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Abstract

Reference-based super-resolution (RefSR) has the poten-
tial to build bridges across spatial and temporal resolutions
of remote sensing images. However, existing RefSR meth-
ods are limited by the faithfulness of content reconstruc-
tion and the effectiveness of texture transfer in large scal-
ing factors. Conditional diffusion models have opened up
new opportunities for generating realistic high-resolution
images, but effectively utilizing reference images within
these models remains an area for further exploration. Fur-
thermore, content fidelity is difficult to guarantee in areas
without relevant reference information. To solve these is-
sues, we propose a change-aware diffusion model named
Ref-Diff for RefSR, using the land cover change priors to
guide the denoising process explicitly. Specifically, we in-
ject the priors into the denoising model to improve the uti-
lization of reference information in unchanged areas and
regulate the reconstruction of semantically relevant content
in changed areas. With this powerful guidance, we decou-
ple the semantics-guided denoising and reference texture-
guided denoising processes to improve the model perfor-
mance. Extensive experiments demonstrate the superior
effectiveness and robustness of the proposed method com-
pared with state-of-the-art RefSR methods in both quanti-
tative and qualitative evaluations. The code and data are
available at https://github.com/dongrunmin/RefDiff.

1. Introduction

Spatiotemporal integrity of high-resolution remote sens-
ing images is crucial for fine-grained urban management,
long-time-series urban development study, disaster moni-
toring, and other remote sensing applications [6, 13, 49].
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Figure 1. Illustration of the proposed change-aware diffusion
model for RefSR. LR is a low-resolution image and HR is the
corresponding high-resolution image. Ref represents a geographi-
cally matched reference high-resolution image acquired at another
time.

However, due to limitations in remote sensing technolo-
gies and high hardware costs, we cannot simultaneously
achieve high temporal resolution and high spatial resolu-
tion images on a large scale [24, 47]. To tackle this is-
sue, reference-based super-resolution (RefSR) can lever-
age geography-paired high-resolution reference (Ref) im-
ages and low-resolution (LR) images to integrate fine spa-
tial content and high revisit frequency from different sen-
sors [7]. Although various RefSR methods achieve great
progress, two major challenges remain to be solved for this
scenario.

The first challenge is the land cover changes between
Ref and LR images. Unlike the natural image domain,
where Ref images are collected through image retrieval or
captured from different viewpoints, Ref and LR images in
remote sensing scenarios utilize geographic information to
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match the same location. Existing methods implicitly cap-
ture the land cover changes between LR and Ref images
by adaptive learning or attention-based transformers [4, 26].
However, the underuse or misuse problems of Ref informa-
tion still exist in these methods.

The second challenge is the large spatial resolution gaps
between remote sensing sensors (e.g., 8× to 16×). Existing
RefSR methods are usually based on the generative adver-
sarial network (GAN) and designed for a 4× scaling fac-
tor [51, 54]. They can hardly reconstruct and transfer the
details in the face of large-factor super-resolution. In re-
cent years, conditional diffusion models have demonstrated
greater effectiveness in image super-resolution and recon-
struction than GAN [11, 41]. A straightforward way to
boost RefSR is to use LR and Ref images as conditions for
the diffusion model. To effectively utilize the reference in-
formation, some methods [18, 38] inject Ref information
into the blocks of the denoising networks. However, they
implicitly model the relationship between LR and Ref im-
ages for denoising, leading to ambiguous usage of Ref in-
formation and content fidelity limitation.

To alleviate the above issues, we introduce land cover
change priors to improve the effectiveness of reference fea-
ture usage and the faithfulness of content reconstruction (as
shown in Figure 1). Benefiting from the development of
remote sensing change detection (CD), we can use off-the-
shelf CD methods to effectively capture land cover changes
between images of different spatial resolutions [22, 32, 52].
On the one hand, the land cover change priors enhance
the utilization of reference information in unchanged ar-
eas. On the other hand, the changed land cover classes
can guide the reconstruction of semantically relevant con-
tent in changed areas. Furthermore, according to the land
cover change priors, we can decouple the semantics-guided
denoising and reference texture-guided denoising in an iter-
ative way to improve the model performance. To illustrate
the effectiveness of the proposed method, we perform ex-
periments on two datasets using two large scaling factors.
Our method achieves state-of-the-art performance. In sum-
mary, our contributions are summarized as follows:

• We introduce the land cover change priors in RefSR
to improve the content fidelity of reconstruction in
changed areas and the effectiveness of texture trans-
fer in unchanged areas, building bridges across spatial
and temporal resolutions in remote sensing scenarios.

