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Abstract

Few-shot learning (FSL) facilitates a variety of com-
puter vision tasks yet remains vulnerable to adversarial at-
tacks. Existing adversarially robust FSL methods rely on
either visual similarity learning or class concept learning.
Our analysis reveals that these two learning paradigms are
complementary, exhibiting distinct robustness due to their
unique decision boundary types (concepts clustering by the
visual similarity label vs. classification by the class labels).
To bridge this gap, we propose a novel framework unifying
adversarially robust similarity learning and class concept
learning. Specifically, we distill parameters from both net-
work branches into a “unified embedding model” during
robust optimization and redistribute them to individual net-
work branches periodically. To capture generalizable ro-
bustness across diverse branches, we initialize adversaries
in each episode with cross-branch class-wise “global ad-
versarial perturbations” instead of less informative random
initialization. We also propose a branch robustness harmo-
nization to modulate the optimization of similarity and class
concept learners via their relative adversarial robustness.
Extensive experiments demonstrate the state-of-the-art per-
formance of our method in diverse few-shot scenarios.

1. Introduction
Few-shot learning (FSL) facilitates training various applica-
tions [18, 20, 22, 23, 35, 39, 44, 45, 47, 50, 51] with limited
training data. Despite its potential, a cornerstone of FSL,
Deep Neural Network (DNN), is known to be susceptible
to adversarial samples [11, 29, 38] that are easily obtain-
able by appending visually imperceptible perturbations to
natural samples. Such adversarial samples pose even more
severe disruption to the inference of DNN-based few-shot
learners, inducing a serious security threat that hinders the
practical deployment of FSL systems [14].
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Figure 1. Motivation for co-distillation. (a) Feature spaces (2D
PCA and density estimation are applied to feature representations
from an episode, where 3 cluster colors represent 3 class labels) of
a similarity learner (left) and a class concept learner (middle) with
very different decision boundaries. As two of three green clus-
ters from the similarity learner overlap with the red cluster, (weak)
adversaries with a small radius ϵ are enough to breach the deci-
sion boundary and immunize the similarity learner. In contrast,
the concept learner requires a larger ϵ for immunization due to
clearer class separation. Our co-distillation (right) results in well-
separated class clusters. (b) Robust accuracy confirms that similar-
ity and concept learners are affected differently w.r.t. ϵ, exhibiting
complementary robustness for our co-distillation indicated by the
grey curve. The green line refers to ϵ=8/255 used for training.

A growing body of research has focused on adversarially
robust FSL. These works primarily fall into two categories:
(i) visual similarity learning [14, 19] and (ii) class concept
learning [9, 36]. Both paradigms aim to improve robust-
ness against unforeseen adversaries with minimal training
data. The former emphasizes capturing visual similarity (re-
lations) between support and query samples across diverse
few-shot tasks (episodes), involving a small subset of cate-
gories for episodic training. In contrast, class concept learn-
ing results in a feature embedding model based on explicitly
learning pre-defined class concepts (e.g., object categories).

However, these paradigms lead to adversarial robustness
from distinct viewpoints, which is mainly driven by their re-
spective labeling strategies, i.e., the similarity learner learns
a binary classifier or metric between pairs of samples to
capture their visual similarity, whereas the class concept
learner focuses on semantic object categories. To support
this claim, we provide feature space visualizations for vi-
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sual similarity and class concept learning in Fig. 1a. The
key observation made by us is that similarity learners of-
ten spread features per class into multiple clusters with po-
tential overlaps between classes, e.g., two of three green
clusters overlapping with the red cluster in the left panel
implies that low-strength attacks can easily breach cluster
boundaries, and thus weak adversaries forge adversarial ro-
bustness of the similarity learner. In contrast, class concept
learners produce more distinct class-wise clusters separated
by decision boundaries. While this separation is also sub-
optimal, more global clusters require stronger attacks for
disruption, reflecting the robustness tendency against adver-
saries of high attack strengths. Fig. 1a (right) shows that our
co-distillation method, adversarially robust few-shot learn-
ing via paRametEr co-diStIllation of SimilariTy and clAss
coNCept lEarners (RESISTANCE), achieves better sepa-
ration of class concepts. Fig. 1b proves differing trends
of robust performance between similarity and class learners
w.r.t. perturbation radius ϵ. Our co-distillation method, RE-
SISTANCE, indicated by the grey curve, confirms the com-
plementary nature of integrating both learning strategies.

In our RESISTANCE framework, we distill network pa-
rameters from the feature embedding models of both the
similarity and class concept learners into a “unified embed-
ding” model. These network parameters are then periodi-
cally redistributed back to their respective network branches
for synchronization during training. To capture generaliz-
able robustness across diverse network branches, we initial-
ize adversaries in each episode with cross-branch class-wise
global adversarial perturbations and thus generate branch-
specific adversarial samples to improve their respective de-
cision boundaries. However, our RESISTANCE goes be-
yond being merely a parameter redistribution strategy. Rec-
ognizing that adversaries perturb the similarity and classifi-
cation losses in an unequal manner, we introduce a robust-
ness harmonization module to upweight the robust learning
branch that experiences a larger adversarial vulnerability,
thereby counterbalancing the dominance of one branch dur-
ing co-distillation. Furthermore, we make a first attempt to
explore single-step adversary generation strategies in adver-
sarially robust FSL for better computational efficiency.

