

scenarios. This intention is defined by the equation:

I
p
i = 2× (1− e||G

xy−P
xy
i

||2)×
Gxy − P

xy
i

||Gxy − P
xy
i ||2

.

In the experimental section, we delve into the signifi-

cance of each of these intention features and discuss the ra-

tionale behind our design choices, illustrating their impact

on the effectiveness of our model.

3.3. Motion Network (WANDR)

WANDR is designed as a conditional Variational Auto-

Encoder (c-VAE) network, operating in an autoregressive

manner to generate sequential motion frames. This frame-

work is pivotal in predicting the subsequent pose in a

motion sequence, emphasizing an incremental, frame-by-

frame approach.

Central to our approach is the training of the c-VAE to

autoencode pose deltas, denoted as di ∈ R
135. These deltas

represent the difference between two consecutive poses, pi
and pi−1. By focusing on pose deltas rather than absolute

pose values, our model benefits from an important induc-

tive bias, enhancing its learning efficiency and performance,

as supported by prior research [15, 26]. We separate rota-

tional differences into: body orientation (dri ) and body pose

(dθi ), each expressed in a 6-D rotational format. Translation

deltas are denoted as dti = ti − ti−1.

To enhance the motion representation’s invariance, we

remove information related to the global z-orientation. This

is accomplished by subtracting the global z Euler angle of

ri−1 from both the translational (dti) and rotational (dri )

deltas. The resulting deltas, d
t
−z

i for translation and d
r
−z

i

for orientation, provide a more robust and consistent repre-

sentation of motion, irrespective of global direction. Con-

sequently, the delta pose features for any given frame i are

composed as follows:

di = (d
t
−z

i , d
r
−z

i , dθi ).

An advantage of this representation is its consistency across

different motion global orientations. For instance, in the

scenario of a person walking, the delta representation re-

mains agnostic to the walking direction. This attribute

underscores the efficacy of our method in capturing the

essence of motion without being biased towards any spe-

cific orientation or direction.

Condition Inputs: For each motion frame, the decoder is

conditioned on a combination of state and intention fea-

tures. Specifically, this condition signal is formulated as

ci = (pdyni , Ii). The state features, p
dyn
i , encapsulate the

avatar’s current local pose, focusing on the z-component

of translation and a modified orientation that excludes the

global z Euler angle, along with the pose deltas di− 1 of

the previous step. That combination ensures that the gener-

ated motion at each step is informed by both the local pose

configuration of the avatar, its dynamics and its directional

intention towards the set goal, vital for producing realistic,

goal-oriented human motions. An overview of the network

architecture is shown in Fig. 2.

3.4. Training Losses

Our training objective is a composite of three distinct loss

functions:

L = Lrec + αLKL + LJ .

The reconstruction loss, Lrec, measures the accuracy of the

motion reconstruction, quantified as the mean square er-
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ror (MSE) between the input pose delta, di, and its recon-

structed counterpart, d̂i. It ensures the network’s ability to

faithfully replicate the input motion.

The KL Divergence Loss, (LKL), evaluates the deviation

of the encoded distribution from a standard normal distribu-

tion. It is formulated as:

LKL = KL(N (0, I)||N (µi, σi)).

Here, µi and σi represent the mean and variance of the

Gaussian distribution predicted by the encoder. We balance

this term with α = 10−2 to prevent the over-dominance

of LKL, thereby aiding the decoder in avoiding collapse to

mean predictions.

Finally, we use a Joint Error Loss (LJ ), to ensure per-

ceptual accuracy, by integrating the predicted d̂i to get the

predicted next pose p̂i, which is then fed into the SMPL-X

model to obtain the predicted joint positions, Ĵ . The loss LJ

is the MSE between these predicted joints Ĵ and the ground

truth joints J , addressing errors that might not be apparent

in parameter space but are perceptually significant, such as

incorrect body orientation.

Notably, our approach does not incorporate any explicit

loss functions directly related to reaching a goal. This omis-

sion is a deliberate choice, aligning with our method’s em-

phasis on generalizing to diverse goal-reaching scenarios

without being constrained by goal-specific training losses.

3.5. Motion Generation

In the inference phase of WANDR, our primary objective

is to generate human motion that is driven towards a spe-

cific goal. Using the decoder of the WANDR c-VAE, we

iteratively generate and integrate pose deltas. This process

is initiated from the starting pose and progressively builds

upon each subsequent pose.

The intention features are recalculated at each step based

on the current predicted pose and the goal location. They

serve as a guiding mechanism, ensuring that the generated

motion is consistently oriented towards placing the human’s

right wrist on the target.

The user can control the motion’s pace by specifying the

time to reach the goal tG. This directly affects the wrist in-

tention feature, enabling adjustments from fast to slow mo-

tions to suit various scenarios and constraints.

