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Figure 1. (Left) Synthetic shapes generated by 3DS2VS [56], which present various issues in geometric feasibility and physical stability.
(Right) Synthetic shapes generated by GPLD3D, which have significantly improved geometric feasibility and physical stability.

Abstract

State-of-the-art man-made shape generative models usu-
ally adopt established generative models under a suitable
implicit shape representation. A common theme is to per-
form distribution alignment, which does not explicitly model
important shape priors. As a result, many synthetic shapes
are not connected. Other synthetic shapes present problems
of physical stability and geometric feasibility. This paper
introduces a novel latent diffusion shape-generative model
regularized by a quality checker that outputs a score of a la-
tent code. The scoring function employs a learned function
that provides a geometric feasibility score and a determinis-
tic procedure to quantify a physical stability score. The key
to our approach is a new diffusion procedure that combines

the discrete empirical data distribution and a continuous
distribution induced by the quality checker. We introduce
a principled approach to determine the tradeoff parameters
for learning the denoising network at different noise levels.
Experimental results show that our approach outperforms
state-of-the-art shape generations quantitatively and quali-
tatively on ShapeNet-v2.

1. Introduction

Thanks to recent advances in generative models such as
generative adversarial networks (GAN) [4, 16, 58, 61], vari-
ational auto-encoders (VAE) [22, 44], normalizing flows
(NF) [33, 53], autoregressive (AR) [52, 55], and denois-
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ing diffusion probabilistic models (DDPM) [39, 40], there
is growing interest in adopting these generative models in
the 3D domain by developing a suitable 3D representation,
for example, volumetric grid [50], point cloud [3, 53], trian-
gular mesh [24, 32], implicit representation [12, 28, 36, 36,
56]. However, a common theme of these generative models
is to match the empirical distribution defined by the training
data and the induced distribution derived from a prior distri-
bution of the latent space. These approaches do not explic-
itly model rich shape properties in the 3D domain that are
critical for downstream applications. Consider many state-
of-the-art shape generators that use implicit shape represen-
tations. Synthetic shapes often have disconnected pieces,
with additional issues of physical stability and geometric
feasibility.

A major issue with existing techniques is that they only
see the training instances, which are a very sparse set of
samples. However, they do not model the geometrical and
physical properties of synthetic instances. Such issues can-
not be easily addressed by developing suitable neural rep-
resentations. As man-made shapes have diverse topological
structures, enforcing these properties under representations
that can model varying topologies, e.g., implicit surfaces
and point clouds, remains extremely challenging.

In this paper, we introduce a novel approach, called
GPLD3D, which greatly enhances the geometrical feasi-
bility and physical stability of synthetic shapes. We em-
ploy the latent diffusion paradigm [12, 34, 36, 56], which
has proven to be a state-of-the-art shape-generative model.
Consider a pre-trained generative model that maps the latent
space to the shape space. Unlike training a diffusion model
that maps the Gaussian distribution of the latent space to
the empirical distribution defined by the latent codes of the
training shapes, we introduce a quality checker of latent
codes that defines a continuous regularized distribution of
the latent space. This quality checker integrates a learned
function that quantifies the geometric feasibility score of a
synthetic shape and the spectral properties of a stiffness ma-
trix that quantifies its physical stability score.

We show how to extend a state-of-the-art diffusion
framework EDM [20] to integrate the data distribution and
the quality checker for learning denoising networks. A key
contribution is a principled approach that determines the
trade-off parameters between loss terms of the data distri-
bution and the quality checker at different noise levels.

We have evaluated the performance of GPLD3D on
ShapeNet-v2 [6]. Experimental results show that GPLD3D
significantly outperforms state-of-the-art shape generators
on multiple metrics. We also present an ablation study to
justify the importance of incorporating the quality checker
and optimizing the hyperparameters of training losses.

2. Related Work
We discuss related work in four categories, that is, implicit
shape generators, diffusion techniques, geometric feasibil-

ity evaluation, and physical stability assessment.
Implicit Shape Generators. Implicit shape representa-
tions [5, 12, 36, 48, 56] achieve state-of-the-art perfor-
mance as they can generate objects with arbitrary topolo-
gies and infinite resolution. They originated from the MLP
architecture used in DeepSDF [28], OccNet [29] and IM-
Net [9]. Positional encoding [43] and periodic activation
functions [37] can capture geometric details better than
MLP applied directly to the coordinates.

