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Abstract

Optical flow is a classical task that is important to the
vision community. Classical optical flow estimation uses
two frames as input, whilst some recent methods consider
multiple frames to explicitly model long-range information.
The former ones limit their ability to fully leverage tempo-
ral coherence along the video sequence; and the latter ones
incur heavy computational overhead, typically not possible
for real-time flow estimation. Some multi-frame-based ap-
proaches even necessitate unseen future frames for current
estimation, compromising real-time applicability in safety-
critical scenarios. To this end, we present MemFlow, a real-
time method for optical flow estimation and prediction with
memory. Our method enables memory read-out and update
modules for aggregating historical motion information in
real-time. Furthermore, we integrate resolution-adaptive
re-scaling to accommodate diverse video resolutions. Be-
sides, our approach seamlessly extends to the future pre-
diction of optical flow based on past observations. Lever-
aging effective historical motion aggregation, our method
outperforms VideoFlow with fewer parameters and faster
inference speed on Sintel and KITTI-15 datasets in terms
of generalization performance. At the time of submission,
MemFlow also leads in performance on the 1080p Spring
dataset. Codes and models will be available at: https:
//dqiaole.github.io/MemFlow/.

1. Introduction
Optical flow, a critical area in computer vision, plays a
key role in various real-world applications like video in-
painting [21], action recognition [58], and video predic-
tion [23, 67]. In essence, it captures the displacement vector
field for each pixel between successive video frames. Re-
cent advances in optical flow estimation, as highlighted by
works such as FlowNet [28], PWC-Net [57], RAFT [60],
SKFlow [59], FlowFormer [26], and a rethinking training
approach by MatchFlow[17], have been successful. This
success is attributed to advancements in model architec-
tures [26, 57, 60] and dedicated datasets [17, 19, 42].
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Figure 1. End-point-error on Sintel (clean) vs. inference time
(ms) and model size (M). All models are trained on FlyingChairs
and FlyingThings3D, and tested with one NVIDIA A100 GPU.
MemFlow(-T) (x it) indicates running our network with only x
iterations of GRU. Our MemFlow(-T) achieves significant reduc-
tions in computational overhead as well as substantial performance
boosts over the state-of-the-art methods.

The classical optical flow works use two frames as input,
potentially limiting their ability to fully leverage temporal
coherence along a video sequence. This limitation results
in a bottleneck, prompting an increasing reliance on com-
putationally intensive vision transformer encoders [13] for
improved performance, as noted in [26].

Conversely, some recent approaches [40, 49, 53] ex-
plore the use of multi-frame videos as input. Typically,
these methods either employ simple fusion modules with
modest improvements or explicitly model long-range in-
formation, incurring heavy computational overhead. For
instance, PWC-Fusion [49] straightforwardly fuses back-
ward warped past flow with current flow, resulting in a
modest improvement of 0.65% over the baseline PWC-
Net [57]. TransFlow [40] and VideoFlow [53] explicitly
model long-range motion within a 5-frame context, lead-
ing to a significant computational overhead. Importantly,
these methods [40, 53] operate in an offline mode, de-
manding access to unseen future frames in advance for cur-
rent estimation. Additionally, VideoFlow runs considerably
slower than its 2-frame baseline, SKFlow [59], as depicted
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in Fig. 1. The substantial number of parameters (13.5M)
also poses a significant burden on model deployment, caus-
ing out-of-memory issues when tested on the 1080p Spring
dataset [43] with a single NVIDIA A100 80 GB GPU.

To this end, we present MemFlow, an innovative archi-
tecture by proposing the memory module [9, 10, 25, 35, 36,
45, 46, 63, 66, 69] for effective optical flow estimation. It
operates in real-time (online mode) efficiently with the fol-
lowing notable strengths: (1) Strong Cross-dataset Gener-
alization Performance. On both clean and final pass of the
Sintel [6] dataset, our model achieves an end-point-error
(EPE) of 0.93 and 2.08 pixels. This represents a substan-
tial 23.8% and 15.4% error reduction compared to our 2-
frame baseline, SKFlow [59] (1.22 and 2.46 pixels). When
evaluated on the KITTI dataset [22], our method demon-
strates an error rate of 13.7%, showcasing an 11.6% im-
provement over SKFlow (15.5%). (2) High Inference Ef-
ficiency. Our MemFlow achieves an impressive inference
speed of 5.6 frames per second (fps) on A100 GPU for
processing 1024x436 videos. Even a faster variant of our
model, with 5 iterations of GRU, can run at 14.5 fps. Im-
portantly, this accelerated version maintains the near-best
generalization performance, as illustrated in Fig. 1.