4. Experiments

In this section, we outline the datasets used for training

and evaluation and benchmark how each dataset affects the

goal-reaching ability and the quality of the generated mo-

tions. Furthermore, we compare our approach with several

baselines and ablate the effect of the different components

of our intention vector.

4.1. Datasets & Processing

Our model is trained on two datasets: AMASS [18] and

CIRCLE [4]. AMASS is a collection of 17k sequences,

containing a wide range of motion types including long-

term navigational skills like walking and turning. CIRCLE,

on the other hand, contains 7.2k shorter sequences, each

marked with a specific goal reached by a hand. For train-

ing, we refine AMASS by excluding sequences where feet

are more than 20cm above the ground, resulting in a com-

bined dataset of nearly 20k sequences. This dataset is split

into 80% training, 10% validation, and 10% test sets. All

motions are re-sampled to 30 frames per second (fps).

4.2. Evaluation Strategy

Our evaluation procedure aims at testing the degree which

WANDR can generalize to generating reaching motions that

start from unseen poses and reach the whole range of 3D

space around the starting pose. This is why we choose not

to evaluate on held-out motion-goal pairs from the training

data. Instead, we only hold out initial poses. During evalua-

tion, starting from these unseen poses, we generate motions

that attempt to reach goals that uniformly cover the volume

of a cylinder centered on the human, including completely

out-of-distribution goal locations (see Sup. Mat. Sec. 5).

In particular, the set of evaluation goals is defined in a

cylindrical coordinate frame by taking all the combinations

of (1) 5 angles equally separating the 360 degrees around

the human, (2) 5 different goal heights ranging from 0 to

1.8 meters and (3) 5 distances from 0.5 to 5 meters. We

generate motions from 6 different initial poses, with an 8-

second duration specified for reaching each goal. Five mo-

tions are sampled for each pose-goal combination, resulting

in 5 × 5 × 5 × 6 × 5 = 3750 unique motion sequences

from which our metrics are computed. This setup allows us

to thoroughly test our model in diverse scenarios, includ-

ing long-term movements, navigational skills, and reaching

motions at various heights and distances.

4.3. Evaluation Metrics

To accurately assess the effectiveness of our approach in

generating realistic, goal-oriented human motion, we em-

ploy a set of metrics focused on both the ability to success-

fully reach the intended goal and the naturalness of the mo-

tion. These metrics are:

• Success Rate (SR): This quantifies the percentage of mo-

tions where the right wrist reaches within 10cm of the

goal, indicating successful goal attainment. The criterion

for success aligns with that used in [4].

• Foot Skating (FS): FS evaluates the naturalness of the

motion based on foot skating, where a frame is consid-

ered as having foot skating if the lowest vertex of the hu-

man mesh moves more than 0.66cm between consecutive
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(a) (b) (c) (d)

Figure 4. Diverse motion generated with WANDR: Displaying a range of motions generated by WANDR from various initial poses towards

arbitrary goals. Examples include navigating towards goals from initial orientations not facing the goal (a, b, c, d), elevating the right hand

to reach higher targets (c), and bending down to access goals near the floor (d), showcasing the model’s ability to adapt to novel goal

locations.

frames (adjusted from the 1cm threshold used in [4] to

accommodate our 30fps motion generation).

• Distance to Goal (DTG): DTG records the closest dis-

tance in cm that the right wrist gets to the goal during a

motion. This metric offers a nuanced view of the model’s

capability to guide the motion towards the goal.

4.4. Results

4.4.1 Quantitative Results

Combining AMASS and CIRCLE: Our evaluation in Ta-

ble 1 validates our hypothesis about the benefits of train-

ing with both the AMASS and CIRCLE datasets. On the

one hand, training only on CIRCLE (line 1) is not sufficient

for the model to learn necessary navigational skills, such as

walking, due to the dataset’s narrow focus or reaching mo-

tions. This is apparent from the very high foot-skating. On

the other hand, training only on AMASS (line 2) results in

high-quality motion generation with low foot-skating, but a

relatively low success rate in goal-reaching. The Distance

to Goal (DTG) metric, suggests that the model is able to

navigate close to the target, but it lacks the precise move-

ment needed to successfully reach for the goal. Using both

datasets (line 3) illustrates how our approach effectively

merges the broad motion vocabulary of AMASS with the

goal-oriented precision of CIRCLE, leading to both high-

quality motion and improved goal-reaching capability.

We also compare with GOAL [32], a method that gener-

ates human motions that reach and grasp objects. GOAL is

trained on GRAB [31], a dataset purely consisting of mo-

Train Set SR ↑ FS ↓ DTG (cm) ↓
WANDR/Circle 0% 56% 205.4

WANDR/AMASS 16% 19% 48.0

WANDR 32% 16% 24.8

GOAL [32] 0% 29% 149.2

Table 1. We evaluate WANDR trained on different datasets and

compare with GOAL [32]. Training solely on CIRCLE results

in unrealistic motions, whereas AMASS excels in motion quality

but struggles with finer goal-reaching skills. WANDR, leveraging

both of what these datasets offer, demonstrates realistic motions

as well as better ability to reach goals compared to baselines and

existing methods.

tions of humans grasping and manipulating objects. Since

the relative positioning of the human and the object as well

as the motions in GRAB have very small variations, GOAL

does not succeed in any of the evaluation configurations

(line 4).

