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Abstract

Parameter-efficient fine-tuning for pre-trained Vision
Transformers aims to adeptly tailor a model to downstream
tasks by learning a minimal set of new adaptation param-
eters while preserving the frozen majority of pre-trained
parameters. Striking a balance between retaining the gen-
eralizable representation capacity of the pre-trained model
and acquiring task-specific features poses a key challenge.
Currently, there is a lack of focus on guiding this delicate
trade-off. In this study, we approach the problem from the
perspective of Singular Value Decomposition (SVD) of pre-
trained parameter matrices, providing insights into the tun-
ing dynamics of existing methods. Building upon this under-
standing, we propose a Residual-based Low-Rank Rescal-
ing (RLRR) fine-tuning strategy. This strategy not only en-
hances flexibility in parameter tuning but also ensures that
new parameters do not deviate excessively from the pre-
trained model through a residual design. Extensive exper-
iments demonstrate that our method achieves competitive
performance across various downstream image classifica-
tion tasks, all while maintaining comparable new param-
eters. We believe this work takes a step forward in offer-
ing a unified perspective for interpreting existing methods
and serves as motivation for the development of new ap-
proaches that move closer to effectively considering the cru-
cial trade-off mentioned above. Our code is available at
https://github.com/zstarN70/RLRR.git.

1. Introduction

In response to the remarkable capabilities demonstrated by
large pre-trained models, the paradigm in computer vision
and natural language processing has shifted from train-
ing task-specific models to fine-tuning a shared pre-trained
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model [5, 19]. Within this trajectory, Parameter-Efficient
Fine-Tuning (PEFT) has emerged as an active research area,
seeking to adeptly tailor a model to downstream tasks by
learning a minimal set of new adaptation parameters while
keeping the majority of pre-trained parameters frozen.

The central challenge of PEFT lies in efficiently adapt-
ing the pre-trained model to downstream tasks without com-
promising its generalization capacity. Existing work [8, 9,
12, 17] has predominantly focused on the efficient adap-
tation aspect of PEFT, devising various strategies to ad-
just pre-trained model parameters. However, less attention
has been given to the crucial task of striking a balance be-
tween preserving the pre-trained model’s capacity and en-
abling effective task adaptation. We believe that the pre-
trained model inherently possesses robust generalization ca-
pabilities, and the phenomenon of prevalent low-rank strate-
gies [4, 9, 13, 17] surpassing full fine-tuning corroborates
the existence of significant redundancy within the parame-
ter matrix tuning process. In this work, our aim is to take
a step forward and explore how to achieve a better trade-
off, offering a unified perspective to comprehend this criti-
cal balance.

We approach the analysis by viewing each pre-trained
parameter matrix through the lens of Singular Value De-
composition (SVD), breaking down the raw matrix into
a series of terms. Each term is the product of a left-
singular column vector, a right-singular row vector, and
a corresponding singular value. We then examine main-
stream PEFT strategies such as adaptation-based meth-
ods [8], LoRA [9], prompt-tuning [12], scaling and shift-
ing [17], using this framework. This perspective enhances
our understanding of these methods, shedding light on how
they tune parameters toward downstream tasks and the ex-
tent of their tuning.

Building on this analysis, we propose a low-rank
rescaled fine-tuning strategy with a residual design. Our
fine-tuning is formulated as a combination of a frozen ma-
trix and a low-rank-based rescaling and shifting of the ma-
trix. The low-rank rescaling strategy tunes the frozen matrix
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both row-wise and column-wise, providing enhanced flex-
ibility in matrix tuning. The inclusion of the residual term
proves crucial in preventing the tuned parameters from de-
viating excessively from the pre-trained model.

Extensive experiments demonstrate that our method
achieves competitive performance across various down-
stream image classification tasks while maintaining com-
parable new parameters. The contributions of this work can
be summarized as follows:
• Unified Analytical Framework: We introduce a unified

analytical framework based on SVD to view pre-trained
parameter matrices, providing a comprehensive under-
standing of mainstream PEFT strategies.

• Trade-off Exploration: Addressing a gap in existing re-
search, we take a significant step forward by exploring
the trade-off between preserving the generalization ca-
pacity of pre-trained models and efficiently adapting them
to downstream tasks in PEFT.

• Proposed Method: We propose a novel Low-Rank
Rescaled Fine-Tuning strategy with a Residual Design.
This method formulates fine-tuning as a combination of
a frozen matrix and a low-rank-based rescaling and shift,
offering enhanced flexibility in matrix tuning.

• Comprehensive Experiments: Extensive experiments
on various downstream image classification tasks show-
case the competitiveness of our proposed method, achiev-
ing comparable performance with existing strategies
while maintaining a minimal set of new parameters.

2. Related Work

2.1. Pre-training and Transfer Learning

Transfer learning, as demonstrated by various studies [11,
22, 29, 33], has proven its adaptability across diverse do-
mains, modalities, and specific task requirements. It has
significantly improved performance and convergence speed
by pre-training on large-scale datasets and leveraging ac-
quired parameters as initialization for downstream tasks.
Large-scale datasets play a pivotal role in this paradigm,
contributing to the performance and convergence speed
of pre-trained models in downstream tasks. They endow
these models with robust generalization capabilities that en-
hance learning efficiency. Additionally, self-supervised pre-
training [2, 7] offers further benefits by mitigating costs,
time, and quality issues associated with manual data label-
ing.