Technically, our MemFlow is a real-time approach de-
signed for optical flow estimation and prediction, incorpo-
rating a memory component. Specifically, MemFlow main-
tains a memory buffer that stores both historical motion in-
formation and context features from the input video stream.
As new frame pairs are inputted, the memory buffer is con-
tinually updated with the latest context and motion features.
We employ an attention mechanism to query the memory
buffer using the context feature, extracting useful motion
information as the aggregated motion feature. By combin-
ing this aggregated motion feature with the current motion
and context features, we can regress the residual flow.

Additionally, we introduce a resolution-adaptive re-
scaling for similarity computation within the attention
mechanism to enhance cross-resolution generalization dur-
ing inference. Furthermore, we provide the option to re-
place our feature encoder with a more robust vision trans-
former [13], referred to as MemFlow-T, resulting in im-
proved outcomes. As depicted in Fig. 1, our MemFlow (-T)
demonstrates significant reductions in computational over-
head and substantial performance enhancements compared
to state-of-the-art methods. Notably, even with only 5 iter-
ations, our MemFlow surpasses the performance of heavy-
weight state-of-the-art approaches such as VideoFlow [53]
and FlowFormer [26], while running faster than RAFT [60].

In addition to estimating optical flow, we’re investigat-
ing future flow prediction using our versatile memory mod-
ule. This capability is crucial for intelligent systems like
autonomous vehicles and robots, enabling effective plan-
ning and response in dynamic environments. Our adapted

network for flow prediction is named MemFlow-P. In
MemFlow-P, we maintain a memory buffer for decoding
residual flow from context and aggregated motion features,
eliminating the need for 2D motion features between the
current and next frame. Upon the arrival of the next frame,
we update the memory module with a new motion feature
calculated between the current and next frames. To show-
case our flow prediction quality, we combine MemFlow-P
with Softmax Splatting [44] and image inpainting [7, 8, 16]
for video prediction, involving the synthesis of future video
frames based on past ones. Despite not being specif-
ically trained for video prediction, our method achieves
comparable results with two competitive flow-based meth-
ods [23, 67] in SSIM [64] and LPIPS [71].

In summary, we make four significant contributions:
1) Innovative Real-Time Optical Flow Estimation: We
introduce a novel architecture that effectively employs a
memory module, allowing for real-time optical flow es-
timation. 2) Enhanced Generalization with Resolution-
Adaptive Re-scaling: We propose the use of resolution-
adaptive re-scaling in attention computation, enhancing
cross-resolution generalization performance. 3) Superior
Optical Flow Estimation: Our MemFlow(-T) achieves
state-of-the-art or near-SOTA performance on various stan-
dard optical flow estimation benchmarks, demonstrating ex-
ceptional performance with minimal computational over-
head. 4) Future Prediction Capability without Explicit
Training: Repurposing MemFlow for optical flow future
prediction, we achieve competitive results in video predic-
tion without the need for specific training for this down-
stream task, highlighting the adaptability of our approach.