• We propose a novel RefSR method named Ref-Diff
that injects the land cover change priors into the condi-
tional diffusion model by the change-aware denoising
model, enhancing the model’s effectiveness in large-
factor super-resolution.

• Experimental results demonstrate that the proposed
method outperforms the existing SOTA RefSR meth-
ods in both quantitative and qualitative aspects.

2. Related Works

2.1. Reference-Based Super-Resolution Methods

Compared to single-image super-resolution (SISR), RefSR
shows great potential in alleviating ill-posed problems and
recovering realistic textures [1, 23]. Specifically, Jiang et
al. [14] propose a contrastive correspondence network
and a teacher-student correlation distillation method to ad-
dress the misalignment issues in the texture transfer and
resolution gaps between LR and Ref images. RRSR [48]
and AMSA [40] contribute to high-quality correspondence
matching. Besides, Huang et al. [12] decouple super-
resolution and texture transfer tasks to alleviate the issues
of the underuse and misuse of Ref images.

Owing to the pre-matching of LR and Ref images
through geo-locations, existing RefSR methods for remote
sensing images [4, 46] aim to transform relevant textures
and suppress the irrelevant information fusion. However,
their results contain apparent internal resolution inconsis-
tencies between changed and unchanged regions in large-
factor super-resolution. Because the details of changed re-
gions can hardly be reconstructed using GAN-based meth-
ods. Therefore, recent works adopt the diffusion model to
generate more realistic results [18]. For example, HSR-
Diff [38] applies the conditional diffusion model and uti-
lizes cross-attention as the conditioning mechanism to in-
corporate LR and Ref features into the denoising process,
improving the perceptual quality. However, limited by im-
plicit relationship modeling between LR and Ref images in
the denoising process, the difficulty of denoising and the
uncertainty of results are increased. In this work, we intro-
duce the land cover change priors and explicitly use them to
guide the denoising process.

2.2. Conditional Diffusion Model for Super-
Resolution

Benefiting from diffusion models, recent image super-
resolution techniques have witnessed significant progress
in terms of visual appeal and high-quality output. The ini-
tial works [17, 30] utilize LR images as the condition for
the diffusion processes to deal with the large-factor super-
resolution. To further improve the effectiveness of image
super-resolution, some works explore enhanced conditions
to guide the denoising process. For example, ResDiff [31]
and ACDMSR [27] use the CNN-enhanced LR prediction
as a condition to accelerate the generation process and ac-
quire superior sample quality. BlindSRSNF [39] and Dual-
Diffusion [42] combine degradation representations to the
condition of the diffusion model to achieve satisfactory re-
sults in real-world scenarios.

Except for simply combining those priors with the input
of the conditional diffusion model, recent works integrate
them into the denoising models [8, 34]. Wang et al. [35]

27685



RefLand cover change mask

Noise input

⨁

Upsample G
ro

up
N

or
m

Time t

LR

HR output 𝐹!

Change-aware 
encoder block

Change-aware 
decoder block

(a) Architecture of change-aware denoising model

(b) Change-aware encoder block

(c) Change-aware decoder block

G
ro

up
N

or
m

𝐹! Si
LU

Co
nv

G
ro

up
N

or
m

t

Mapping

w b

× + Si
LU

Co
nv +

M
ul

ti-
he

ad
 

A
tte

nt
io

n

𝐹!"#

Si
LU

Co
nv

G
ro

up
N

or
m

t

Mapping

w b

× + Si
LU

Co
nv +

M
ul

ti-
he

ad
 

A
tte

nt
io

n

𝐹!"#

Se
m

an
tic

s-
gu

id
ed

 S
FT

Mask

Re
f t

ex
tu

re
-

gu
id

ed
 S

FT

LR MaskRef

Conv
Timestep 

embedding mapping

⨁ Concat

Figure 2. The architecture of the proposed change-aware denoising model. It consists of change-aware encoder and decoder blocks. The
LR, Ref, and land cover change mask are combined with the noise input and are also injected into change-aware decoder blocks.

introduce the semantic layout to the decoder by multi-layer
spatially-adaptive normalization operators for semantic im-
age synthesis. PASD [45] and DiffBIR [20] adopt Control-
Net to introduce priors like the high-level information ex-
tracted from CLIP or the enhanced LR representation by
degradation removal. In this work, we explore the utiliza-
tion of the land cover change priors in RefSR. We inject
the priors into the denoising model, which decouples the
semantics-guided and reference texture-guided denoising.