In the field of computer vision, earlier studies favor pre-
training by the ImageNet-1K dataset [3] to attain quicker
convergence and enhanced performance in downstream
tasks. However, with the advent of larger-scale models like
Vision Transformer [5] (ViT) and Swin Transformer [19],
researchers have shifted toward utilizing more extensive
datasets such as ImageNet-21K [3] and JFT-300M [25], for

pre-training to pursue enhanced training efficiency and ro-
bustness. Nevertheless, the adoption of large-scale models
presents substantial challenges due to the computational re-
sources required during fine-tuning for downstream tasks.
Consequently, researchers have begun exploring methods to
achieve efficient fine-tuning.

2.2. Parameter-Effcient Fine-Tuning

To mitigate the computational resource challenges posed
by exponential parameter growth when fine-tuning the en-
tire network on downstream tasks, PEFT [4, 9, 12, 17] en-
deavors to facilitate the transition of pre-trained models to
downstream tasks while significantly reducing the number
of trainable parameters compared to full fine-tuning. This
reduction aims to minimize training and storage expenses
while addressing the risk of overfitting.

In the field of NLP, various PEFT methods have been
proposed and have attained significant success [9, 10, 16,
18, 20, 32]. Adapter [8], as one of the primary fine-tuning
approaches for large models, introduces a paradigm for
fine-tuning through bottleneck structures, entailing the in-
sertion of trainable adapter components into the network
structure. Additionally, LoRA [9] employs low-rank de-
composition to reduce parameters and treats adapters as
side paths to simulate parameter matrix increments during
fine-tuning. Subsequently, a multitude of PEFT methods
tailored for pre-training ViT models emerged. VPT [12]
employs a limited number of trainable parameters in the
input and intermediate layers of ViT. It fine-tunes solely
these lightweight parameters while maintaining the back-
bone frozen, resulting in notable performance improve-
ments compared to full fine-tuning. SSF [17] introduces a
feature modulation method that efficiently transfers features
in pre-trained models by scale and shift operations. Unlike
sequential adapter insertion approaches, AdaptFormer [1]
explores a parallel adapter solution on ViT for various
downstream tasks. FacT [13], based on a tensor decom-
position framework, decomposes and reassembles param-
eter matrices in ViT, allowing lightweight factors to dom-
inate the fine-tuning increment, and only updates the fac-
tors during fine-tuning for downstream tasks, resulting in
lower fine-tuning costs. ARC [4] approaches fine-tuning
from the perspective of the cross-layer similarity in ViT,
using parameter-sharing adapter structures and independent
scaling factors, offering a lesser fine-tuning cost than other
methods.

2.3. Discussion to the Proposed Method

The proposed method incorporates a unique residual struc-
ture. Diverging from alternative parallel-structured meth-
ods, such as LoRA [9], which introduces solely low-rank
learnable adaptors and can lead to challenges in fine-tuning,
our approach navigates the model toward a nuanced balance
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between optimizing for downstream tasks and preserving
the model’s intrinsic representational capacity. In contrast
to SSF [17], we extend our consideration to the adjustment
of the singular column vector through a framework rooted
in SVD, a dimension that SSF does not encompass. In
summary, our study provides a cohesive perspective on past
methodologies and presents compelling motivations for this
specific strategy.

3. Methodology
In this section, we provide a comprehensive overview of the
fundamental concepts related to PEFT methods. We lever-
age SVD to analyze the pre-trained weight matrices, delv-
ing into the underlying mechanisms of popular PEFT ap-
proaches within the SVD framework. Our scrutiny is cen-
tered on the delicate balance between retaining the gener-
alization capacity of pre-trained parameters and facilitating
task-specific adaptation. Concluding this analysis, we in-
troduce our Residual-based Low-Rank Rescaling (RLRR)
strategy, designed to optimize this trade-off for enhanced
fine-tuning performance.

3.1. Preliminary Knowledge on PEFT Methods

ViT is a deep learning model that applies the Trans-
former [27] architecture to computer vision tasks like im-
age classification, originally designed for natural language
processing. The ViT model comprises two primary com-
ponents: a patch embedding layer and a Transformer en-
coder. The patch embedding layer splits an input image
X ∈ RH×W×C into a sequence of fixed-size patches,
and projects each patch into a high-dimensional vector,
i.e., Xpatches ∈ RN×(P 2·C), where H and W are respec-
tively the height and width of the image resolution (H,W ),
(P, P ) is the resolution of each patch, C is the number of
input channels, and N = H · W/P 2 is the number of to-
kens. The entire patch embedding layer can be described as
follows:

Xe = [x⃗⊤
cls;XpatchesWpatches] +Xpos, (1)

where a learnable class token x⃗cls ∈ RD is concatenated
to XpatchesWpatches using a linear projection Wpatches ∈
R(P 2·C)×D and the concatenation operation [·; ·]. Addition-
ally, position embeddings Xpos ∈ R(N+1)×D are incorpo-
rated. The Transformer encoder then processes the patch
embeddings using Multi-Head Attention (MHA) and Feed-
Forward Network (FFN) blocks. In MHA block, Attention
Head (AH) module is defined as:

AHh(X
(l−1)) =

softmax(
(X(l−1)W

(l)
q )(X(l−1)W

(l)
k )⊤√

D
(l)
h

)X(l−1)W(l)
v ,

(2)

where the weight matrices W
(l)
q ∈ RD(l−1)×D

(l)
h , W(l)

k ∈
RD(l−1)×D

(l)
h , and W

(l)
v ∈ RD(l−1)×D

(l)
h are respectively

the query, key, and value operations with the feature dimen-
sionality D

(l)
h = D(l)

M of the output of AHh(·) and the num-
ber of attention heads M . Hence, the whole MHA block is
defined as:

MHA(X(l−1)) =

[AH1(X
(l−1)), · · · ,AHM (X(l−1))]W(l)

o ,
(3)

with a linear projection W
(l)
o ∈ R(M ·D(l)

h )×D(l)

. We then
feed the normalized output X(l)′ of the MHA block into
FFN block:

FFN(X(l)′) = GELU(X(l)′W
(l)
1 )W

(l)
2 , (4)

where W
(l)
1 ∈ RD(l)×4·D(l)

and W
(l)
2 ∈ R4·D(l)×D(l)

de-
note two linear projection matrices respectively. The whole
process of (l)-th Transformer encoder layer is defined as:

X(l)′ =MHA(LayerNorm(X(l−1))) +X(l−1),

X(l) =FFN(LayerNorm(X(l)′)) +X(l)′ ,
(5)

with LayerNorm(·) function to layer representation nor-
malization.

In downstream tasks involving ViT and its variants, three
primary types of visual PEFT methods are employed. These
methods fine-tune the pre-trained model by utilizing a mini-
mal set of new parameters, and they encompass adaptation-
based, prompt-based, and scaling & shifting-based strate-
gies. More specifically, when considering any weight ma-
trix:

W(l) ∈ {W(l)
q ,W

(l)
k ,W(l)

v ,W(l)
o ,W

(l)
1 ,W

(l)
2 }, (6)

the general idea of adaptation-based methods [8] can be de-
fined as Eq. (7) from Table 1, in which Act(·) is the ac-

tivation function, b⃗
(l)

is the bias weights, and Wdown ∈
RD(l)×D

′

and Wup ∈ RD
′
×D(l)

are down- and up-
adapting projection matrices across different layers with
the dimensionality D(l) ≫ D

′
. A prominent example

of an adaptation-based method is Low-Rank Adaptation
(LoRA)[9], which can be expressed as Eq.(9) in Table 1.

The second type comprises prompt-based methods [12],
represented by Eq.(11), where Θ(l−1) ∈ RT×D(l−1)

con-
stitutes learnable parameters with T virtual tokens. Finally,
the third type encompasses scaling & shifting-based strate-
gies, illustrated by Eq.(13), featuring learnable scaling pa-

rameters s⃗(l), shifting parameters f⃗
(l)

, and element-wise
Hadamard product denoted by ⊙.

16103



Table 1. Examples of PEFT methods and their interpretation under the SVD framework.

Visual PEFT Method Strategy Spectral Analysis

Adaptation-based [8]
X

(l−1)
FT = Act

((
X(l−1)W(l) + b⃗

(l)⊤
)
Wdown

)
Wup, (7)

X
(l−1)
FT =Act

((
X(l−1)

(
λ
(l)
1 d⃗

(l)

1 u⃗
(l)⊤
1 + · · ·+ λ

(l)
D d⃗

(l)

D u⃗
(l)⊤
D

)
+ b⃗

(l)⊤
)
Wdown

)
Wup

=Act

(
X(l−1)

(
λ
(l)
1 d⃗

(l)

1 u⃗
(l)⊤
1 Wdown + · · ·+ λ

(l)
D d⃗

(l)

D u⃗
(l)⊤
D Wdown

)
+ b⃗

(l)⊤
Wdown

)
Wup

=Act

(
X(l−1)

(
d⃗
(l)

1 u⃗
(l)⊤
1 λ

(l)
1 Wdown + · · ·+ d⃗

(l)

D u⃗
(l)⊤
D λ

(l)
D Wdown

)
+ b⃗

(l)⊤
Wdown

)
Wup,

(8)

LoRA adaptation [9] X
(l−1)
FT = X(l−1)(W(l) +WdownWup) + b⃗

(l)⊤
, (9) X

(l−1)
FT =X(l−1)

(
λ
(l)
1 d⃗

(l)

1 u⃗
(l)⊤
1 + · · ·+ λ

(l)
D d⃗

(l)

D u⃗
(l)⊤
D +WdownWup

)
+ b⃗

(l)⊤
, (10)

Prompt-based [12] X
(l−1)
FT =

 X(l−1)

Θ(l−1)

W(l) + b⃗
(l)⊤

, (11)

X
(l−1)
FT =

 X(l−1)

Θ(l−1)

(
λ
(l)
1 d⃗

(l)

1 u⃗
(l)⊤
1 + · · ·+ λ

(l)
D d⃗

(l)

D u⃗
(l)⊤
D

)
+ b⃗

(l)⊤

=

 λ
(l)
1 X(l−1)d⃗

(l)

1 u⃗
(l)⊤
1 + · · ·+ λ

(l)
D X(l−1)d⃗

(l)

D u⃗
(l)⊤
D

λ
(l)
1 Θ(l−1)d⃗

(l)

1 u⃗
(l)⊤
1 + · · ·+ λ

(l)
D Θ(l−1)d⃗

(l)