2. Related Work
Optical Flow Estimation by Two Frames. Traditionally,
it is solved by optimizing energy function [2–5, 24, 50, 70]
to maximize visual similarity between images. Recent ef-
forts resort to deep neural networks for directly regress-
ing [15, 19, 27, 28, 48, 57] or generating [18, 52] op-
tical flow from two frames. Specifically, FlowNet [19]
first proposed optical flow estimation with end-to-end train-
able CNN. PWC-Net [57] and Lite-FlowNet [27] modi-
fied the network following the strategy of coarse-to-fine.
RAFT [60] further developed a convolutional GRU block
upon multi-scale 4D correlation volume for iteratively up-
dating. The following works [17, 26, 32, 40, 53, 59, 73]
continually improve the performance of optical flow esti-
mation based on this recurrent architecture. Our MemFlow
is also built upon and benefited from the most recently de-
veloped GRU-based network, while we employ memory to
maintain past motion information and attention for gather-
ing temporal cues for optical flow estimation.
Optical Flow Estimation by Multiple Frames. Tradi-
tional works [12, 20] employed Kalman filter for opti-
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Figure 2. Overview of our MemFlow. MemFlow maintains a memory buffer to store historical motion states of video, together with an
efficient update and read-out process that retrieves useful motion information for the current frame’s optical flow estimation. It has three
key components: 1) Feature Extractors. Feature and motion encoder extract and construct the motion feature for the current frame. Another
context encoder produces the context feature. 2) Memory buffer. Memory buffer stores historical context and motion features and read-out
the aggregated motion feature. 3) Update Modules. GRU updates the optical flow with a series of residual flows. And the Memory buffer
is kept updating when a new frame comes.

cal flow estimation with temporal coherence. Some re-
cent un/self-supervised deep models [31, 37, 38] take three
frames to estimate the optical flow of the current frame. On
the other hand, there are also several supervised efforts. Par-
ticularly, PWC-Fusion [49] fused the backward warped past
flow with current flow through a fusion module. RAFT [60]
implicitly utilized the historical frames as the initialization
to "warm-start" the optical flow estimation of current frame.
TransFlow [40] and VideoFlow [53] take five frames (in-
cluding both past and future frames) to better model the
long-range temporal information, while this demands pro-
hibitive computational cost and memory footprint to store
and process these frames. To make a balance of perfor-
mance and cost, our MemFlow integrates a memory module
using past frames for optical flow, and thus is capable of be-
ing running in an online mode. Moreover, MemFlow out-
performs these competitors with better generalization per-
formance while being much more computationally friendly.

Future Prediction by Flows. It aims to predict the opti-
cal flow into the future based on past frames [33, 41], mo-
tion history [14] or even single image [1, 61, 62]. Luo et
al. [41] firstly proposed to predict future 3D flow through
a convolutional LSTM architecture. And OFNet [14] em-
ployed a UNet and ConvLSTM to predict the optical flow
autoregressively based on past flows. However, Walker et
al. [61, 62] predicted the optical flow from a single image
and utilized variational autoencoders to model the uncer-
tainty. In contrast, we repurpose our MemFlow for one time
step ahead of optical flow prediction with minimal changes
and achieve better prediction performance compared to re-
cent OFNet [14] and several strongly competitive baselines.

3. MemFlow

3.1. Definition and Overview

Problem Setup. Optical flow is a per-pixel displacement
vector field: ft→t+1 = (f1, f2), mapping the location (u, v)
in current frame It to next frame It+1 as (u + f1(u), v +
f2(v)). In the setting of our online multi-frame optical flow
estimation, we have access to memory of past history and
current frame pair: It, It+1. We aim to output an optical
flow ft→t+1 and update the memory accordingly. Note that
the same MemFlow framework can be directly utilized to
estimate optical flow for future prediction. Thus such a task
is also evaluated here: we only get video frame It and mem-
ory of past, while predicting optical flow ft→t+1 into future.
Overview. We present an overview of our Memory module
for optical Flow estimation (MemFlow) as in Fig. 2. Specif-
ically, our MemFlow consists of three key components: 1)
Feature Extractors. We have a feature encoder Fθ extract-
ing features from the frames to construct the 4D correlation
volume subsequently. By correlation lookup operation [60],
the following motion encoder Eθ can produce the motion
feature. To provide context features of the current frame,
we also employ the context encoder Cθ. 2) Memory buffer.
We store historical context and motion features in the buffer
M, while only the aggregated motion feature can be read-
out through an attention mechanism. 3) Update Modules.
We iterate the modules of GRU and Memory for flow and
feature updating, respectively. Typically, GRU Gθ outputs a
series of residual flows. And we update the memory buffer
with the final optical flow.