However, a significant issue is that they cannot guaran-
tee desired shape properties. For example, many synthetic
shapes contain unrealistic geometric patterns that look dif-
ferent from training shapes. Moreover, some synthetic
shapes are not even connected. Even connected shapes have
thin hanging structures that are not physically stable. The
goal of GPLD3D is to address these issues by developing a
novel latent diffusion model.
Diffusion techniques. Diffusion models [39, 40] have out-
performed GANs in image generation [14] and have many
applications today. However, it is difficult to generate
high-quality 3D shapes using diffusion models due to the
fixed dimension constraint in the diffusion process. This
fixed dimension issue is addressed under the latent diffu-
sion approach [34] and the state-of-the-art shape genera-
tors [10, 12, 19, 36, 56, 59] mainly adopted this paradigm.
They utilize a pre-trained implicit shape decoder and per-
form latent space diffusion. However, despite the improved
visual appearances of synthetic 3D shapes both qualitatively
and quantitatively, fundamental issues in geometric feasibil-
ity and physical stability still need to be solved. This moti-
vates us to develop GPLD3D, which uses a scoring function
that evaluates the geometric feasibility and physical stabil-
ity of an arbitrary shape to regularize the diffusion proce-
dure.

Along another line, EDM [20] presents seminal re-
sults on determining the hyperparameters of the diffu-
sion model’s training and sampling procedures. The key
contributions of this paper are two bounds on the dif-
ferences between Jacobians of logarithmic probabilities.
The first considers the smoothed data distribution and the
smoothed ground-truth distribution. The second considers
the smoothed regularization distribution derived from the
quality checker and the smoothed ground-truth distribution.
These two bounds enable us to determine the tradeoff pa-
rameters among the loss terms at different noise levels.

GPLD3D is also relevant to classifier-guidance diffu-
sion, which was introduced in [14] and recently applied to
synthesizing human motions [21, 54]. However, these ap-
proaches require gradients between the classifier and the in-
put latent codes, which are not applicable in our setting. In
contrast, GPLD3D only requires a latent code score func-
tion. In addition, these approaches explore tradeoffs be-
tween diversity and quality during testing. On the contrary,
GPLD3D improves the training phase of the denoising net-
work by introducing regularization losses. These losses re-
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Figure 2. Overview of GPLD3D. It employs a quality checker that assesses the geometric feasibility and physical stability scores of
synthetic shapes. This quality checker guides the diffusion procedure to sample in regions of the latent space that correspond to shapes that
pass the quality checker and avoid regions that do not pass the quality checker. The backbone is 3DS2VS [56].

duce the variance of the learned denoising network to the
log-gradient of the underlying smoothed ground-truth dis-
tribution.
Geometric Feasibility Evaluation. Visual data quality
checking is a fundamental problem that has been studied ex-
tensively in the past [23, 26, 46, 47]. A standard approach
is to perform local statistics analysis. However, such ap-
proaches are only applicable to data corrupted by a specific
procedure. Recent approaches have taken the supervised
learning paradigm [1, 2], but typically train a classifier or
feature representation using class labels. Their performance
in classifying high- and low-quality instances in each class
is quite limited.

Another approach to distinguishing good and bad shapes
is to employ discriminators used in GANs [15, 49]. How-
ever, such discriminators label all synthetic shapes as nega-
tive instances. This is different from our setting because we
want to differentiate good and bad synthetic instances.

Our approach is conducted in a supervised learning man-
ner. We find that learning to classify good and bad shapes
based on class labels does not generalize well. On the con-
trary, our approach asks users to label good and bad syn-
thetic shapes and learn a shape classifier to predict the qual-
ity of a synthetic shape. An interesting observation is that
the classifier learned from synthetic shapes of one shape
generator generalizes well to classifying synthetic shapes
of other shape generators.
Physical Stability Assessment. Quantifying the physi-
cal stability of a 3D shape has been studied extensively in
the computer graphics literature [41]. Many of these ap-
proaches [42, 60] focus on 3D printing applications. A com-
mon approach is to employ linear elasticity, which relates
the displacement field and the external force field. [60] in-

troduces a linear programming formulation that maximizes
the objective function based on the stress field with respect
to the external field in the worst case. However, performing
this type of analysis is still time-consuming.

We find that the eigenvalues of the stiffness matrix are
sufficient to determine the worst-case stress score of [60].
Therefore, we use MLPs that takes the eigenvalues of this
matrix as input and outputs the predicted worst-case stress
score. Experimental results show that this approach gener-
alizes well to novel instances.