D u⃗
(l)⊤
D

+ b⃗
(l)⊤

,

(12)

scaling&shifting-based [17] X
(l−1)
FT =

(
XW(l) + b⃗

(l)⊤
)
⊙ s⃗(l)⊤ + f⃗

(l)⊤
, (13)

X
(l−1)
FT =

(
X

(
λ
(l)
1 d⃗

(l)

1 u⃗
(l)⊤
1 + · · ·+ λ

(l)
D d⃗

(l)

D u⃗
(l)⊤
D

)
+ b⃗

(l)⊤
)
⊙ s⃗(l)⊤ + f⃗

(l)⊤

=X

(
λ
(l)
1 d⃗

(l)

1 u⃗
(l)⊤
1 ⊙ s⃗(l)⊤ + · · ·+ λ

(l)
D d⃗

(l)

D u⃗
(l)⊤
D ⊙ s⃗(l)⊤

)
+ b⃗

(l)⊤
⊙ s⃗(l)⊤ + f⃗

(l)⊤

=X

(
d⃗
(l)

1 u⃗
(l)⊤
1 λ

(l)
1 ⊙ s⃗(l)⊤ + · · ·+ d⃗

(l)

D u⃗
(l)⊤
D λ

(l)
D ⊙ s⃗(l)⊤

)
+ b⃗

(l)⊤
⊙ s⃗(l)⊤ + f⃗

(l)⊤
,

(14)

3.2. Revisiting Existing PEFT Methods through sin-
gular value decomposition

In this section, we revisit the working mechanisms of ex-
isting PEFT methods mentioned above through the lens of
SVD. Our goal is to establish a unified framework for un-
derstanding the delicate trade-off between retaining the gen-
eralization capacity of the pre-trained model and facilitating
task-specific adaptation. We initiate our exploration by em-
ploying SVD to decompose the weight matrix W(l) to:

W(l) = λ
(l)
1 d⃗

(l)

1 u⃗
(l)⊤
1 + · · ·+ λ

(l)
D d⃗

(l)

D u⃗
(l)⊤
D , (15)

with the spectrum (i.e. singular values) {λ(l)
d }, the left sin-

gular vector d⃗
(l)

d coming from the left unitary matrix, and
the right singular vector u⃗(l)⊤

d coming from the right uni-
tary matrix. Under this SVD framework, Eqs. (7), (9), (11),
and (13) can be rewritten as Eqs. (8), (10), (12), and (14) in
Table 1.

Upon examining these redefined equations, it be-
comes evident that general adaptation-based methods in-
volve each singular item under the spectrum, denoted as

λ
(l)
d d⃗

(l)

d u⃗
(l)⊤
d Wdown. The down-adapting projection matrix

Wdown is directly applied to the right singular vector u⃗(l)
d .

However, this direct application compromises the spatial
structure, including the orthogonality of these right singu-
lar matrix [u⃗

(l)
1 , u⃗

(l)
2 , . . . , u⃗

(l)
d ]⊤, thereby affecting the rep-

resentation capacity of the pre-trained model. Similarly, in
prompt-based methods, the learnable tokens Θ directly in-

terat with the left singular vector d⃗
(l)

d in Eq. (12). However,
this direct interaction has the potential to excessively influ-
ence the tuning, deviating significantly from the pre-trained
model. Scaling&shifting-based methods has the same de-

fect due to the element-wise multiplication u⃗
(l)⊤
d ⊙ s⃗(l)⊤

in Eq. (14). Additionally, over-adaptation may perturb the
spectrum, affecting one side of the weight capacity. Specif-
ically, λ(l)

d Wdown in Eq. (8), λ(l)
d Θ(l−1) in Eq. (12), and

λ
(l)
d ⊙ s⃗(l)⊤ in Eq. (14) demonstrate the impact to the sin-

gular spectrum. Improper initialization of parameters, such
as Wdown, Θ(l−1), and s⃗(l), can lead to spectrum distortion
and the loss of the original weight capacity.

In contrast, from Eq. (10), we observe that the sole low-
rank adaption item WdownWup of LoRA method adapts

weakly to each of all singular items {λ(l)
d d⃗

(l)

d u⃗
(l)⊤
d } when

the dimensionality D of the weight matrix W(l) is large.
This slight perturbation may marginally change the weight
spectrum and singular vectors in which the representation
capacity of the pre-trained model can not be smoothly
adapted to downstream tasks.

3.3. Residual-based Low-Rank Rescaling (RLRR)
Method

To balance the trade-off between over-adaptation and under-
adaptation in downstream tasks, we propose a simple yet
effective method, namely, the RLRR strategy as shown in
Fig. 1. It can be derived from the aforementioned unified
framework:

X
(l−1)
FT =X(l−1)(W(l) +△W(l)) + b⃗

(l)⊤
+ f⃗

(l)⊤

=X(l−1)(W(l) + s⃗
(l)
left ⊙W(l) ⊙ s⃗

(l)⊤
right)

+ b⃗
(l)⊤

+ f⃗
(l)⊤

,

(16)

in which we add scales s⃗(l)left and s⃗
(l)
right to both side of weight

matrix W(l), making it more flexible compared to SSF [17]
when learning the features of downstream tasks.
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Figure 1. Illustration of the proposed RLRR method. For any weight matrix W(l) in the MHA and FFN modules, we fine-tune the
frozen pre-training parameter matrix using a residual structure. This involves combining the frozen matrix with a low-rank-based scaling
and shifting operation i.e., △W(l). From the perspective of SVD, scaling vectors s⃗

(l)
left and s⃗

(l)
right and shifting vector f⃗ (l) can also be

interpreted as adjustments to the rows and columns of the pre-training matrix W(l).