2.3. Change Detection

With the development of change detection (CD) methods,
existing works can achieve up to 80% F1-score on different
land cover categories [25]. For practical applications, recent
CD models tend to be lightweight and can handle multi-
temporal images with different resolutions [22]. For exam-
ple, Zheng et al. [52] design a cross-resolution difference
learning to bridge the resolution gap between two temporal
images without resizing operations. Liu et al. [21] propose a
SISR-based change detection network with a stacked atten-
tion module, achieving above 83% F1-score in 8× resolu-
tion difference on the building CD task. These CD methods
show high confidence and plug-and-play abilities, which
can directly provide high-quality land cover change prior
information for this work.

3. Methodology
In this paper, we adopt the conditional diffusion model to
boost the effectiveness of RefSR methods in large scaling
factors. To enhance the fidelity of the generated content

and improve the effectiveness of the Ref image transfer, we
introduce land cover change priors. The architecture of the
proposed method is shown in Figure 2. We propose a novel
change-aware denoising model, injecting the Ref features
and the land cover change priors into the denoising blocks.
Leveraging the priors, we decouple the semantics-guided
denoising and reference texture-guided denoising processes
in the decoder, and cope with the two processes iteratively.

3.1. Preliminary

The conditional diffusion model extends the basic diffusion
model by incorporating conditions, including forward and
reverse diffusion processes. Karras et al. [15] unify different
diffusion models into the EDM framework. The training
objective of EDM is defined as:

Eσ,y,n[λ(σ)||D(y + n;σ)− y||22], (1)

where standard deviation σ controls the noise level, y is a
training image and n is noise. D(·) is a denoiser function.
λ(σ) is the loss weight.

To effectively train a neural network, the preconditioning
of EDM is defined as:

Dθ(x;σ) = cskip(σ)x + cout(σ)Fθ(cin(σ)x; cnoise(σ)), (2)

where x = y+n. Fθ(·) represents the neural network under-
going training. cskip adjusts the skip connection. cin and cout
scale the input and output magnitudes, respectively. cnoise is
used to map the noise level σ into a conditioning input for
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Fθ(·). In this work, the diffusion architecture follows the
formulations of the training objective, preconditioning, and
other implementations in EDM.

3.2. Change-Aware Denoising Model

This work aims to exploit the land cover change priors to
facilitate RefSR in large scaling factors for remote sens-
ing images. The proposed change-aware denoising model
is shown in Figure 2(a). Inspired by [28, 35], the land
cover change prior can be regarded as the semantic layout
of the changed areas between LR and Ref images for the
semantics-guided denoising. Meanwhile, the texture details
can be enhanced in the unchanged areas through reference
texture-guided denoising. As a result, the semantics-guided
denoising and reference texture-guided denoising processes
can be decoupled in the change-aware decoder (see Fig-
ure 2(c)), further improving the denoising results.
Land Cover Change Priors. Land cover change priors
used in this work are the pixel-level multi-category change
detection mask for each image pair, including a no-change
class and different land cover change classes. To fully un-
leash the potential of land cover priors in training, we use
the ground truth of the land cover change mask as the con-
dition. In real applications, change detection masks can
be generated by the off-the-shelf end-to-end change detec-
tion methods or two-stage land cover classification meth-
ods. As shown in Figure 2(a), the land cover change mask
is combined with the noise as input and also injected into
the change-aware decoder.
Change-Aware Encoder. To improve the computational
performance and avoid over-intervention of LR denoising,
the LR image, Ref image, and land cover change mask are
concatenated with the noisy image as the input to the en-
coder, instead of being injected into the encoder blocks as
in [38]. The architecture of the encoder is based on the
improved U-Net in [15] (see Figure 2(b)). Each change-
aware encoder block consists of group normalization, con-
volution, SiLU, and a multi-head attention module. Since
each timestep t corresponds to a certain noise level, we
map the timestep embedding into learnable weight w(t)
and bias b(t) to regulate the features. Multi-head attention
runs through the attention process multiple times in parallel,
each with its own set of learnable parameters [33].
Change-Aware Decoder. As shown in Figure 2(c), we in-
ject the features of land cover change masks and Ref images
into the change-aware decoder blocks. With the land cover
change priors, we decouple the semantics-guided denoising
in the changed areas and reference texture-guided denois-
ing in the unchanged areas. To tackle the mislabel problem
in the land cover change priors, we combine the land cover
change masks and LR images for the semantics-guided spa-
tial feature transform (SFT) module. Considering the no-
change class in land cover change mask can guide the uti-