Extensive experiments and analyses demonstrate that our
RESISTANCE consistently outperforms the state-of-the-art
adversarially robust FSL methods w.r.t. both natural perfor-
mance and adversarial robustness in diverse few-shot sce-
narios while enjoying a reasonable computational cost.

Our contributions are summarized as follows:
i. By analyzing the complementary nature of visual simi-

larity and class concept learning distinguished by their
unique label spaces, we propose a novel adversarially
robust few-shot learning framework based on a simple
but effective parameter co-distillation mechanism, im-
proving robustness across diverse attack strengths.

ii. To promote the uniformity of robustness across learn-
ers, we introduce cross-branch class-wise adversarial
perturbations for branch-specific adversary initializa-
tion. We also propose a robustness harmonization mod-
ule to modulate the optimization of diverse branches.

iii. Comprehensive experiments demonstrate the effective-
ness and generalization ability of RESISTANCE com-
pared to the state-of-the-art adversarially robust few-
shot learning approaches. In addition, we investigate
the scalability of RESISTANCE with the single-step
adversary generation strategies for better efficiency.

2. Preliminaries
Related works. Few-shot learning primarily focuses on
learning novel class/visual concepts from limited data [13,
26, 27, 37, 40, 47]. However, this data scarcity predisposes
few-shot classifiers to increased susceptibility to adversar-
ial samples. In the broader landscape of defenses against
such adversaries, adversarial training improves robustness
by augmenting adversarial samples into training data [2].
Existing works focus on striking a balance between natu-
ral performance and adversarial robustness [10, 12, 30, 49].
For instance, a mixup training strategy [43] merges insights
from both naturally trained and adversarially trained mod-
els. In contrast, apart from seeking a trade-off between
natural performance and robustness, we aim to mitigate
the robustness discrepancy between visual similarity and
class concept learning based on feature-level co-distillation.
Moreover, our global adversarial perturbations are inspired
by universal adversarial robustness [3, 25, 34]. We further
extend it by introducing a cross-branch and class-wise ver-
sion of universal perturbation for branch-specific adversary
initialization, ensuring the uniformity of robust learning.

Despite the effectiveness of adversarial training, its im-
pact on network robustness highly depends on the avail-
able volume of data [8, 31]. In addressing this challenge,
Goldblum et al. [14] integrated adversary generation within
similarity learning for a robust feature extractor. Dong
et al. [9] extended the so-called transfer learning (class con-
cept learning) to adversarially robust FSL. Despite the non-
trivial robustness obtained by similarity and class concept
learning families, their complementary characteristics in
this context remain largely unexplored. Our RESISTANCE
fills such a gap for improved robustness in few-shot settings.
Similarity learning vs. class concept learning. Given an
FSL dataset with Z classes, we form episodes (S,Q)∼D
with support and query samples. Specifically, we draw K
samples from each of N classes (N < Z) to construct the
support set S = {(xi, yi)}|S|

i=1 (|S| = KN), as well as K ′

disjoint samples from the same N classes for the query set
Q = {(xi, yi)}|Q|

i=1. Both the support and query sets define
an N -way K-shot task. Note that categories from the train-
ing and evaluation sets do not overlap. Robust similarity
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learning typically uses class-wise feature mean prototypes:

µn =
1

|Sn|
∑

(x,y)∈Sn

fθs(x), (1)

where n ∈ {1, . . . , N} indicates one of N classes of an
episode, and fθs

: X → RD is a feature encoder with pa-
rameters θs. Let M={µn}Nn=1. For each query sample x,
one maximizes the likelihood of that sample and the corre-
sponding prototype to share the same class label:

p(yx=yµn |x,M) =
exp(−d2(fθs(x),µn))∑N

n′=1 exp(−d2(fθs(x),µn′))
, (2)

where d(·, ·) is the Euclidean distance. For brevity, for all
N prototypes, we define a likelihood vector pM

x = [p(yx =
yµ1 |x,M), . . . , p(yx = yµN

|x,M)]⊤∈ RN and a one-hot
vector yx=[1(yx=yµ1

), . . . ,1(yx=yµN
)]⊤∈{0, 1}N.

Subsequently, the adversarially robust similarity learning
typically learns visual similarity (object relations) between
support and query sets of episodes in D. For an episode
with a query set Q and prototypes M of support set S, the
similarity learner minimizes the following loss w.r.t. θs:

Ls(Q,M)= (3)
1

|Q|
∑

(x,yx)∈Q

[
LCE(p

M
x ,yx)+λ max

∥δs∥∞<ϵ
LKL

(
pM
x ∥pM

x+δs

)]
,

where LCE and LKL represent the Cross-Entropy (CE) loss
for natural samples and the Kullback–Leibler (KL) diver-
gence for generating adversarial samples x̂ = x+δs. More-
over, δs is the ℓ∞-norm constrained adversarial perturba-
tion obtained by Projected Gradient Descent (PGD) [24].
In conclusion, the visual similarity loss optimizes:

min
θs

E(S,Q)∼D Ls(Q,M(S)), (4)

where M(S) is simply a set of prototypes derived from the
support set S obtained according to Eq. (1).