In the next sections, we’ll elaborate on our proposed
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memory module for optical flow estimation (MemFlow(-
T)) in Secs. 3.2 and 3.3. Subsequently, we’ll demonstrate
its application in future prediction through minimal mod-
ifications, resulting in our optical flow prediction model,
MemFlow-P, as outlined in Sec. 3.4.

3.2. Memory Read-out

We will first introduce the necessary feature extraction mod-
ule, then present our novel memory read-out and resolution-
adaptive re-scaling for the aggregated motion feature here.
Feature Extraction. Given current input image pairs:
It, It+1, we first extract the feature of images at 1/8
resolution by feature encoder Fθ : Fθ(It),Fθ(It+1) ∈
RH×W×D, where D is the number of channel; H,W in-
dicate the 1/8 height and width of original images. We then
construct the 4D correlation volume C through the dot prod-
uct between all pairs of features:

C = Fθ(It)×Fθ(It+1)
T ∈ RH×W×H×W . (1)

With the current estimation of optical flow fi, which is ini-
tialized as an all zeros tensor, we can lookup correlation val-
ues from C as in [60]. Combined with the current flow, we
can get the motion feature fm = Eθ(fi,LookUp(C, fi)).
Finally, we extract the context feature fc from It with our
context encoder Cθ, which is trained with the same network
architecture of feature encoder Fθ. Please refer to the im-
plementation and supplementary for the network details.
Memory Read-out. We present a novel module for
memory read-out. Our memory buffer M = {km ∈
RL×Dk , vm ∈ RL×Dv}, initialized from an empty set, con-
sists of memory keys and values, where L = l × H × W
is the number of keys and values. Dk, Dv are the feature
dimension. We further define l as the length of memory
buffers. With current context feature fc and motion feature
fm, we read-out the aggregated motion feature through an
attention mechanism. Specifically, we first linear project
fc, fm and get the corresponding query, key, and value by
concatenation with memory buffer,

q = fcWq, k = [fcWk; km], v = [fmWv; vm], (2)

where Wq,Wk,Wv are the learnable projection parameters,
and [; ] is the concatenation operation along first dimension.
The aggregated motion feature can be read-out by

fam = fm + α · Softmax(1/
√
Dk × q × kT )× v, (3)

where α is a learnable scalar initialized from 0. And we
omit the necessary reshape operation here for simplicity.
Note that, GMA [32] utilizes attention to aggregate spatial
information, while we employ the attention for gathering
additional temporal information, as illustrated in Eq. (2).
Furthermore, we enhance the attention for resolution adapt-
ing through a re-scaling technique, as explained later.

Resolution-adaptive Re-scaling. We also introduce a
novel strategy for adapting resolution here. Specifically,
if the model is trained using sequences up to length N ,
it struggles to generalize attention effectively to sequences
longer than N . Pioneer work [11] found that the dilu-
tion of similarity score accounts for this. So Chiang and
Cholak [11] proposed to fix this problem by scaling similar-
ity with log n, where n is the sequence length. In contrast
to them, we further update the scaling with average training
sequence length navg as the logarithmic base, and use the
length of key k as the sequence length in our cross-attention.
So the softmax function in Eq. (3) is updated as

Softmax(
lognavg

(L+H ∗W )
√
Dk

× q × kT ). (4)

After incorporating this novel scaling coefficient into mem-
ory read-out, it can work for various resolutions and even
generalize well to 1080p video as verified in the experiment.

3.3. Memory Update and Flow Estimation

In this section, we introduce a novel memory update strat-
egy and flow estimation with our new memory module.