3. Problem Statement and Approach Overview
This section presents the problem statement and an
overview of GPLD3D.

3.1. Problem Statement
The input to GPLD3D is a shape collection S =
{S1, · · · , Sn} ⊂ S and a pre-trained decoder [56] gϕ :
Z := Rd → S that maps a latent code z to some 3D model
gϕ(z). Denote by zi the latent code of Si in this pretrained
decoder. Our goal is to train a diffusion model Dθ : Z → Z
that satisfies two desired properties:
• The induced distribution Dθ(Nd) from the Gaussian dis-

tribution Nd aligns with the empirical distribution {zi}.
• When sampling z ∼ Dθ(Nd), gϕ(z) is physically stable

and geometrically feasible.

3.2. Approach Overview
The key idea of GPLD3D is to develop a quality checker
qψ(gϕ(z)) : Z → [0, 1] that evaluates the physical stabil-
ity and geometric feasibility score of any synthetic shape
gϕ(z). We then introduce a diffusion procedure that inte-
grates the training instances and the quality checker. In the
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following, we highlight the main components of GPLD3D.
Section 4 to Section 5 provide technical details.
Regularized latent diffusion. We introduce a regularized
diffusion procedure that can integrate a quality checker in
synthetic shapes. The key idea is to convert a quality
checker into a regularization distribution. GPLD3D is based
on a state-of-the-art diffusion framework [34], which repa-
rameterizes the denoising network that matches the loga-
rithmic probability gradients of the smoothed data distribu-
tions. Key contributions of GPLD3D are two bounds on
differences between gradients of log-probabilities. The first
considers the smoothed data distribution. The second con-
siders the smoothed regularization distribution. These two
bounds are used to determine the trade-off parameters of the
loss terms that involve the data distribution and the regular-
ization distribution at multiple noise levels. After training,
the sampling procedure follows [56].
Quality check definition. GPLD3D employs a physical
stability checker and a geometric feasibility checker. The
physical stability checker is based on static analysis. Un-
like performing static analysis for each new shape, we learn
MLPs that takes the eigenvalues of a stiffness matrix and
predicts its physical stability score. This network is trained
on example shapes whose stability scores are derived from
worst-case structural analysis. Regarding the geometric fea-
sibility checker, we learn a classifier that predicts the qual-
ity of a synthetic shape. Training data are generated from
labeled synthetic shapes of a shape generator.

4. Regularized Latent Diffusion
We begin by reviewing the standard diffusion framework
in Section 4.1. We then present our regularized diffusion
framework in Section 4.2.

4.1. Diffusion Review
The content of this section follows the state-of-the-art de-
sign space of diffusion models in EDM [20], and we re-
fer to it for more details. Denote pdata = {z1, · · · , zn} as
the empirical distribution defined by the latent codes of the
training shapes. The aim of EDM is to learn a diffusion pro-
cedure that converts the Gaussian distribution of the latent
space into the empirical distribution defined by p. This is
achieved by learning a denoising network Dθ(z;σ) where
σ denotes the noise level. A good practice is to reparame-
terize Dθ in the following form:

Dθ(z;σ) = cskip(σ)z + cout(σ)Fθ(cin(σ)z; cnoise(σ)) (1)

where Fθ is a neural network to be trained, cskip(σ)
modulates the skip-connection in the network, cin(σ) and
cout(σ) scale the input and output magnitudes, and cnoise(σ)
maps noise level σ into a conditioning input for Fθ.
Under this parameterization, the standard training loss
Eσ,x,nλ(σ)∥Dθ(x + n;σ) − x∥2, where σ ∼ ptrain, x ∼
pdata, n ∼ N (0;σ2I), λ(σ) is the weight of σ, corresponds

to the following loss for Fθ:

E
σ,x,n

(
λ(σ)cout(σ)

2∥Fθ
(
cin(σ)(x+ n); cnoise(σ)

)
− 1

cout(σ)

(
x− cskip(σ)(x+ n)

)
∥2
)

(2)

EDM described a systematic way to set the hyper-
parameters cin(σ), cout(σ), cskip(σ), and λ(σ). In addition,
EDM [20] set cnoise(σ) =

1
4 log(σ).

After training Fθ, one can use the resulting D(x;σ) to
progressively decode random noise into a latent code that
follows the underlying distribution of pdata.

One issue with the above diffusion procedure is that it
only uses pdata during training, which does not consider the
geometric and physical properties of synthetic shapes that
correspond to other latent codes. This motivates us to study
regularized diffusion.

4.2. Regularized Diffusion
Regularized diffusion uses a quality checker (q ◦ gϕ)(z) to
improve the quality of Dθ(z;σ). The key idea is first to con-
vert (q ◦ gϕ)(z) into a continuous density function preg(z)
from which samples can be easily drawn. To do this, we
simply set preg = q ◦ gϕ. In Section 5, we describe how to
define (q ◦ gϕ) and introduce a data structure that quickly
evaluates preg(z).