In Eq. (16), we also add the frozen weights W(l) to the
fine-tuning item △W(l) = s⃗

(l)
left⊙W(l)⊙ s⃗

(l)⊤
right with learn-

able parameters s⃗(l)left, s⃗
(l)
right, and f⃗

(l)
. By doing this, RLRR

strategy can trade off the over- and under-adaption. Con-
cretely, we expand Eq. (16) to:

X
(l−1)
FT =X(l−1)(λ

(l)
1 d⃗

(l)

1 u⃗
(l)⊤
1 + · · ·+ λ

(l)
D d⃗

(l)

D u⃗
(l)⊤
D

+ s⃗
(l)
left ⊙ (λ

(l)
1 d⃗

(l)

1 u⃗
(l)⊤
1 + · · ·

+ λ
(l)
D d⃗

(l)

D u⃗
(l)⊤
D )⊙ s⃗

(l)⊤
right) + b⃗

(l)⊤
+ f⃗

(l)⊤
,

(17)

in which we get the singular item:

Witem =

λ
(l)
d d⃗

(l)

d u⃗
(l)⊤
d + λ

(l)
d s⃗

(l)
left ⊙ d⃗

(l)

d u⃗
(l)⊤
d ⊙ s⃗

(l)⊤
right,

(18)

and each element therein is:

Witem[i,j] = λ
(l)
d d⃗

(l)

d[i]u⃗
(l)
d[j] + λ

(l)
d s⃗

(l)
left[i]d⃗

(l)

d[i]u⃗
(l)
d[j]s⃗

(l)
right[j]

= (1 + s⃗
(l)
left[i]s⃗

(l)
right[j])λ

(l)
d d⃗

(l)

d[i]u⃗
(l)
d[j].

(19)

There is a constant term 1 in Eq. (19) that can fix the intrin-
sical representation capacity to the pre-trained model and
meanwhile leverage the fine-tuning item s⃗

(l)
left[i]s⃗

(l)
right[j] to

adaptively adjust such model capacity to learn the down-
stream tasks.
Re-parameterization. Similar to previous methods [17],
our adjustments to the parameter matrices are linear opera-
tions. This allows us to seamlessly absorb the scaling and

shifting operations into the original parameter matrices by
re-parameterizing as follows:

W
(l)
re−param = W(l) +∆W(l)

=
(
1+ s⃗

(l)
lefts⃗

(l)⊤
right

)
⊙W(l),

b⃗
(l)

re−param = b⃗
(l)

+ f⃗
(l)
,

(20)

where 1 denotes a matrix involving all elements to 1, with
its dimensions consistent with the original parameter ma-
trix W(l) in the (l)-th layer. The vectors s⃗

(l)
left and s⃗

(l)
right

denote the scaling parameters and the shifting parameters
is the f⃗ vector. Eq. (20) implies that we can merge s⃗

(l)
left,

s⃗
(l)
right, and f⃗

(l)
into the original parameter matrix W(l) by

linear operations without requiring extra storage space dur-
ing inference.

4. Experiments

4.1. Experimental Settings

Downstream Tasks. Following the previous works [4, 12,
17], we evaluate RLRR on a collection of five Fine-Grained
Visual Classification (FGVC) datasets and the VTAB-
1k benchmark. FGVC consists of CUB-200-2011 [28],
NABirds [26], Oxford Flowers [21], Stanford Dogs [14], and
Stanford Cars [6]. We follow the data partitioning scheme
established in VPT [12] to maintain consistency. VTAB-
1k [31] is a benchmark that contains 19 diverse visual clas-
sification tasks, which are divided into three groups: Natu-
ral, Specialized, and Structured. Natural group corresponds
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Table 2. Performance comparison of RLRR with the baseline and state-of-the-art efficient adaptive methods on the VTAB-1k benchmark.
All methods leverage ViT-B/16 pre-trained on ImageNet-21k as the backbone. Furthermore, SSF, ARC*, and RLRR* utilize the augmented
ViT backbone by AugReg [24]. Bold font denotes state-of-the-art performance, while underlined results indicate sub-optimal performance.

Methods
Datasets Natural Specialized Structed
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Full fine-tuning 68.9 87.7 64.3 97.2 86.9 87.4 38.8 75.9 79.7 95.7 84.2 73.9 83.4 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 47.6 65.6 85.80
Linear probing 63.4 85.0 63.2 97.0 86.3 36.6 51.0 68.9 78.5 87.5 68.6 74.0 77.2 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 26.9 52.9 0.04

Adapter [8] 74.1 86.1 63.2 97.7 87.0 34.6 50.8 70.5 76.3 88.0 73.1 70.5 77.0 45.7 37.4 31.2 53.2 30.3 25.4 13.8 22.1 32.4 55.8 0.27
Bias [30] 72.8 87.0 59.2 97.5 85.3 59.9 51.4 73.3 78.7 91.6 72.9 69.8 78.3 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 44.1 62.1 0.14