lization of Ref texture, we combine the land cover change
masks and Ref images for the Ref texture-guided SFT mod-
ule. In this way, the denoising of changed and unchanged
areas can reinforce each other by an iterative solution. Con-
sidering the accuracy of predicting land cover change masks
through change detection methods is usually between 60%
to 80% in practical applications, we combine the guidance
features and denoising features for the learning of spatially
adaptive weight and bias, rather than only use the guidance
features like the original SFT [36] and SPADE [28, 35]. The
modified SFT module can be formulated as:

Fi+1 = γi(Fe ⊕ Fi) · Fi + βi(Fe ⊕ Fi), (3)

where Fi and Fi+1 are the input and output features of the
SFT module, respectively. γi(·), βi(·) are the spatially-
adaptive weight and bias learned from the combination of
the guidance features Fe obtained by the extractor and the
input features Fi, respectively.

3.3. Degradation Model and Implementation De-
tails

We adopt a comprehensive degradation to simulate LR im-
ages in real-world scenarios for training. According to off-
the-shelf blind super-resolution methods [9, 37] and the
characteristics of remote sensing sensors [5, 29], we adopt
isotropic Gaussian blur, anisotropic Gaussian blur, motion
blur, resize with different interpolation methods, additive
Gaussian noise, and JPEG compression noise to synthesis
LR images. The setting of degradation complexity is based
on the scaling factor. In the experiments, the degradation
model for 16× datasets is simpler than that for 8× datasets.

During training, each high-resolution (HR) image, Ref
image, and land cover change mask are randomly cropped
to a size of 256 × 256, and the size of the corresponding
LR image is associated with the scaling factors. The imple-
mentation of the diffusion model is according to [15]. We
utilize a dropout rate of 0.2. The batch size is set to 48. We
use the Adam optimizer with β1 = 0.9 and β2 = 0.999.
The learning rate is initialized as 1 × 10−4. The model is
updated for 500k iterations using 4 NVIDIA A800 GPUs.

4. Experiments
4.1. Datasets and Evaluation

SECOND Dataset. SECOND [44] is a semantic change
detection dataset with 7 land cover class annotations, in-
cluding non-vegetated ground surface, tree, low vegetation,
water, buildings, playgrounds, and unchanged areas. The
images are collected from different sensors and areas with
resolutions between 0.5 and 1 meters, guaranteeing style
diversity and scene diversity. In this work, we use 2,668
image pairs with a size of 512× 512 for training and 1,200
image pairs with a size of 256× 256 for testing.
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Figure 3. Comparison results on SECOND (a-c) and CNAM-CD (d-f) datasets with 8× and 16× scaling factors.
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Table 1. Quantitative comparison with different reference-based methods on two datasets, i.e., SECOND and CNAM-CD. Each dataset
is evaluated at two large scaling factors, i.e., 8× and 16×. Lower LPIPS and FID values indicate better results. Bold indicates the best
results.

Methods
SECOND CNAM-CD

8× 16× 8× 16×
LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓

TTSR [43] 0.3799 142.4030 0.4743 232.0805 0.4041 163.8194 0.4700 191.8991
WTRN [19] 0.5081 110.4582 0.8426 260.4063 0.4915 142.1856 0.8121 283.1182

C2-Matching [14] 0.3351 62.2991 0.4972 123.3611 0.3697 97.9389 0.5494 182.0406
AMSA [40] 0.3601 56.9689 0.5353 135.6814 0.3989 92.3733 0.5613 169.0448
DATSR [3] 0.3525 56.0531 0.5078 111.7564 0.3894 94.7989 0.5331 163.8926
EDM∗ [15] 0.2886 34.5802 0.3440 37.5573 0.3301 53.1511 0.3902 59.4250

HSR-Diff [38] 0.2689 45.4743 0.3437 51.1473 0.3045 67.2524 0.3771 68.1954
Ref-Diff (ours) 0.2642 32.5961 0.3433 33.9690 0.2791 43.0152 0.3519 45.6511

1 EDM∗ represents that the original method is modified for the RefSR task, which combines LR and Ref images with the noise input.