Given preg, we redefine the training loss on Fθ as

min
θ

E
σ

∑
t∈{data,reg}

ft(θ;σ) (3)

ft(θ;σ) := E
n

E
z∼pt

λt(σ)∥Dθ(z + n;σ)− z∥2. (4)

where ft(θ) in (4) uses the reparameterization in (2). Be-
sides λdata(σ) and λreg(σ), λin(σ), λout(θ), and λskip(θ), and
λnoise(θ) are shared between fdata(θ) and freg(θ).

Similarly to (2), the hyperparameters dictate the behav-
ior of (3). The key difference between (3) and (2) is that we
now have a continuous preg in addition to the discrete pdata.
Therefore, a key task is to determine the relative ratio be-
tween λdata(σ) and λreg(σ). To this end, let us begin by un-
derstanding the trade-offs between preg and pdata in light of
the underlying continuous ground truth distribution pgt . In-
troduce three smoothed distributions: ∀t ∈ {data, reg, gt},

pt(z;σ) := P (z + n|z ∼ pt),n ∼ N (0;σ2I).

Based on EDM [20] (Eqs(2,3)), minimizing each ft(θ;σ)
in isolation leads to

∇z log pt(z;σ) =
Dθ(z;σ)− z

σ2
, ∀t ∈ {data, reg}. (5)

Therefore, we can determine the relative ratio between
λdata(σ) and λreg(σ) based on the variances

Vt(σ) = E
z∼pt

∥∇z log pgt(z;σ)−∇z log pt(z;σ)∥2.
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It is easy to see that Vdata(σ) is small for large σ. How-
ever, due to the discrete natural of pdata, Vdata(σ) is large for
small σ. The following theorem quantifies this intuition.

Theorem 1 (Informal) Asymptotically,

Vdata(σ) = O(
1

σ4
). (6)

Proof: See Appendix A.
The following theorem quantifies Vreg(σ) in the small

regime of σ, where Vdata(σ) is large.

Theorem 2 (Informal) For small σ, we have

Vreg(σ) = E
z∼preg

(
O(∥

∇zpreg(z)

preg(z)
− ∇zpgt(z)

pgt(z)
∥)+O(σ)

)2

(7)
where the constants in both O(·) only depend on pgt(z).

Proof: See Appendix B.
The difference between preg and pdata is that the range

of preg is between 0 and 1. However, we observe that
preg/pgt is a smooth function. Therefore, the value of
∥∇zpreg(z)/preg(z) − ∇zpgt(z)/pgt(z)∥ is small. This
means in the small σ regime, Vreg(σ) ≪ Vdata(σ)

Our goal is to balance the variances of the data term
and the regularization term, that is, λdata(σ)Vdata(σ) =
λreg(σ)Vreg(σ). Applying (6) and (7), we set

λreg(σ)

λdata(σ)
=

Vdata(σ)

Vreg(σ)
=

cratio

σ4(coff + σ)2
. (8)

Even (7) is only valid in the small σ regime, we find that (8)
works for large σ as λdata(σ) ≫ λreg(σ) in this regime.

We proceed to determine the absolute values of λdata(σ),
λreg(σ), cout(σ), c∈(σ), and cskip(σ) for different σ. To this
end, we apply four modified principles of EDM [20]. They
are 1) the variance of the weighted inputs for Fθ is 1, 2)
the variance of the weighted fitting targets for Fθ is 1, 3)
cskip(σ) = argmincskip(σ) cout(σ), and 4) balancing the de-
noising network at different σ. Due to space constraints, we
defer the derivations to Appendix C and present the results
below:

λdata(σ) :=
σ2

data + σ2 +
cratio(σ

2
reg+σ

2)

σ4(coff+σ)2(
σ2

data +
cratioσ2

reg

σ4(coff+σ)2

)(
σ2 + cratio

σ2(coff+σ)2

) ,
λreg(σ) :=

cratio

σ4(coff + σ)2
λdata(σ),

Figure 3. Visualization of t-SNE embeddings for features of 7
common categories. Classifiers trained to predict class labels can-
not distinguish between high-quality and low-quality shapes.

cin(σ) :=
1√

σ2
data + σ2 +

cratio(σ2
reg+σ

2)

σ4(coff+σ)2

cout(σ) :=

√√√√√(
σ2

data +
cratioσ2

reg

σ4(coff+σ)2

)(
σ2 + cratio

σ2(coff+σ)2

)
σ2

data + σ2 +
cratio(σ2

reg+σ
2)

σ4(coff+σ)2

cskip(σ) :=
σ2

data +
cratioσ

2
reg

σ4(coff+σ)2

σ2
data +

cratioσ2
reg

σ4(coff+σ)2
+ σ2 + cratio

σ2(coff+σ)2

.