Unlike the similarity learner, which uses N < Z class-
wise feature mean prototypes to model similarity locally
(i.e., per episode), the class concept learner learns global
classifier weights for all Z classes. Let fθc : X → RD be a
feature encoder with parameters θc. We define the classifier
head (softmax with learnable weights W={wz}Zz=1) as:

p(yx=z|x,W) =
exp(w⊤

z fθc(x))∑Z
z′=1 exp(exp(w

⊤
z′fθc(x)))

. (5)

For brevity, for all Z classes, we define a likelihood vector
pW
x = [p(yx =1|x,W), . . . , p(yx =Z|x,W)]⊤∈RZ and a

one-hot vector y′
x=[1(yx=1), . . . ,1(yx=Z)]⊤∈{0, 1}Z.

Let batch B be the query set, i.e., B=Q, (B=S∪Q is also
possible). We minimize the following loss w.r.t. θc and W:

Lc(B,W)= (6)
1

|B|
∑

(x,yx)∈B

[
LCE(p

W
x ,y′

x)+λ max
∥δc∥∞<ϵ

LKL
(
pW
x ∥pW

x+δc

)]
.

Simply put, the class concept learner optimizes:

min
θc,W

E(S,Q)∼D Lc(Q,W). (7)
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Figure 2. Adversarially robust few-shot learning via our paRame-
tEr co-diStIllation of SimilariTy and clAss coNCept lEarners (RE-
SISTANCE). Adversarial samples are generated w.r.t. the similar-
ity learner and class concept learner (they both enjoy distinct label
spaces). These adversarial samples are seeded by cross-branch
class-wise global adversarial initialization perturbations that help
attain an effective local optimum of adversarial generation for each
branch. Parameters of the similarity and class concept branches
are co-distilled into the unified embedding model and regularly
redistributed back to individual branches for stability. The branch
robustness harmonization promotes higher learning rates for the
less robust branch. During evaluations, we employ the unified em-
bedding alongside a rebuilt classification head (multinomial logis-
tic regression) based on support samples from an episode.

3. Proposed Approach
Below, we introduce our adversarially robust FSL frame-
work, RESISTANCE, which co-distills parameters across
network branches and further promotes adversarial robust-
ness by cross-branch class-wise global adversarial initial-
ization perturbations and a branch harmonization strategy.

3.1. Similarity-concept Co-distillation

We here describe how to integrate both similarity and class
concept learners into a unified embedding model for bet-
ter adversarial robustness in FSL. Our approach alternates
between two stages: robust optimization of both learners
and dynamic knowledge distillation, as shown in Figure 2.
Given the discrepancy in the label spaces between similar-
ity and class concept learners, we resort to parameter co-
distillation, as their parameters θs and θc are optimized on
two network branches with the same network architecture.
Both learners leverage the clean query sets to generate cor-
responding adversarial samples. However, their distinction
resides in the label space: the similarity head of the simi-
larity learner clusters feature representations around N pro-
totypes, and these prototypes depend not on the semantic
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label but on visual appearance, leading to multiple clusters,
as shown in Figure 1a (left). In contrast, the classification
head of the class concept learner maps inputs to the class
label space of size Z>N . The unification process involves
distilling parameters from both learners after each training
iteration using the Exponential Moving Average (EMA) up-
date, thereby synergizing their strengths for robust FSL:

θu :=βθu + (1−β) [γθs+(1−γ)θc] , (8)

where 0≤β≤1 is the decay rate, and 0≤γ≤1 balances the
impact of each network branch. Considering the unstable
nature of representations in early training epochs, we enable
parameter distillation from epoch T > 0. Prior to epoch T ,
both similarity and concept learners are trained separately
on the identical data (except that label spaces differ).

To prevent large divergence between parameters θs and
θc, we distribute θu every m iterations into θs and θc

1. This
periodic parameter distribution synchronizes learners, pre-
vents large parameter deviation, and thus limits overfitting.

3.2. Cross-branch Class-wise Global Adversarial
Initialization Perturbations

The key objective of our RESISTANCE framework is to ob-
tain a robust unified embedding model capable of handling
distinct knowledge from different learning branches. A
challenge arises when adversaries generated from the same
clean sample vary across branches due to the label space
discrepancy, potentially leading to incompatible robustness
for co-distillation. To address this and capture generaliz-
able robustness, we design cross-branch class-wise global
adversarial initialization perturbations (GAIP) inspired by
[25, 34]. Such a global strategy ensures that samples within
the same class are initialized with a common adversarial
base across diverse learning branches. We expect that this
prior-guided adversary initialization brings natural samples
closer to decision boundaries, where they can be further re-
fined by each branch to reflect their unique label spaces on
final adversaries, thus enhancing the unified robustness.