CNAM-CD Dataset. CNAM-CD [53] is a multi-class
change detection dataset with a resolution of 0.5 meter,
including 6 land cover classes, i.e., bare land, vegetation,
water, impervious surfaces (buildings, roads, parking lots,
squares, etc.), others (clouds, hard shadows, clutter, etc.),
and unchanged areas. The image pairs are collected from
Google Earth from 2013 to 2022. We use 2,258 image pairs
with a size of 512× 512 for training and 1,000 image pairs
with a size of 256× 256 for testing.
Evaluation. The performance of the proposed approach
and other competing methods on test datasets are assessed
with the learned perceptual image patch similarity (LPIPS)
and Fréchet inception distance (FID), which can better
quantify both fidelity and perceptual quality than PSNR and
SSIM [45]. LPIPS [50] is a full-reference metric designed
to capture the perceptual quality of images. It measures
the similarity between two images based on their perceptual
features obtained by a pre-trained deep network which is the
AlexNet model [16] in the experiments. FID [10] quantifies
the similarity between the distributions of features extracted
from a pre-trained Inception network for real and generated
images. Lower LPIPS and FID values imply better results.

4.2. Comparison Results

The proposed method is compared with existing GAN-
based and diffusion model-based RefSR methods on two
datasets with two large scaling factors (i.e., 8× and 16×).
The compared RefSR methods include five GAN-based
methods (i.e., TTSR [43], WTRN [19], C2-Matching [14],
AMSA [40], and DATSR [3]), and two diffusion model-
based RefSR methods (i.e., EDM∗ [15] and HSR-Diff [38]).
EDM∗ represents that the original method is modified for
the RefSR task, which combines LR and Ref images with
the noise input. For a fair comparison, the LR images are
synthesized by bicubic interpolation.

Table 1 shows the quantitative comparison results. Our

method achieves the best LPIPS and FID performance in
four sets of comparison experiments, demonstrating the ad-
vanced fidelity and perceptual quality of our results. Ac-
cording to the comparison results between GAN-based and
diffusion model-based RefSR methods, the latter shows
more powerful ability to bridge the resolution gap in large
scaling factors. Owing to the utilization of the land cover
changes priors, the proposed method performs consistently
better than the other two diffusion model-based RefSR
methods.

We further present the visual comparison in Figure 3.
Figure 3(a) shows an example with slight changes on the
SECOND 8× dataset. Our method can effectively transfer
the relevant textures from the Ref image to the LR image in
the unchanged areas, while the competing methods suffer
from artifacts or blurred results. In the meantime, the veg-
etation reconstruction results are more realistic than com-
parison results in the changed areas. Figure 3(b) further
demonstrates the effectiveness of vegetation reconstruction.
Figure 3(c) shows an example with dramatic changes on the
SECOND 16× dataset. The HR image contains a building
where the non-vegetated ground surface is in the Ref image.
The proposed method can guarantee the faithfulness of con-
tent reconstruction, while other methods cannot cope with
this challenging scenario.

Similarly, Figure 3(d) shows an example with slight
changes on the CNAM-CD 8× dataset. The texture of the
building in our results is more realistic than other results,
demonstrating the effectiveness of feature alignment and
texture transfer in our method. Figure 3(e) shows an exam-
ple with dramatic changes on the CNAM-CD 16× dataset.
Our method correctly reconstructs the road and vegetation
with the guidance of land cover change priors. The other
two diffusion model-based RefSR methods produce illusory
buildings and confusing layouts due to limited priors. Al-
though remaining content fidelity, the GAN-based RefSR
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Table 2. Ablation study of our method on SECOND 8× dataset. Lower LPIPS and FID values indicate better results.

LR Ref Land cover change mask Ref texture-guided Semantics-guided
LPIPS↓ FID↓condition condition condition SFT SFT

✓ 0.3115 41.8340
✓ ✓ 0.2886 34.5802
✓ ✓ ✓ 0.2785 34.0638
✓ ✓ ✓ ✓ 0.2709 33.7583
✓ ✓ ✓ ✓ 0.2723 33.6805
✓ ✓ ✓ ✓ ✓ 0.2642 32.5961

Table 3. Results using land cover change predictions.