The same as EDM [20], we set cnoise(σ) =
1
4 log(σ). Note

that when cratio = 0, the hyperparameters λdata(σ), cin(σ),
cout(σ), and cskip(σ) above recover those from EDM.

5. Quality Check Function
This section introduces the quality check function
qψ(S), S ∈ S. We define qψ(S) = αq

ψg
g (S) + (1 −

α)q
ψp
p (S) as the combination of a geometric feasibility

score q
ψg
g (S) (Section 5.1) and a physical stability score

q
ψp
p (S) (Section 5.2). Section 5.3 describes how to com-

pute (qψ ◦ gϕ)(z) for regularized diffusion.

5.1. Geometric Feasibility Score

We develop a neural network q
ψg
g (S) to predict the qual-

ity of a 3D shape S ∈ S. The network employs a variant
of PointNet++ [30] and takes a point cloud representation
(surfels that combine positions and normals) of S as input
and outputs a quality score.

The fundamental challenge is how to train q
ψg
g (S). An

approach is to train q
ψg
g to predict class labels, e.g., those

of ShapeNetCore55. When evaluating synthetic shapes of a
generator, the hope is that for a high-quality shape, the clas-
sifier will output a peaked distribution at the corresponding
class. In contrast, for a low-quality shape, the predicted
class distribution is more uniform. However, we find that
this approach does not work in practice. For state-of-the-
art shape generators [56], the pre-trained classifier always
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Figure 4. (Left) The trained shape quality predictor can generalize
to novel classes generated by Shap-e [19]. (Right) The predic-
tor generalizes well to synthetic shapes from other shape genera-
tors [18, 55, 59]. The predict scores are listed below each shape.

outputs peaked distributions for both high-quality and low-
quality synthetic shapes (see Figure 3).

Therefore, we propose asking users to label synthetic
shapes. To do this, we use synthetic shapes of [12, 28, 36,
56] in ShapeNetCore55 and ask users to annotate high- and
low-quality instances. We train a shape classifier so that
one branch predicts a label of each synthetic shape in 55
classes, and another branch predicts object quality, i.e., a
high-quality class and a low-quality class for each object
class. We find that the patterns that differentiate good and
bad instances are small- to middle-scale features. More-
over, these patterns are shared between different generative
models that share similar implicit representations. There-
fore, we are able to learn a universal shape quality checker
from synthetic shapes from a modest set of generative mod-
els and object classes. As shown in Figure 4, the learned
shape quality predictor generalizes well to unseen object
categories and synthetic shapes generated by other shape
generators [18, 55, 59]. In both settings, the classifier is
highly correlated with human evaluations (see Appendix D
for more details).

5.2. Physical Stability Score

Our starting point is the worst-case structural analysis
framework (WCSA) described in [60], which measures the
stability of a 3D shape with respect to the stress field derived
from the worst-case external force field. Specifically, given
an implicit shape S, WCSA first converts it into a volumet-
ric mesh M = (V, E). Using the linear elastic framework,
WCSA expresses the displacement field as a linear map-
ping of the external force field. When the external force
field is fixed, we can define a stress score as a function of
the stress field, which is a linear function of the displace-
ment field gradient. WCSA then solves a linear program to
obtain the stress score with respect to the worst-case exter-
nal force field. However, WCSA is too expensive to apply
on large-scale shape collections.

In our experiments, we find that while the external force
field in the worst case is difficult to predict, the stability
score is strongly correlated with the eigenvalues of the stiff-
ness matrix K(S). For example, S is disconnected if and

Figure 5. Visualization of synthetic shapes and their physical sta-
bility scores. The network generalizes to new shapes and object
classes, where we list the simulated score (blue) and the predicted
score (red) below each synthetic shape.

only if the seventh eigenvalue of K(S) is zero. Therefore,
we use a two-layer MLP that takes the eigenvalues of K(S)
as input to predict the stress score ssta(S) (the higher the
more unstable). The network is trained from 6000 shapes
with paired eigenvalues and WCSA results. We then define
q
ψp
p (S) = ssta(S))/(σ + ssta(S)), where σ is taken as the

quartile of the stress scores of the training shapes.
As shown in Figure 5, the trained network is well gener-

alized to new shapes and object classes.

5.3. Scoring Function Approximation

When using the scoring function qψ(S) defined in Section 5
to train the diffusion model, it requires decoding each latent
z into a 3D shape for evaluation. To address this compu-
tational issue, we introduce an approach that approximates
(qψ ◦ gϕ)(z) from samples of latent codes and their asso-
ciated scores. As this is not the main contribution of this
paper. We defer the technical details to the supp. material.