Let a sample xz∈Bz belong to the batch subset contain-
ing natural samples of class z (we use the query subset of
class z, i.e., Bz = Qz , while Bz = Sz ∪Qz is also possi-
ble). We combine the similarity learning, the class concept
learning, and the unified embedding branches as follows:

LGAIP(Bz; δ
z
0)=

∑
xz∈Bz

∑
g∈{fθs,
fθc,fθu}

∥∥g(xz+δz
0)−µ(g)

z

∥∥2

2
, (9)

where µ
(g)
z = 1

|Bz|
∑

(x,y)∈Bz

g(x) (not to be mistaken with µn

in Eq. (1)) is a class-wise prototype computed over a batch
subset Bz with class z, and δz0=δ

z (ι)
0 is the initializing per-

turbation for class z (i.e., it seeds adversarial perturbations
1This can be done by overriding parameters θs and θc or simply by up-

dating each of them by EMA, which is marginally better but non-essential.

for each branch), which is disruptive across all the learners
in our RESISTANCE framework as the iterative gradient
ascent progresses on Eq. (9) over batch iterations ι:

δ
z (ι)
0 = h

(
Bι

z; δ
z(ι−1)
0 ;α

)
= (10)

ΠB(ϵ)

(
δ
z (ι−1)
0 +α sign

(
∇

δ
z(ι−1)
0

Lz
GAIP

(
Bι

z; δ
z(ι−1)
0

)))
,

where δ
z (0)
0 ∼0.001 · N (0, I). ΠB(ϵ)(·) denotes the projec-

tion into the ℓ∞-norm bound with radius ϵ. We incorporate
our global perturbations into the iterative adversary gener-
ation during training by replacing the standard random ini-
tialization with such a cross-model and class-wise consis-
tency constraint for unified adversarial robustness.

3.3. Branch Robustness Harmonization Module

Given the distinct label spaces of our similarity and class
concept learners, they inherently exhibit different adversar-
ial robustness characteristics, e.g., their contributions to the
unified robustness differ per episode. In addition, the emer-
gence of a dominant learner can indirectly affect contribu-
tions from the other model and thus make co-distillation in-
effective. Hence, we propose the branch robustness harmo-
nization to modulate the impact of the similarity and class
concept learning by upweighting the learning rate of the less
robust learner. To quantify the robustness discrepancy be-
tween the similarity and class concept learners, we calculate
their relative adversarial robustness score as follows:

κs(Q,S) =
E(x,y)∼Q

[
LKL

(
pW
x ∥pW

x+δx
c

)]
E(x,y)∼Q

[
LKL

(
p
M(S)
x

∥∥pM(S)
x+δx

s

)] , (11)

where pW
x and pW

x+δx
c

are softmax class vectors (simplex)
of size Z from the class concept learner, as defined just be-
low Eq. (5). Additionally, pM

x and pM
x+δx

s
are softmax class

vectors (simplex) of size N from the similarity learner, as
defined just below Eq. (2). Finally, vectors δxc and δxs in-
dicate adversarial perturbations w.r.t. sample x obtained by
iterative gradient ascent on the class concept and similar-
ity learners, respectively. M(S) represents the class-wise
feature mean prototypes for the support set S, as defined in
both vector and matrix forms in and below Eq. (1). We can
also define κc = 1/κs. If the class learner is less robust than
the similarity learner given their respective adversarial sam-
ples (κs>1), the learning rate of the similarity learner is re-
spectively decreased. It remains unchanged for 0≤κs≤ 1,
as determined by the function below:

η′s = ηs
[
1− tanh (τ max (0, log (κs)))

]
, (12)

where ηs and η′s denote the original and corrected learn-
ing rates of the similarity learner, and τ ≥ 0 controls the
steepness of downweighting the learning rate. We can ob-
tain η′c by analogy. The less robust learner receives a larger
learning rate (relative to the other learner), which facilitates
balancing the robust optimization of both learners.
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Algorithm 1 Adversarially Robust Few-shot Learning via
paRametEr co-diStIllation of SimilariTy and clAss coN-
Cept lEarners (RESISTANCE).
Input: Network architecture f(·); dataset D; maximum perturba-
tion radius ϵ>0; step size α>0 for adversary generation; learning
rates ηs and ηc; starting epoch T and frequency m for redistribut-
ing distilled parameters to network branches; EMA decay rate β;
balancing factor γ; steepness τ >0 for branch harmonization.

1: Randomly initialize θs,θc,θu,W, and δ
z (0)
0 ∼ 0.001 ·

N (0, I), ∀ 1 ≤ z ≤ Z. Set iteration number ι = 1.
2: while not at end of training do
3: Sample an episode (S,Q) ∼ D and set B=Q
4: Form class-wise sets Bz = Qz, ∀ 1 ≤ z ≤ Z
5: for z = 1, 2, . . . , Z (in parallel) do

6:
Compute cross-branch class-wise global adv.
initialization perturbations (GAIP) by Eq. (10):
δ
z (ι)
0 = h

(
Bι

z; δ
z(ι−1)
0 ;α

)
7: end for

8:
Compute relative adversarial robustness scores κs

and κc (harmonization module) by Eq. (11)

9:
Obtain downweighted learning rates η′

s and η′
c from

ηs and ηc via Eq. (12) given κs, κc and τ

10:
Compute gradient update for the similarity learner:
θs ← θs − η′

s∇θsLs(Q,M(S)) where adversarial
samples for Ls in Eq. (3) are seeded with δ

z (ι)
0

11:
Compute grad. update for the class concept learner:
(θs,W)←(θc,W)−η′

c∇(θc,W)Lc(B,W) where
adv. samples for Lc in Eq. (6) are seeded with δ

z (ι)
0

12:
Co-distillation step by Eq. (8):
θu ← βθu + (1−β) [γθs+(1−γ)θc]

13: if epoch t≥T and (ι mod m)=0 then
14: Distribute θs←θu and θc←θu (copy or EMA)
15: end if
16: ι← ι+ 1
17: end while
18: return Co-distilled model parameters θu.