Dataset Land cover change mask F1↑ Precision↑ Recall↑ LPIPS↓ FID↓

SECOND 8X GT - - - 0.2642 32.5961
Prediction 87.72 86.41 86.30 0.2657 33.1453

SECOND 16X GT - - - 0.3433 33.9690
Prediction 84.94 84.23 84.70 0.3404 35.0477

CNAM-CD 8X GT - - - 0.2791 43.0152
Prediction 87.11 87.47 85.81 0.3159 48.3315

CNAM-CD 16X GT - - - 0.3519 45.6511
Prediction 87.20 84.60 85.01 0.3889 56.7857

methods cannot reconstruct texture details, resulting in the
spatial resolution gap between super-resolution results and
HR images. Figure 3(f) also exhibits a dramatic change area
on the CNAM-CD 16× dataset. The results of our method
remain faithful to content reconstruction and can even re-
move the tree shadow in LR images.

In summary, the proposed method improves the content
fidelity of reconstruction in changed areas and the effec-
tiveness of texture transfer in unchanged areas, effectively
building bridges across spatial and temporal resolutions.

4.3. Ablation Study

We perform ablation study on the SECOND 8× dataset to
verify the effectiveness of the proposed method. In turn, we
add the LR image, Ref image, and land cover change mask
to the input of the conditional diffusion model. As shown
in Table 2, using the Ref condition can largely improve the
diffusion model ability in the super-resolution task, which
is a promising way to narrow the gap between spatial reso-
lutions in remote sensing scenarios. Taking the land cover
change mask as a condition can further enhance the results.
Still, the improvements are limited due to the simple com-
bination between the conditions and the noise input.

We further conduct three experiments to verify the ef-
fectiveness of the semantics-guided SFT module, the Ref
texture-guided SFT module, and the decoupled denoising
strategy which uses both SFT modules. The results in Ta-
ble 2 show that using either SFT module improves the de-
noising results because the guidance information further

modulates the features in the decoder. Besides, building
upon the two types of SFT modules, the decoupled denois-
ing strategy with the iterative semantics-guided denoising
and reference texture-guided denoising obtains the best re-
sults. Besides, we provide the ablation study of enhanced
spatial feature transform module and results of real scenar-
ios in the supplementary.

4.4. Experiments Using Land Cover Change Pre-
dictions

We conduct experiments to illustrate the impact of utilizing
predicted land cover change masks. Specifically, we train
change detection (CD) models based on ChangeFormer [2].
Combining a structured transformer encoder and an MLP
decode, ChangeFormer is an ideal plug-and-play CD net-
work for this work. Table 3 presents the quantitative com-
parison results using the prediction of land cover change
masks. Although the performance is reduced compared to
using ground truth (GT), our method still outperforms the
comparison methods (refer to Table 1). This reinforces the
effectiveness of using the proposed method in real scenar-
ios.

4.5. Discussion of the Interaction between RefSR
and CD Tasks

Ideally, accurate land cover change priors improve the con-
fidence of Ref texture transfer in unchanged areas and con-
tent generation in changed areas. However, in practical sce-
narios, the utilization of land cover change priors may in-
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Figure 4. The results for two examples with mislabeled land cover change masks on CNAM-CD 8× and 16× datasets. (a) shows an
example with false negative detection, and (b) shows an example with false positive detection.

troduce misleading information due to mislabeling issues or
prediction errors in CD tasks. Figure 4 illustrates two com-
mon CD errors, i.e., false negatives (FN) and false positives
(FP). The FN issue may lead to the introduction of false tex-
tures into the results, as depicted in Figure 4(a). Figure 4(b)
presents an example of the FP issue, where vegetated areas
are incorrectly labeled as impervious surfaces. The FP issue
also undermines our results. Therefore, the improvement of
CD accuracy will enhance the change-aware RefSR results.
Moreover, a fine-grained classification system of land cover
change will further facilitate the fidelity of content recon-
struction in RefSR.

On the other hand, this work demonstrates the poten-
tial of change-aware RefSR in synthesizing well-labeled
change detection data by semantic layout control and LR
image collection. Consequently, RefSR and CD tasks can
mutually reinforcement each other.

5. Conclusion
In this work, we propose a change-aware diffusion model
for reference-based remote sensing image super-resolution

to improve the faithfulness of content reconstruction and the
effectiveness of texture transfer in large scaling factors. We
inject the land cover change priors into the conditional dif-
fusion model to explicitly guide denoising. With this pow-
erful guidance, we decouple the semantic-guided denoising
process in changed areas and the reference texture-guided
denoising process in unchanged areas. We achieve the best
quantitative and qualitative over state of the arts. This work
also demonstrates the potential for mutual reinforcement
between RefSR and change detection tasks. In future work,
we will integrate change detection methods into the RefSR
framework to enhance practicability.
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