Particularly, with the context, motion, and aggregated
motion features, we can now output a residual flow through
a GRU unit: ∆fi = GRU(fc, fm, fam). After N iterations
of GRU, we can get the final optical flow and corresponding
motion feature fm. We then update the memory buffer by
inserting the transformed context and motion feature into
the key and value tensors of memory,

km = [fcWk; km], vm = [fmWv; vm]. (5)

When the memory buffer length l exceeds a pre-defined
maximum of lmax, we simply discard the obsolete features.
Though we try to distill these obsolete features into long-
term memory and model the long-range motion informa-
tion, we find it has no effect on the final performance.
Loss Functions. Our loss functions are inherited from
the classical works - RAFT [60]. Generally, we supervise
our network with l1 distance between our partially summed
residual flow {f1, . . . , fN} and groundtruth fgt with expo-
nentially increasing weights,

L =

N∑
i=1

0.85N−i||fgt − fi||1, N = 12. (6)

3.4. Beyond Flow Estimation: Future Prediction

The framework in Fig. 2 can be directly utilized for future
prediction with minimal changes, and we present the modi-
fications here. More details are in the supplementary.

As we do not have access to frame It+1, we are not
able to calculate the correlation volume and encode the mo-
tion feature for the current frame. So we extract the con-
text feature fc from the current frame and read-out the ag-
gregated motion feature fam from the memory buffer as
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in Sec. 3.2. Then we predict the optical flow by a small
convolutional network based on fc, fam, and past flow fp:
f = Convs(fc, fam, fp). After the next frame comes, we
can now calculate motion feature based on our predicted
flow or flow estimated by MemFlow. Finally, we could up-
date the memory buffer of MemFlow-P as in Sec. 3.3 and
are ready for optical flow prediction of the next frame. We
also use l1 distance as our loss function.

We further utilize the flow prediction for video predic-
tion. Generally, we forward warp the last video frame
by Softmax Splatting [44] with monocular depth from
DPT [47] and our predicted optical flow. And we will fill the
holes due to splatting with image inpainting method [16].

4. Experiments
Dataset and Implementation. We adopt SKFlow [59]
as the network architecture of MemFlow(-P). And we fur-
ther replace the feature encoder of SKFlow with Twins-
SVT [13] as MemFlow-T. The maximum length of memory
buffer lmax is set to 1. The iteration number of GRU is set
to 15 by default during inference. In order to learn better
correlation and motion features, we first pre-train our net-
work with 2-frame input on FlyingChair [19] and FlyingTh-
ings3D [42] following SKFlow. Subsequently, with 3-frame
video as input, we train MemFlow(-T) and MemFlow-P
on FlyingThings3D for generalization evaluation and then
finetune for Sintel [6] submission with the combination of
Sintel, KITTI [22], HD1K [34], FlyingThings3D. Finally,
we finetune the model with KITTI and newly proposed
Spring [43] for KITTI and Spring submission, respectively.
Our network is trained with AdamW [39] optimizer with
one-cycle [55] learning rate on two NVIDIA A100 GPUs.
Further details are provided in the supplementary material.
Evaluation Metric. We utilize end-point-error (EPE) and
Fl-all for Sintel and KITTI evaluation. EPE denotes the l2
distance between estimated flow and groundtruth. And Fl-
all refers to the percentage of outliers whose EPE is larger
than 3 pixels and 5% of groundtruth flow magnitude. For
the Spring benchmark, we also adopt 1-pixel outlier rate
(1px) and WAUC [51], which is the weighted average of
the inlier rates for a range of thresholds from 0 to 5 pixels.
In the following tables, the best results are in bold, while
the second-best ones are underlined.

4.1. Optical Flow Estimation

Generalization Performance. Following previous works,
we first show the generalization performance as in Tab. 1.
Our MemFlow(-T) achieves state-of-the-art zero-shot per-
formance on both challenging datasets, even with fewer it-
erations and inference time as shown in Fig. 1. MemFlow
with 5 iterations of GRU can even run in real-time while still
keeping near-SOTA in terms of generalization. Particularly,
though share the same model architecture, our MemFlow

Table 1. Generalization performance of optical flow estimation on
Sintel and KITTI-15 after trained on FlyingChairs and FlyingTh-
ings3D. MF indicates methods using multi frames for optical flow.