6. Experimental Results
We begin by introducing the experimental setup in Sec-
tion 6.1. We then describe the experimental results and
baseline comparisons in Section 6.2, Finally, Section 6.3
presents an ablation study.

6.1. Experimental Setup

Dataset. We perform an experimental evaluation on
ShapeNet-v2 [6], which evaluated all baseline approaches.
Figure 6 and Table 1 present qualitative and quantita-
tive results, respectively. Similar to 3DILG [55] and
3DShape2VecSet [56], we report the results on 7 popular
categories, i.e., table, car, chair, airplane, sofa, rifle, lamp.
We also report the average results for all 55 categories.
Baseline approaches. We compare GPLD3D with four
top performing baseline approaches, that is, 3DS2VS
(3DShape2VecSet) [56], 3DILG [55], NW [18], and
LAS [59]. In particular, 3DS2VS is our backbone, which
corresponds to GPLD3D without enforcing quality checks.
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Figure 6. Category-conditional generation between GPLD3D and baselines. We find similar shapes of each method using OpenShape [25].

Metric chair table airplane sofa rifle lamp car all categories
FPD↓ KPD↓ FPD↓ KPD↓ FPD↓ KPD↓ FPD↓ KPD↓ FPD↓ KPD↓ FPD↓ KPD↓ FPD↓ KPD↓ FPD↓ KPD↓

3DS2VS [56] 0.63 0.48 0.49 0.35 0.35 0.38 0.58 0.41 0.67 0.68 0.87 0.51 0.52 0.32 0.67 0.60
LAS [59] 1.07 1.30 0.85 1.07 0.72 0.73 - - 1.23 1.37 - - 1.22 0.96 - -
NW [18] 1.24 1.43 1.19 1.23 0.53 0.44 - - - - - - - - - -

3DILG [55] 1.49 1.62 2.37 3.40 0.82 0.75 2.28 3.45 1.47 2.23 2.45 2.87 1.57 2.18 2.35 3.37
GPLD3D 0.53 0.32 0.43 0.25 0.31 0.24 0.53 0.28 0.59 0.44 0.81 0.27 0.48 0.25 0.56 0.41

Table 1. Quantitative comparisons between GPLD3D and baseline approaches under two metrics for evaluating shape generation results,
i.e., FPD and KPD(×10−3 ). The sign ‘-’ means the method does not release models trained on these categories.

The other baselines employ volumetric, octree, and implicit
shape representations for shape generation.
Evaluation metrics. We employ four metrics for quantita-
tive evaluations. The primary metrics are the Fréchet Point-
Net ++ Distance (FPD) and the Kernel PointNet ++ Dis-
tance (KPD) following [56]. Specifically, FPD and KPD
is evaluated using the global feature embedding defined by
the pre-trained shape category and quality classifier. In Ap-
pendix D, we show that this FPD score correlates with hu-
man evaluations much stronger than alternative FPD scores.
The third metric, PSS, reports the mean physical stability
score qψp

p (S) among all synthetic shapes S. The fourth met-
ric, PDS reports the percentage of synthetic shapes that are
disconnected.

6.2. Analysis of Results

As shown in Figure 6, GPLD3D outperforms all base-
line approaches in terms of visual appearance, geometric
shapes, and structural feasibility. First, baseline approaches
present disconnected synthetic shapes. This issue is sig-
nificantly improved in GPLD3D. Moreover, baseline ap-
proaches present shapes that are not structurally meaningful
which is also improved in GPLD3D. The synthetic shapes
of GPLD3D are visually more appealing than the base-
line approaches. All these results show the effectiveness
of GPLD3D.

As shown in Table 1, GPLD3D outperforms baseline ap-
proaches in FPD / KPD scores. Specifically, the reductions
from the highest performing baseline 3DS2VS are 16.5% /

31.7%. The reductions in the seven categories range from
7.7% / 21.9% (car) to 15.9% / 33.3% (chair), demonstrating
the consistency of the improvements. The improvements in
categories with complex geometrical and topological struc-
tures (chair and table) are greater than the improvements in
categories with relatively simple topological structures (air-
plane, sofa and car). This behavior is expected because the
quality checker is most effective on shapes with complex
geometric, physical, and topological structures.

As shown in Table 2, GPLD3D outperforms the top base-
line 3DS2VS by 13.1% and 24.5% in PSS and PDS across
chair, table, airplane, and sofa. Among these, the improve-
ments in PSS / PDS range from 9.9% / 13.1% to 23.9% /
36.6%. These numbers again show the effectiveness of the
quality checker. Moreover, they indicate that interpolations
induced by current generative models do not generalize well
in structural shape properties.