3.4. RESISTANCE (Our Algorithm)

Algorithm 1 outlines the key steps of RESISTANCE. Our
similarity learner is inspired by Adversarial Querying (AQ)
[14] with a distinct training loss, whereas our concept
learner is inspired by TRADES [49], a well-established ad-
versarial training method. Nevertheless, both learners can
be customized to other FSL problems. The adversary gen-
eration per branch can be performed as a multi-step (de-
fault) or single-step approach for computational efficiency.
However, a good initialization for a single-step strategy is
needed. We opt for our global adversarial initialization per-
turbations instead of random initialization to mitigate the
risks of suffering from bad local optima [1, 16, 21].

4. Experiments
Below, we compare RESISTANCE to the state-of-the-art
adversarially robust FSL methods (natural and robust per-
formance). We show RESITANCE works well in the cross-
domain and single-step adversarial generation settings.

4.1. Experimental Setups

Datasets. We evaluate our method on three standard FSL
datasets: Mini-ImageNet [42], CIFAR-FS [4], & FC100 [28].
Implementation details. Following recent studies [9, 14,
46], we adopt either Conv-4 [42] or ResNet-12 [15] as back-
bones. Each few-shot task consists of 5-way 1/5-shot sam-
ples for the support set and 15 instances for each class in the
query set. The “distribute back” process starts at epoch T =
40 with the frequency m= 10. The ℓ∞-norm perturbation
radius is set as ϵ=8/255 with step size α=2/255. Regu-
larization hyper-parameters are set as β=0.99, γ=0.5, and
τ=0.5. Appendix A provides further details.

4.2. Results

Performance of RESISTANCE. We compare RESIS-
TANCE with state-of-the-art adversarially robust few-shot
learning approaches in 5-way 1/5-shot settings, as shown in
Tables 1 and 2. We report clean accuracy and robust accu-
racy against three strong white-box attacks: PGD [24] with
20 steps, CW [5], and Auto Attack (AA) [6] for a compre-
hensive evaluation. All the results are obtained over 2,000
randomly sampled few-shot tasks with adaptive attacks for
fairness. Tables 1 and 2 show that RESISTANCE improves
robustness across these three few-shot benchmarks and also
enjoys superior natural performance compared with other
approaches. RESISTANCE also exhibits good performance
w.r.t. different network architectures across diverse settings.
In the 5-shot scenario for CIFAR-FS, our approach enjoys a
substantial improvement of 9% enhancement in clean accu-
racy, as well as a 7.8% boost in AA robustness with ResNet-
12 over existing methods. For 1-shot clean accuracy, we ob-
serve over 3% gain across all the datasets using ResNet-12.
Robustness against diverse attack strengths. We here
study the adversarial robustness of RESISTANCE under
varying attack strengths (perturbation radii). Table 3 shows
that our method consistently remains robust when con-
fronted with adversaries of varied perturbation magnitudes,
outperforming both similarity and class concept learning
methods. This indicates that RESISTANCE can effectively
capture the robustness of both learning paradigms.
Single-step adversarial generation. Existing robust FSL
methods primarily suffer from low training efficiency due
to multi-step adversary generation. To relieve this issue, we
explore single-step strategies [1, 7, 16, 33, 48] with robust
FSL. Table 4 shows that RESISTANCE with single-step
strategies achieves non-trivial adversarial robustness close
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Table 1. Comparison of our RESISTANCE on Mini-ImageNet, CIFAR-FS, FC100 with other adversarially robust few-shot learning
methods in the 5-way 1-shot setting. We report both clean accuracy (%) and robust accuracy (%) with the perturbation radius ϵ = 8/255.

Model Method Mini-ImageNet CIFAR-FS FC100
Clean PGD CW AA Clean PGD CW AA Clean PGD CW AA

C
on

v-
4

AQ [14] 33.67 18.52 17.53 16.66 42.66 26.33 25.35 25.04 29.51 18.64 17.66 16.64
R-MAML [46] 33.98 25.69 24.73 22.97 33.51 27.61 27.12 15.39 23.52 16.31 15.08 14.48

ST [36] 34.62 27.46 26.06 22.71 41.77 32.02 30.91 29.14 28.92 20.19 20.05 19.90
GR [9] 35.38 28.37 27.12 23.83 44.51 37.45 36.53 34.26 31.82 23.73 23.28 21.26

DFSL [19] 35.39 28.14 26.61 23.05 44.13 36.87 35.29 33.88 31.74 23.34 22.06 20.57
RESISTANCE 37.40 28.26 27.24 25.15 45.78 38.01 37.35 35.76 33.81 26.31 25.22 22.75

R
es

N
et

-1
2 AQ [14] 41.89 20.53 18.38 17.81 47.40 29.55 28.42 27.46 31.72 19.44 18.85 17.14

R-MAML [46] 37.52 27.46 33.47 24.14 41.78 28.33 28.86 25.27 28.25 18.48 16.50 17.57
ST [36] 43.97 30.13 29.42 28.47 47.24 35.61 34.67 32.86 33.64 23.69 23.28 20.31
GR [9] 45.81 35.18 34.53 32.61 48.13 39.29 37.36 35.76 34.21 25.05 24.17 21.94