VPT-Shallow [12] 77.7 86.9 62.6 97.5 87.3 74.5 51.2 76.8 78.2 92.0 75.6 72.9 79.7 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 47.0 64.9 0.11
VPT-Deep [12] 78.8 90.8 65.8 98.0 88.3 78.1 49.6 78.5 81.8 96.1 83.4 68.4 82.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 55.0 69.4 0.60

LORA [9] 67.1 91.4 69.4 98.8 90.4 85.3 54.0 79.5 84.9 95.3 84.4 73.6 84.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 59.8 72.3 0.29
AdaptFormer [1] 70.8 91.2 70.5 99.1 90.9 86.6 54.8 80.6 83.0 95.8 84.4 76.3 84.9 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 58.8 72.3 0.16
FacT-TK≤32[13] 70.6 90.6 70.8 99.1 90.7 88.6 54.1 80.6 84.8 96.2 84.5 75.7 85.3 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 60.7 73.2 0.07

ARC [4] 72.2 90.1 72.7 99.0 91.0 91.9 54.4 81.6 84.9 95.7 86.7 75.8 85.8 80.7 67.1 48.7 81.6 79.2 51.0 31.4 39.9 60.0 73.4 0.13
RLRR 75.6 92.4 72.9 99.3 91.5 89.8 57.0 82.7 86.8 95.2 85.3 75.9 85.8 79.7 64.2 53.9 82.1 83.9 53.7 33.4 43.6 61.8 74.5 0.33

SSF [17] 69.0 92.6 75.1 99.4 91.8 90.2 52.9 81.6 87.4 95.9 87.4 75.5 86.6 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 59.0 73.1 0.24
ARC* [4] 71.2 90.9 75.9 99.5 92.1 90.8 52.0 81.8 87.4 96.5 87.6 76.4 87.0 83.3 61.1 54.6 81.7 81.0 57.0 30.9 41.3 61.4 74.3 0.13
RLRR* 76.7 92.7 76.3 99.6 92.6 91.8 56.0 83.7 87.8 96.2 89.1 76.3 87.3 80.4 63.3 54.5 83.3 83.0 53.7 32.0 41.7 61.5 75.1 0.33

to images from daily life, Specialized group includes med-
ical and remote sensing images captured by specialized de-
vices, and Structured group contains synthetic images from
simulated environments. Each task contains only 1000 im-
ages for training, covering various potential downstream
tasks such as classification, object counting, and depth es-
timation. Consequently, it serves as a comprehensive mea-
surement for evaluating the efficacy of fine-tuning method-
ologies.

Pre-trained Backbones. We employ ViT [5] and Swin
Transformer [19] as backbones to evaluate our approach.
Furthermore, we employ three different variants of ViT (i.e.
ViT-Base, ViT-Large, ViT-Huge) to demonstrate the versa-
tility of RLRR. All of these backbone architectures lever-
age parameters pre-trained on the ImageNet21K dataset [3],
preserving the default configurations, which include the
number of image patches and the dimensions of the fea-
tures in the hidden layers. Moreover, we note that the
SSF [17] employs a ViT backbone that is augmented with
AugReg [24]. To guarantee a fair comparison, we have car-
ried out independent experiments with this augmentation
strategy, as presented in Table 2 and Table 3.

Baselines and Existing PEFT methods. We evaluate the
performance of RLRR by comparing it with two baseline
methods and several well-known PEFT approaches includ-
ing Adapter [8], Bias [30], LoRA [9], VPT [12], Adapt-
Former [1], FacT [13] and ARC [4]. The two baseline meth-
ods are (1) Full Fine-tuning, which updates all parameters
of the pre-trained model using the training data from the
downstream task, and (2) Linear Probing, which involves
training only the linear classification head for the down-
stream task while keeping the rest of the pre-trained param-
eters frozen.

Implementation Details. In this work, we implement
standard data augmentation following VPT [12] during the

training phase. For five FGVC datasets, we apply random
horizontal flips and randomly resize crop to 224× 224 pix-
els. For the VTAB-1k benchmark, images are resized to
224 × 224 pixels, and we employ random horizontal flips
on the 19 datasets. We conduct a grid search to optimize
hyper-parameters specific to tuning, such as learning rate
and weight decay. All experiments are conducted using the
PyTorch framework [23] on an NVIDIA A800 GPU with
80 GB of memory.

4.2. Experimental Comparisons

In this section, we conduct a comprehensive comparison of
our RLRR method with baseline models and other state-
of-the-art approaches using two sets of visual adaptation
benchmarks. We evaluate the classification accuracy of
each method across a range of downstream tasks and ex-
amine the number of trainable parameters during the fine-
tuning phase. The outcomes of these evaluations are de-
tailed in Table 2 and Table 3. Based on the findings, we
make the following observations:

(1) RLRR approach yields results that are competitive
with both baseline methods and prior state-of-the-art PEFT
methods. Notably, RLRR attains superior performance on
the majority of datasets across two visual adaptation bench-
marks, outperforming most existing fine-tuning approaches.
It also maintains a competitive number of trainable param-
eters, suggesting that RLRR achieves high efficiency with-
out incurring excessive computational costs. In particular,
on the VTAB-1k benchmark, our method excels in more
than half of the 19 datasets, achieving a 1.1% improve-
ment (74.5% vs. 73.4%) over the plain pre-trained model
and a 0.8% increase (75.1% vs. 74.3%) over the AugReg-
enhanced model relative to the latest PEFT methods. More-
over, RLRR demonstrates optimal performance in 7 out of
10 assessments on the FGVC dataset using two versions of
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Table 3. Performance comparison of RLRR with baseline and state-of-the-art PEFT methods on five FGVC datasets. All experiments use
ViT-B/16 pretrained on ImageNet-21k as the backbone. SSF, ARC*, and RLRR* leverage the augmented ViT backbone by AugReg [24].