As shown in Table 2, the PSS score of the training shapes
is 0.829. This is because many input shapes have thin struc-
tures. In this sense, GPLD3D reduces the gap between the
mean PSS score of 3DS2VS synthetic shapes from that of
training shapes by 38.6%.

6.3. Ablation Study

No physical stability checking. We first study the effects
of removing the physical stability checker. As shown in
Table 2, the FPD score remains similar in all categories,
showing that enforcing the geometric feasibility checker is
sufficient to improve the geometric feasibility of the gener-
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Metric chair table airplane sofa mean
FPD↓ PSS↑ PDS↑ FPD↓ PSS↑ PDS↑ FPD↓ PSS↑ PDS↑ FPD↓ PSS↑ PDS↑ FPD↓ PSS↑ PDS↑

3DS2VS [56] 0.63 0.681 0.818 0.49 0.718 0.840 0.35 0.727 0.835 0.58 0.837 0.918 0.51 0.741 0.853
w/o Phy 0.56 0.699 0.832 0.44 0.729 0.851 0.31 0.738 0.845 0.55 0.852 0.922 0.46 0.755 0.862
w/o Geo 0.58 0.708 0.856 0.47 0.737 0.862 0.32 0.750 0.870 0.57 0.863 0.940 0.48 0.765 0.882

w/o HP-Opt 0.55 0.711 0.844 0.45 0.734 0.853 0.33 0.751 0.852 0.54 0.859 0.936 0.47 0.763 0.871
Full Model 0.53 0.723 0.859 0.43 0.746 0.870 0.31 0.758 0.879 0.53 0.876 0.948 0.45 0.775 0.889

Training - 0.812 - - 0.814 - - 0.791 - - 0.901 - - 0.829 -

Table 2. Comparing our full model with 3DS2VS [56] and various ablated cases. Evaluation metrics include FPD, PSS and PSD.

ated shapes. However, adding a physical stability checker
does not hurt geometric feasibility.

The two physical stability scores, PSS and PDS, drop in
this case, that is, by 8.9% and 24.3%, respectively. This
shows that simply checking geometric feasibility, which is
based on the analysis of patterns of geometric features, is
insufficient to enforce physical stability that involves global
structural properties.

Compared to 3DS2VS, which does not enforce any qual-
ity check, enforcing the geometric feasibility check im-
proves the two metrics that are relevant to physical stability,
i.e., by 5.4% and 6.1% in PSS and PDS, respectively. This is
expected, as many geometrically infeasible shapes are also
physically unstable. Examples include shapes with discon-
nected components and thin and unrealistic structures.
No geometric feasibility checker. Next, we study the ef-
fects of dropping the geometric feasibility checker. In this
case, the FPD score drops considerably (that is, by 6.7%
on average) across four categories, showing that simply en-
forcing the physical stability checker is insufficient to im-
prove the geometric feasibility of generated shapes. This is
expected because the physical stability checker, which as-
sesses global structural properties, does not consider local
geometric features.

The two physical stability scores, PSS and PDS, drop
slightly, i.e., by 4.3% and 5.9%, respectively. This shows
that adding the geometric feasibility checker does not com-
pete with improving the physical stability. We can under-
stand this behavior because the percentage of physically sta-
ble but geometrically infeasible shapes is relatively small.

Compared to 3DS2VS, which does not enforce qual-
ity checks, the physical stability checker improves FPD
by 5.9%. An explanation is that many physically unstable
shapes are also geometrically infeasible. Examples include
disconnected shapes and shapes with thin structures.
No hyper-parameter optimization. We study the effects
of other ways of setting λdata(σ) and λreg(σ). One way is to
set λdata =

1
σ2 as in prior work [27, 38, 40] and let λreg(σ) =

cratio
σ2 , so that the regularization distribution is treated the

same as the data distribution. Although in this case all
metrics are still better than without the involvement of the
quality checker, there are salient gaps from our approach of
setting hyperparameters. Specfically, hyper-parameter opti-
mization accounts for 30% of improvements in FPD/KPD
and PSS from without using the qualify checker. These re-
sults show the importance of our approach in derive hyper-

parameters from the analysis in Theorem 1 and Theorem 2.

7. Limitations
One limitation of GPLD3D is that it cannot guarantee
the geometric feasibility and physical stability of synthetic
shapes. One reason is that, when learning the diffusion
model, the training procedure only sees a few million la-
tent codes. Although this number is significantly more than
the number of training shapes, it is still sparse in the high-
dimensional latent space. One way to address this issue is
to study how to develop local approximations of the quality
checker and integrate information provided by such local
approximations into the diffusion procedure.