DFSL [19] 47.16 34.60 33.77 31.62 50.74 39.37 37.83 35.71 34.80 25.20 24.81 21.09
RESISTANCE 50.28 36.06 34.74 33.71 55.78 44.05 42.55 41.57 37.75 26.53 25.37 23.18

Table 2. Comparison of our RESISTANCE method on Mini-ImageNet, CIFAR-FS, FC100 with other adversarial few-shot learning meth-
ods in the 5-way 5-shot setting. We report both clean accuracy (%) and robust accuracy (%) with the perturbation radius ϵ = 8/255.

Model Method Mini-ImageNet CIFAR-FS FC100
Clean PGD CW AA Clean PGD CW AA Clean PGD CW AA

C
on

v-
4

AQ [14] 50.12 28.16 27.21 24.68 57.63 39.58 38.69 37.17 35.19 24.76 22.80 21.08
R-MAML [46] 50.76 34.19 29.61 28.31 52.75 32.66 31.47 19.25 38.56 17.67 15.91 18.75

ST [36] 51.23 33.23 30.84 29.07 55.61 40.21 40.15 39.95 40.69 30.65 27.39 27.06
GR [9] 50.93 37.95 35.90 31.37 58.31 47.95 46.45 45.09 41.32 32.92 30.70 29.09

DFSL [19] 51.10 36.23 35.94 30.31 58.89 47.42 46.62 44.38 41.74 31.81 29.99 28.44
RESISTANCE 52.23 40.24 38.55 35.81 60.05 48.37 47.00 45.89 44.63 35.15 33.73 30.07

R
es

N
et

-1
2 AQ [14] 64.47 30.80 29.62 25.72 65.78 44.01 42.54 41.56 41.07 25.68 24.86 22.13

R-MAML [46] 62.75 45.78 43.88 36.12 65.61 34.77 33.15 27.77 42.25 24.39 20.49 20.08
ST [36] 61.65 47.85 45.98 45.23 64.44 46.16 44.26 43.19 44.57 32.18 30.72 28.33
GR [9] 64.60 50.71 47.52 47.59 66.99 52.66 50.61 50.91 46.12 34.27 32.00 30.98

DFSL [19] 64.95 50.83 47.23 46.50 65.84 53.90 51.25 50.64 47.73 34.63 32.36 30.97
RESISTANCE 68.79 53.84 51.47 50.52 74.83 61.61 59.64 58.76 51.69 37.51 35.70 34.66

Table 3. (Auto-Attack) robust accuracy (%) of different attack
radii using ResNet-12 on Mini-ImageNet and CIFAR-FS.

Radius ϵ Method Mini-ImageNet CIFAR-FS
1-shot 5-shot 1-shot 5-shot

4/255
R-MAML [46] 31.67 47.21 30.96 40.43

GR [9] 35.77 52.63 40.04 55.82
DFSL [19] 36.39 53.45 41.12 56.92

RESISTANCE 39.24 58.57 46.07 64.18

6/255
R-MAML [46] 28.65 42.94 27.16 34.91

GR [9] 33.75 50.95 36.85 52.98
DFSL [19] 33.98 50.42 37.45 53.20

RESISTANCE 37.06 54.85 43.39 61.35

10/255
R-MAML [46] 25.08 35.73 22.81 26.12

GR [9] 28.01 44.99 33.23 48.47
DFSL [19] 26.83 43.08 32.98 48.03

RESISTANCE 29.76 47.33 38.57 56.18

12/255
R-MAML [46] 23.89 32.75 21.30 25.06

GR [9] 26.31 40.92 31.14 47.46
DFSL [19] 25.27 38.69 29.19 45.66

RESISTANCE 27.65 44.10 36.01 52.35

to its multi-step performance. Moreover, single-step RE-
SISTANCE achieves even better performance on both clean
accuracy and robustness compared to existing multi-step
FSL approaches. Appendix B.1 provides further details.

Cross-domain FSL robustness. We here investigate the
cross-domain transferability of RESISTANCE. Following
the settings from [9, 17], we train and test the robust em-
bedding model on disjoint domains with distinct resolutions

Table 4. Extension with single-step adversary generation strategies
on Mini-ImageNet using ResNet-12. We report clean and (Auto-
Attack) robust accuracy with the average training time.

Method Adversary Type 1-shot 5-shot Time(h)
Clean Robust Clean Robust

R-MAML [46]

Multi-step 37.52 24.14 62.75 36.12 15.6
N-FGSM [7] 33.61 21.27 59.72 34.53 4.8

RS-FGSM [48] 33.86 21.22 59.85 34.48 4.8
GradAlign [1] 34.04 21.46 60.50 34.93 8.3

GR [9]

Multi-step 45.81 32.61 64.60 47.59 10.7
N-FGSM [7] 40.13 28.17 59.44 44.71 3.1

RS-FGSM [48] 41.49 26.35 60.57 43.24 3.1
GradAlign [1] 40.63 27.42 59.15 44.03 5.9

Multi-step 50.28 33.71 68.79 50.52 16.9
N-FGSM [7] 48.84 32.70 68.40 50.35 5.3

RS-FGSM [48] 49.24 30.26 67.81 48.70 5.3RESISTANCE
GradAlign [1] 49.07 31.33 68.48 49.19 9.5

and disjoint categories. We report accuracy on clean and
adversarial samples from test domains in Table 5. We ob-
serve that RESISTANCE obtains better transferable robust-
ness and natural performance in diverse cross-domain set-
tings, showing that RESISTANCE remains adversarially ro-
bust under domain shifts. More details are in Appendix B.2.