Methods
Datasets CUB-200-2011 NABirds Oxford Flowers Stanford Dogs Stanford Cars Mean Total Params. (M)

Full fine-tuning 87.3 82.7 98.8 89.4 84.5 88.5 85.98
Linear probing 85.3 75.9 97.9 86.2 51.3 79.3 0.18

Adapter [8] 87.1 84.3 98.5 89.8 68.6 85.7 0.41
Bias [30] 88.4 84.2 98.8 91.2 79.4 88.4 0.28

VPT-Shallow [12] 86.7 78.8 98.4 90.7 68.7 84.6 0.25
VPT-Deep [12] 88.5 84.2 99.0 90.2 83.6 89.1 0.85

LoRA [9] 88.3 85.6 99.2 91.0 83.2 89.5 0.44
ARC [4] 88.5 85.3 99.3 91.9 85.7 90.1 0.25
RLRR 89.3 84.7 99.5 92.0 87.0 90.4 0.47

SSF [17] 89.5 85.7 99.6 89.6 89.2 90.7 0.39
ARC* [4] 89.3 85.7 99.7 89.1 89.5 90.7 0.25
RLRR* 89.8 85.3 99.6 90.0 90.4 91.0 0.47

Table 4. Performance comparison on VTAB-1k using VIT-Large and VIT-Huge pre-trained on ImageNet-21k as the backbone. ”(·)”
indicates the number of tasks in the subgroup. Detailed results are presented in the Appendix.

Methods
Datasets (a) ViT-Large (b) ViT-Huge

Natural (7) Specialized (4) Structed (8) Mean Params.(M) Natural (7) Specialized (4) Structed (8) Mean Params.(M)

Full fine-tuning 74.7 83.8 48.1 65.4 303.40 70.9 83.6 46.0 63.1 630.90
Linear probing 70.9 69.1 25.8 51.5 0.05 67.9 79.0 26.1 52.7 0.06

Adapter [8] 68.6 73.5 29.0 52.9 2.38 68.1 76.4 24.5 51.5 5.78
Bias [30] 70.5 73.8 41.2 58.9 0.32 70.3 78.9 41.7 60.1 0.52

VPT-Shallow [12] 78.7 79.9 40.6 62.9 0.15 74.8 81.2 43.0 62.8 0.18
VPT-Deep [12] 82.5 83.9 54.1 70.8 0.49 77.9 83.3 52.2 68.2 0.96

LoRA [9] 81.4 85.0 57.3 72.0 0.74 77.1 83.5 55.4 69.3 1.21
SSF [17] 81.9 85.2 59.0 73.0 0.60 79.0 83.1 56.6 70.4 0.97
ARC [4] 82.3 85.6 57.3 72.5 0.18 79.1 84.8 53.7 69.6 0.22
RLRR 83.9 86.4 61.9 75.2 0.82 79.4 85.1 59.0 72.0 1.33

pre-trained model, underscoring its consistent adaptability
and robustness across varied downstream tasks.

Additionally, it is noteworthy that RLRR and LoRA have
comparable parameter counts. However, RLRR signifi-
cantly outperforms LoRA in downstream tasks. This un-
derscores the superior design of RLRR, which leverages
the pre-trained parameter matrix as the foundation for the
residual term, thus preventing the potential pitfalls of over
or under adaptation in downstream tasks. The tuning of the
residual term also benefits from the high-efficiency parame-
ter adjustment inherent in the well-structured design of SSF.
Furthermore, our approach incorporates a rescaling weight
matrix design, which provides greater flexibility than that of
SSF. In contrast to VPT, our method obviates the need for
designing complex, task-specific trainable parameters or for
intricate injection selections within the partial modules of
ViT, thereby avoiding additional computational overhead.

(2) In contrast to PEFT solutions, Full fine-tuning does
not yield significant improvements. In fact, performance
can decline even with the increase in the number of updated
parameters. We attribute this to the loss of the generaliza-
tion ability of the pre-trained model, which was acquired
from large-scale datasets, leading to overfitting on the train-
ing set for downstream tasks. In practice, as a commonly
adopted strategy in transfer learning, full fine-tuning ne-

cessitates extensive data and meticulous experimental se-
tups to prevent overfitting. Especially on the VTAB-1k
benchmark with only 1000 images for training, besides fine-
tuning the entire model, numerous adaptation methods often
find themselves in the dilemma of overfitting. This under-
scores the effectiveness and promise of lightweight adapta-
tion designs.

Experiments on larger-scale ViT backbones. Beyond
the commonly employed ViT-B/16 backbone for evalua-
tions, we expand our experiments to include larger back-
bones, ViT-L/16 and ViT-H/14, to verify the scalability
and generalizability of our RLRR method. As indicated
in Tables 4 (a) and (b), RLRR consistently outperforms
other state-of-the-art adaptation methods, maintaining ex-
ceptional performance even when applied to these larger-
scale backbones. Specifically, our method surpasses the lat-
est state-of-the-art by 2.7% on the ViT-L/16 and by 2.6%
on the ViT-H/14 backbones. These findings demonstrate
the capability of RLRR to effectively scale to larger mod-
els, confirming its robustness for efficient adaptation across
diverse Transformer-based architectures.