Model
Sintel KITTI-15

Clean Final Fl-epe Fl-all

RAFT [60] 1.43 2.71 5.04 17.4
GMA [32] 1.30 2.74 4.69 17.1

GMFlow [68] 1.08 2.48 7.77 23.4
GMFlowNet [72] 1.14 2.71 4.24 15.4

SKFlow [59] 1.22 2.46 4.27 15.5
MatchFlow [17] 1.03 2.45 4.08 15.6

FlowFormer++ [54] 0.90 2.30 3.93 14.1
EMD-L [15] 0.88 2.55 4.12 13.5

TransFlow(MF) [40] 0.93 2.33 3.98 14.4
VideoFlow-BOF(MF) [53] 1.03 2.19 3.96 15.3
VideoFlow-MOF(MF) [53] 1.18 2.56 3.89 14.2

MemFlow (Ours)(MF) 0.93 2.08 3.88 13.7
MemFlow-T (Ours)(MF) 0.85 2.06 3.38 12.8
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Figure 3. End-point-error of optical flow vs. number of iterations
during inference. This figure provides the generalization perfor-
mance on Sintel (clean) training set. Our method outperforms 15-
iteration SKFlow’s performance, after using only 2 iterations.

reduces EPE by 0.38 and 0.39 from SKFlow [59] on Sintel
final pass and KITTI-15, respectively. Besides, we visual-
ize the EPE evolution over iterations in Fig. 3. With only
2 iterations, our MemFlow can beat the previous SKFlow,
showing superior efficiency. Fig. 4 further provides a qual-
itative comparison on Sintel final pass with SKFlow and
VideoFlow-MOF [53]. Our MemFlow(-T) not only exhibits
more accurate details on large motion regions of hands and
head but also are good at fine detail of small object.

Besides, we find that recent multi-frame based Vide-
oFlow is typically not good at estimating optical flow for
the first frame of a video. Because VideoFlow needs strict
3-frame or 5-frame input, and output optical flow for the
center frame only. So they need to copy the first frame and
insert it into the video as a pseudo previous frame, which
accounts for why it tends to output some zero flow for the
first frame as shown in the first and fourth row of Fig. 4.
Yet our MemFlow can work normally without regard to the
position of the input frame within the video.
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Table 2. Optical flow finetuning evaluation on the public bench-
mark. MF indicates methods using multi frames for optical flow.
* uses RAFT’s multi-frame "warm-start" strategy on Sintel.

Model
Sintel KITTI-15

Clean Final Fl-all

RAFT∗ [60] 1.61 2.86 5.10
GMA∗ [32] 1.39 2.47 5.15

GMFlow [68] 1.74 2.90 9.32
GMFlowNet [72] 1.39 2.65 4.79

SKFlow∗ [59] 1.28 2.23 4.84
MatchFlow∗ [17] 1.16 2.37 4.63

FlowFormer++ [54] 1.07 1.94 4.52
EMD-L [15] 1.32 2.51 4.51

PWC-Fusion(MF) [49] 3.43 4.57 7.17
TransFlow(MF) [40] 1.06 2.08 4.32

VideoFlow-BOF(MF) [53] 1.01 1.71 4.44
VideoFlow-MOF(MF) [53] 0.99 1.65 3.65

VideoFlow-MOF(MF) (online) [53] - - 4.08
MemFlow (Ours)(MF) 1.05 1.91 4.10

MemFlow-T (Ours)(MF) 1.08 1.84 3.88

Finetuning Evaluation. We further report the finetuning
results on public benchmark datasets, Sintel and KITTI,
in Tab. 2. Our MemFlow(-T) improves SKFlow by a
large margin and outperforms most previous methods, e.g.
SOTA 2-frame based methods FlowFormer++ [54] and
multi-frame based TransFlow [40], except recent Vide-
oFlow. However, the online version of 5-frame VideoFlow-
MOF degrades Fl-all on the KITTI-15 test set from 3.65 to
4.08, which is worse than our 3.88. We suspect that using
multi-frame in an offline mode explicitly can lead to bet-
ter dataset-specific performance, while with limited cross-
dataset generalization performance as in Tab. 1, where 5-
frame VideoFlow-MOF performs much worse than 3-frame
VideoFlow-BOF on Sintel. Finally, a qualitative result in
Fig. 5 on the KITTI test set shows our MemFlow(-T) out-
performs others in distinguishing between different vehicles
and between the foreground and the sky.