4.3. Ablation Studies

Impact of each module. Below, we investigate the impact
of component modules in RESISTANCE: (i) co-distillation
of similarity and class concept learners (Co-dist.) in Sec-
tion 3.1, (ii) cross-branch class-wise global adversarial ini-
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Table 5. Cross-domain robustness between Mini-ImageNet (M),
CIFAR-FS (C), and FC100 (F) datasets using ResNet-12.

Transfer Method 1-shot 5-shot
Clean PGD AA Clean PGD AA

M → C
AQ [14] 43.96 26.36 22.30 61.05 37.33 30.97
GR [9] 44.13 34.67 32.13 60.86 45.17 42.03

TROBA [17] 43.20 32.47 30.81 62.44 46.24 43.75
RESISTANCE 48.04 38.65 36.54 64.13 53.42 50.26

M → F
AQ [14] 36.08 18.71 14.14 47.66 25.31 19.45
GR [9] 35.16 26.40 24.30 45.91 33.92 30.79

TROBA [17] 34.09 24.42 21.65 45.51 34.05 31.56
RESISTANCE 35.78 27.63 24.34 47.88 37.49 35.45

C → M
AQ [14] 36.25 11.15 8.80 56.90 19.10 14.20
GR [9] 36.65 24.60 20.12 50.73 33.19 30.17

TROBA [17] 37.48 21.59 18.40 52.46 29.27 26.92
RESISTANCE 38.55 25.08 21.65 56.04 39.19 34.96

Table 6. Ablation study using ResNet-12 of three key components
of RESISTANCE for 5-way 5-shot robustness (%) on CIFAR-FS.

Co-dist. GAIP Harm. Clean PGD-20 AA
1 60.22 46.95 45.84
2 ✓ 68.12 55.14 53.07
3 ✓ ✓ 73.17 58.99 55.72
4 ✓ ✓ 71.46 60.24 56.20
5 ✓ ✓ ✓ 74.83 61.61 58.76

tialization perturbations (GAIP) in Section 3.2, and (iii)
branch robustness harmonization (Harm.) in Section 3.3.
We provide both clean and robust accuracy on CIFAR-FS
using ResNet-12 in the 5-way 5-shot setting in Table 6.

Our baseline approach (first row in Table 6) relies on the
robust class concept learning in Eq. (6). The co-distillation
yields a substantial improvement w.r.t. the clean and robust
accuracy, demonstrating the effectiveness in leveraging the
respective strengths of similarity and class concept learn-
ing. Furthermore, the branch harmonization strategy and
GAIP also improve adversarial robustness. The integration
of all these components leads to the best FSL performance
on clean samples and their adversarial counterparts.

Combining various types of learners. We here demon-
strate that RESISTANCE requires both the similarity and
class concept learners instead of co-distillation between
two learners of the same type (with differently initialized
backbones–as in ensemble learning). Table 7 shows that
similarity & concept learners outperform other combina-
tions, i.e., similarity & similarity learners and concept &
concept learners. As the total parameter count is the same
irrespective of the variant in the table, we conclude that im-
provements yielded by RESISTANCE are due to the com-
plementary nature of similarity and class concept learners
rather than doubling the number of learnable parameters.

Impact of the backbone size on similarity, concept, and
co-distillation. Below, we show that the improved perfor-
mance of RESISTANCE is not due to the increased model
complexity of two learners. Table 8 shows results for simi-
larity only, concept only and the similarity and class concept
co-distillation. We used larger network architectures, such
as ResNet-18 and ResNet34, and indicated the total number
of parameters per configuration. RESISTANCE, denoted as

Table 7. Comparison of co-distillation components on clean and
(Auto-Attack) robust accuracy using ResNet-12 on CIFAR-FS.

Co-distillation Components 1-shot 5-shot

Clean Robust Clean Robust

similarity & similarity 49.50 31.75 69.63 46.33
class concept & class concept 47.90 33.04 67.37 51.17
similarity & class concept 55.78 41.57 74.83 58.76

Table 8. Similarity vs. class concept learning with different back-
bones on clean and (Auto-Attack) robust accuracy on CIFAR-FS.

Backbone Number of
Parameters Paradigm 1-shot 5-shot

Clean Robust Clean Robust

ResNet-18 11.7 M similarity 49.97 30.88 68.57 45.65
concept 47.37 32.17 66.15 48.81

ResNet-34 21.8 M similarity 52.19 34.03 72.44 49.85
concept 50.07 36.71 69.92 53.61

ResNet-12 12.4 M co-distillation 55.78 41.57 74.83 58.76

Table 9. Diverse adversarial initialization types for RESISTANCE
using ResNet-12 for 5-way 5-shot robustness (%) on CIFAR-FS.