Experiments on hierarchical Vision Transformers. To
further demonstrate the efficacy of RLRR, we apply it to
the Swin Transformer [19], a Transformer-based architec-
ture distinguished by its hierarchical structure. The Swin
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Table 5. Performance comparison on VTAB-1k using Swin Trans-
former pre-trained on ImageNet-21k as the backbone. ”(·)” in-
dicates the number of tasks in the subgroup. Detailed results are
presented in the Appendix.

Methods
Datasets Natural (7) Specialized (4) Structed (8) Mean Total Params.(M)

Full fine-tuning 79.1 86.2 59.7 72.4 86.80
Linear probing 73.5 80.8 33.5 58.2 0.05

MLP-4 [12] 70.6 80.7 31.2 57.7 4.04
Partial [12] 73.1 81.7 35.0 58.9 12.65
Bias [30] 74.2 80.1 42.4 62.1 0.25

VPT-Shallow [12] 79.9 82.5 37.8 62.9 0.05
VPT-Deep [12] 76.8 84.5 53.4 67.7 0.22

ARC [4] 79.0 86.6 59.9 72.6 0.27
RLRR 81.3 86.7 59.0 73.0 0.41

Table 6. Ablation study on the FGVC dataset to examine the im-
pact of the various RLRR combinations.

scaling
residual

FGVC Datasets
Mean Params. (M)left right CUB NABirds Flowers Dogs Cars

✓ ×
×

86.9 84.2 99.5 91.0 84.3 89.2 0.39
× ✓ 87.3 84.4 99.3 91.1 84.5 89.3 0.39
✓ ✓ 86.6 83.9 99.3 91.0 83.5 88.9 0.47
✓ ×

✓

87.1 84.5 99.5 91.5 85.1 89.5 0.39
× ✓ 87.9 84.5 99.4 91.3 85.4 89.7 0.39
✓ ✓ 89.3 84.7 99.5 92.0 87.0 90.4 0.47

Transformer is organized into discrete stages, each with
transformer blocks of consistent feature dimensions, though
the dimensions vary across stages. Table 5 showcases
that RLRR upholds competitive adaptation accuracy, even
when adapted to this specialized Transformer architecture,
thereby affirming its robustness to a range of visual adapta-
tion tasks.

4.3. Ablation Studies

To gain deeper insights into the proposed method, we con-
duct comprehensive ablation studies on RLRR to eluci-
date its critical features and to carry out pertinent analy-
ses. The ablation studies examining module deployment
are performed using the CIFAR-100 dataset [15]. Con-
currently, we assess the impact of various components on
FGVC dataset.
Effect of RLRR Adaptation Insertion. To assess the
impact of RLRR adaptation, we experiment with its inser-
tion into different layers and Transformer modules, includ-
ing MHA, FFN, and LayerNorm. Notably, for LayerNorm,
as its weights are not stored in matrix form, we follow the
same approach as SSF [17]. The specific results are illus-
trated in Fig. 2. We observe that as the number of deployed
layers increases, the accuracy improves across all settings.
Moreover, the configuration where the residual and rescal-
ing design are applied to all modules, as we employed, con-
sistently outperforms other configurations. Consequently,
we choose to deploy the residual and rescaling design across
all modules.
Effects of Different RLRR Combinations. To further il-
lustrate the importance of the residual and rescaling design,
we evaluate the ablation effects of the various components
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Figure 2. Ablation study using the VIT-B/16 backbone on the
CIFAR-100 dataset to evaluate the impact of incorporating RLRR
adaptation across different module and layer combinations.

within our proposed method. The findings are delineated
in Table 6. The results reveal that one-sided (i.e. left or
right) scaling tuning leads to better performance compared
to dual-sided (i.e. left and right) tuning in the absence of
the residual term. This suggests that excessive rescaling
of the original pre-trained parameter matrix will compro-
mise the generalizability learned by pre-trained models, es-
pecially without additional constraints. Intriguingly, when
the residual term is included, this trend reverses, which not
only demonstrates that rescaling can introduce flexible per-
turbations but also emphasizes the importance of the resid-
ual term in maintaining the intrinsic representational capac-
ity of the model.

5. Conclusions

In this study, we addressed the challenge of PEFT for pre-
trained Vision Transformers, with a focus on achieving a
delicate balance between retaining the generalization ca-
pacity of the pre-trained model and adapting effectively to
downstream tasks. Our approach involved viewing PEFT
through a novel SVD perspective, offering a unified frame-
work for understanding the working mechanisms of various
PEFT strategies and their trade-offs.

To achieve a more favorable trade-off, we introduced
a RLRR fine-tuning strategy. RLRR incorporates a
residual term, providing enhanced adaptation flexibil-
ity while simultaneously preserving the representation
capacity of the pre-trained model. Through extensive
experiments on two downstream benchmark datasets, our
RLRR method demonstrated highly competitive adaptation
performance and exhibited other desirable properties.
This work contributes valuable insights into the PEFT
landscape and proposes an effective strategy for achieving
a more nuanced balance between generalization and
task-specific adaptation in pre-trained Vision Transformers.
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