Another limitation is that the quality of the decoder still
limits its performance. It requires that the reconstruction er-
rors of the testing shapes be small. An interesting question
is how to improve the quality of the decoder by installing
geometric and physical priors. This allows us to reduce the
latent dimension, improve the latent distribution of training
shapes, and consequently enhances the efficiency and gen-
eralization of training the diffusion model.

8. Conclusions and Future Work
This paper has introduced GPLD3D, a novel latent diffusion
model for the generation of 3D shapes. GPLD3D incorpo-
rates a quality checker that assesses the geometric feasibil-
ity and physical stability of a synthetic shape in the diffusion
procedure. We introduce a principled approach to determine
the tradeoff parameters between the loss terms of the train-
ing data and the quality checker at multiple noise levels.
The experimental results show that GPLD3D outperforms
the baseline approaches in ShapeNet-v2.

Our work opens many avenues for future research. On
the quality checker side, it is interesting to incorporate other
priors, e.g., topological, part, and semantic priors. When
defining physical stability, we can also explore using physi-
cal engines to perform physical simulations and evaluate the
affordance via humans. We also want to extend GPLD3D
for the generation of 3D scenes. On the theoretical side,
it is exciting to quantify the behavior of (6) and (7) at ex-
treme values of σ. These results will help to determine bet-
ter trade-off parameters for very small and very large σ. Fi-
nally, while an advantage of GPLD3D is that it does not use
quality checker gradients, it would be interesting to see how
to integrate the gradients into the diffusion procedure.
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[23] Guillaume Lavoué. A multiscale metric for 3d mesh vi-
sual quality assessment. In Computer graphics forum, pages
1427–1437. Wiley Online Library, 2011. 3

[24] Or Litany, Alexander M. Bronstein, Michael M. Bronstein,
and Ameesh Makadia. Deformable shape completion with
graph convolutional autoencoders. In 2018 IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018, pages

64



1886–1895. Computer Vision Foundation / IEEE Computer
Society, 2018. 2

[25] Minghua Liu, Ruoxi Shi, Kaiming Kuang, Yinhao Zhu, Xu-
anlin Li, Shizhong Han, Hong Cai, Fatih Porikli, and Hao
Su. Openshape: Scaling up 3d shape representation towards
open-world understanding, 2023. 7

[26] Anish Mittal, Rajiv Soundararajan, and Alan C. Bovik. Mak-
ing a ”completely blind” image quality analyzer. IEEE Sig-
nal Process. Lett., 20(3):209–212, 2013. 3

[27] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In Proceedings
of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, pages 8162–
8171. PMLR, 2021. 8

[28] Jeong Joon Park, Peter R. Florence, Julian Straub,
Richard A. Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape rep-
resentation. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, pages 165–174. Computer Vision Foun-
dation / IEEE, 2019. 2, 6

[29] Songyou Peng, Michael Niemeyer, Lars M. Mescheder,
Marc Pollefeys, and Andreas Geiger. Convolutional occu-
pancy networks. In Computer Vision - ECCV 2020 - 16th
European Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part III, pages 523–540. Springer, 2020. 2

[30] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J.
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 5099–5108, 2017. 5

[31] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 15

[32] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and
Michael J. Black. Generating 3D faces using convolutional
mesh autoencoders. In European Conference on Computer
Vision (ECCV), pages 725–741, 2018. 2

[33] Danilo Jimenez Rezende and Shakir Mohamed. Variational
inference with normalizing flows. In Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015, pages 1530–1538. JMLR.org,
2015. 1

[34] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2022,
New Orleans, LA, USA, June 18-24, 2022, pages 10674–
10685. IEEE, 2022. 2, 4

[35] Philip Sedgwick. Pearson’s correlation coefficient. Bmj, 345,
2012. 14

[36] J. Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner,
Jiajun Wu, and Gordon Wetzstein. 3d neural field generation
using triplane diffusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 20875–20886, 2023. 2, 6

[37] Vincent Sitzmann, Julien N. P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. In
Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, Red
Hook, NY, USA, 2020. Curran Associates Inc. 2

[38] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In 9th International Con-
ference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. 8

[39] Yang Song and Stefano Ermon. Generative modeling
by estimating gradients of the data distribution. In Ad-
vances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 11895–11907, 2019. 2

[40] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021. 2, 8

[41] Tommaso Sorgente, Silvia Biasotti, Gianmarco Manzini, and
Michela Spagnuolo. A survey of indicators for mesh quality
assessment. In Computer Graphics Forum, pages 461–483.
Wiley Online Library, 2023. 3

[42] Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and
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