Cross-branch Class-wise 1-shot 5-shot

Clean Robust Clean Robust

1 53.22 37.91 71.46 56.20
2 ✓ 52.06 39.42 70.21 58.49
3 ✓ 55.13 38.84 73.35 57.36

4 ✓ ✓ 55.78 41.57 74.83 58.76

co-distillation, surpasses results of either similarity or con-
cept learning alone that are based on larger backbones.

Impact of adversarial initialization perturbations. In ad-
dition to our cross-branch class-wise global adversarial ini-
tialization perturbations, denoted as GAIP in previous sec-
tions, we explore other adversarial initialization strategies.
Table 9 shows that the cross-branch strategy alone improves
adversarial robustness. Thus, the shared adversarial pertur-
bation prior across both branches helps achieve better op-
tima when performing the gradient ascent to obtain individ-
ual untargeted adversarial samples in each branch. Further-
more, the class-wise strategy produces a universal pertur-
bation prior per category, inherently learning class-specific
information. Thus, by combining both the cross-branch and
class-wise strategies, GAIP helps improve performance on
clean samples and their adversarial counterparts.

Similarity vs. class concept learner trade-off. Balancing
the natural performance and adversarial robustness has been
well explored in standard adversarial training [10, 30, 49]
but not within the few-shot scenarios. To fill this gap, we
study the effect of factor γ that balances similarity learning
and class concept learning. Fig. 3a shows that the clean ac-
curacy goes higher for larger values of γ, albeit sacrificing
adversarial robustness. Conversely, enhancing the adversar-
ial robustness correlates with a drop in natural performance.

For RESISTANCE, γ helps balance the interplay be-
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Figure 3. (a) Sensitivity of RESISTANCE w.r.t. γ: the balanc-
ing factor between the similarity and class concept learners. We
report clean and (Auto-attack) robust accuracy on CIFAR-FS. (b)
Ratio of downweighted and original learning rate η′/η (similar-
ity and/or class concept) as a function of steepness factor τ and
the relative adversarial robustness score κ. We also provide 5-shot
clean/robust accuracy (CIFAR-FS) in the legend.
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Figure 4. t-SNE visualization of features from 500 randomly sam-
pled images per class on CIFAR-FS. ‘⋆’ are support features.
Tiny dots are query features–their color indicates the class label.

tween similarity and class concept learning, which dif-
fers from the standard balancing of the natural risk and
the boundary risk [49]. Fig. 1b shows that both learn-
ers enjoy complementary performance w.r.t. different attack
strengths. We benefit from such a complementary nature
of both learners by adjusting γ and harmonizing the robust
optimization of both learners (see Section 3.3). Fig. 3b il-
lustrates the impact of different steepness factors τ on the
downweighted learning rate (ratio of η′/η). Appendix D
provides further analyses of other hyper-parameters.

4.4. Visualizations
Figure 4 presents t-SNE visualizations [41] of feature repre-
sentations extracted from the test set. We randomly sampled
500 images per class (5 classes in total). Fig. 4d shows that
features of RESISTANCE enjoy lower intra-class variance,
resulting in compact class-wise clusters and a large inter-
class separation. Following our motivation, Fig. 4a and 4b
visualize feature spaces of two similarity learners, each con-
taining several cluster-like regions per class. Fig. 4c uses a
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Figure 5. Grad-CAM [32] attention visualizations of adversarial
samples from Mini-ImageNet using the backbone of ResNet-12.

Table 10. Various branch fusion strategies on clean and (Auto-
Attack) robust accuracy using ResNet-12 on CIFAR-FS.

Fusion Strategies 1-shot 5-shot
Clean Robust Clean Robust

Prediction Ensemble 50.12 36.27 67.80 51.73
Feature Ensemble 54.34 23.84 72.06 32.83

Multi-teacher Distillation 53.78 38.62 71.30 54.85
RESISTANCE 55.78 41.57 74.83 58.76

class concept learner with relatively clear class margins and
class-wise clusters. Hence, co-distilling both learner types
should benefit a unified embedding model.

4.5. Further Analysis

Figure 5 shows class-wise activation maps of similarity
learning, class concept learning, and RESISTANCE under
adversaries. Activation regions among similarity and class
concept learners differ due to their complementary nature.
Our method enjoys holistic activations covering the entire
target objects due to the integrated complementary learners.

Table 10 shows that our RESISTANCE outperforms
other strategies of fusing similarity and class concept learn-
ers as follows. 1) Prediction Ensemble: average voting
on predictions of learners. 2) Feature Ensemble: concate-
nated feature representations of few-shot learners. 3) Multi-
teacher Distillation: feature-based knowledge distillation
from learners. Appendix B.3 provides more details.

5. Conclusions
In this paper, we propose RESISTANCE, a novel adversar-
ially robust few-shot learning method that effectively co-
distills the similarity and class concept learners, whose de-
cision boundaries are highly complementary. We also de-
sign cross-branch class-wise adversarial perturbations and
a robustness harmonization module to promote the unifor-
mity and balance of adversarial robustness. Extensive ex-
periments demonstrate the efficacy and generalization abil-
ity of RESISTANCE in diverse settings with further effi-
ciency gains via single-step adversary generation strategies.
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