Ablation of Intention Features: In order to demonstrate

the contribution of each component of the intention fea-

ture we conduct an ablation study (Table 2). Using only

wrist intention (line 1) results in the lowest foot skating, due

to the minimal constraints applied to the motion, allowing

for more adaptable motion planning. But wrist intention

features, are time-dependent and do not carry information

about the absolute distance to the goal. This is why it can

lead to the avatar over- or under-shooting and thus achiev-

ing a low success ratio (SR). The addition of pelvis inten-

tion (line 2) enables the avatar to sense the distance to the
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goal while the orientation intention (line 3) properly aligns

the body to face the goal. Since pelvis and orientation in-

tention add more constraints to the motion, they can some-

times cause more challenging body dynamics and produce

motions with higher foot-skating (FS) (e.g. turning around

in place instead of walking in a U-turn). We also try re-

moving the intention from the motion prior and optimizing

the latent space of a randomly generated initial motion to

minimize the distance between the wrist and the goal (VAE

+ opt). This approach fails since the result is heavily de-

pendent on the initialization of the latent variables of the

motion. Our results confirm that each component of the

intention feature is essential to achieving the overall perfor-

mance of the model. For more details on the optimization

see Sup. Mat.

Train Set SR ↑ FS ↓ DTG (cm) ↓
WANDR (Iw) 15% 13% 62.9

WANDR (Iw + Ip) 18% 17% 44.9

WANDR (Iw + Ir) 19% 19% 36.0

WANDR (full intention) 32% 16% 24.8

VAE + opt 3% 4% 217.0

Table 2. Ablation Study. We evaluate the impact of each compo-

nent of the intention vector. We also compare with an optimization

baseline that does not use any condition signals. The results high-

light the effectiveness of all of the components of intention as well

as the fact that the complexity of the task makes “brute-forcing”

with optimization unsuccessful.

Success Ratio Distribution: Our decomposition of the

model’s success ratio, presented in Fig. 5, offers insights

into how the model’s performance varies with respect to dif-

ferent goal positions. WANDR demonstrates a consistent

ability to reach goals across various distances (blue) and di-

rections (green). It is more capable at reaching goals that are

closer to the natural position of the wrist and do not require

extensive bending or stretching (yellow). This trend likely

results from the abundance of standing or upright motion se-

quences in the training data, as opposed to motions involv-

ing bending or crouching. This analysis provides valuable

information for future improvements and dataset balancing.

4.4.2 Qualitative Results

In Fig. 4, we show a variety of motion sequences gen-

erated with our network featuring reaching goals located

at varying distances and heights, highlighting the model’s

ability to realistically and smoothly orient, navigate, and

reach for goals. These goals require actions such as bending

down, turning, or stretching upwards. A critical aspect ob-

served is the model’s ability to decelerate as it approaches

the goal, seamlessly coordinating body and arm movements

to achieve a natural-looking reaching motion. Overall, the

10 %

20 %

30 %

40 %

50 %

60 %

70 %

Height (m) Radius (m) Angle (rad) 0.5 50 1.8 0 2π

Success Ratio (%)

Figure 5. We show the success rates of reaching goals at various

heights, angles, and distances from the initial human pose. It high-

lights how goal position affects the model in accurately navigating

and achieving the goals.

qualitative results show that our network generalizes well to

novel goal locations while generating realistic motions. For

more results please see Sup. Mat. and the video.

5. Conclusion

In conclusion, our research presents a novel data-driven ap-

proach to human motion generation, focusing on the task

of reaching arbitrary goals in space. We introduce novel

intention features that enable learning both general navi-

gational skills from AMASS and goal-reaching skills from

the CIRCLE dataset under the same distribution. We eval-

uate our model’s ability to reach unseen goals that cover

the whole space an avatar should be able to reach around it.

The autoregressive design of WANDR demonstrates gener-

alizability in generating realistic human motions that reach

unseen goals without requiring any extra guidance informa-

tion such as a pre-defined trajectory.

Limitations and Future Work: Our approach is not

without its limitations. Currently, error accumulation can

sometimes bring the avatar to states where it can no longer

recover. Additionally, our model shows less proficiency

in reaching extremely low or high goals, reflecting a need

for more diverse training data encompassing a wider range

of body movements. Future work could focus on incorpo-

rating realistic grasping mechanisms and interactions with

objects, as well as including scene navigation capabilities.

This could involve integrating more complex datasets or

developing advanced algorithms capable of understanding

and interacting with varied environmental contexts, thereby

pushing the boundaries of realistic human motion simula-

tion.
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