Evaluation on Full-HD Spring Dataset. We also report
the generalization and finetuning results on the newly pro-
posed Full-HD (1080p) Spring benchmark in Tab. 3. We
first test MemFlow trained on Sintel for evaluation of gen-
eralization. Tab. 3 shows that our MemFlow achieves the
best EPE and Fl-all while being competitive with MS-
RAFT+ [30] in terms of 1px within different regions. Af-
ter finetuning on the Spring training set, MemFlow outper-
forms previous SOTA CroCo-Flow [65] by a large margin,
though CroCo-Flow is pretrained with additional 5.3M real-
world image pairs. Qualitative comparison in Fig. 6 also
shows that MemFlow performs better on fine details, while
CroCo-Flow employs the much slower tile-technique [29]
for high-resolution testing and leads to block-like artifacts.
Besides, we should point out that VideoFlow encounters

out-of-memory when tested on the Spring dataset with a
single NVIDIA A100 80 GB GPU. This further shows that
our MemFlow is much more computationally friendly.

4.2. Future Prediction of Optical Flow

For future prediction of optical flow, we compare with fol-
lowing three baselines: (1) MemFlow, we use MemFlow
to estimate ft−1→t with available frames and forward warp
the flow to next time step as f̂t→t+1. (2) Warped Oracle, in
contrast to (1), we forward warp the available optical flow
groundtruth in dataset as a performance upper bound of the
warping-based method. (3) OFNet [14], a learning-based
method that trains a UNet and ConvLSTM with 6 past op-
tical flows as input for future prediction. Note that all train-
able models are trained on FlyingThings3D for comparison.
Flow Prediction Results. Left part of Tab. 4 reports the
EPE on test split of FlyingThings3D, training set of Sin-
tel and KITTI-15. MemFlow-P outperforms other competi-
tors on all three datasets by a large margin, showing great
dataset-specific and cross-dataset performance. More re-
sults can be found in supplementary material.
Downstream Task: Video Prediction. We show here
quantitatively that our MemFlow-P generalizes well to
video prediction. We compare our method with recent
two flow-based video prediction models [23, 67] on KITTI.
Though without training for video prediction specifically,
our method can indeed achieve comparable or even better
SSIM [64] and LPIPS [71] as in the right part of Tab. 4.

4.3. Ablation study

In this section, we provide ablation studies on MemFlow
by evaluating the generalization performance. We also fine-
tune SKFlow with the same data volume as ours, denoted
as SKFlow* in Tab. 5. Note that a T -frame video has T − 1
flow labels. So the training step varies for fair comparison.
2-Frame Pretraining. We first assess the effect of 2-frame
pre-training. As in Tab. 5, pretraining substantially im-
proves the generalization performance on Sintel and KITTI-
15, except for the slightly worse EPE of Sintel final pass.
Inference Memory Length. In this experiment, MemFlow
is trained using 5-frame video on FlyingThings3D, and the
maximum length of memory buffer lmax is set to 2 at train-
ing. However, Tab. 5 shows that during inference, set lmax

to 1 can achieve the best performance on three metrics.
Compared to not using memory module during inference,
enabling the memory module can improve the performance
a lot, which shows the benefit of our designed memory mod-
ule. But increasing lmax from 1 to 3 can degrade the results.
We think that it’s because motion state a few frames ago is
less relevant to current motion.
Training Video Length. We are also interested in how long
the video we need for training the memory module. Fortu-
nately, Tab. 5 shows that video of 3-frame is good enough
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Table 3. Optical flow generalization and finetuning results on Spring [43]. We provide the 1px outlier rate for low/high-detail, (un)matched,
(non-)rigid, and (not) sky regions. We also show the EPE, Fl error [22], and WAUC [51]. Important metrics are highlighted in blue.

Dataset Model
1px

total low-det. high-det. matched unmat. rigid non-rig. not sky sky s0-10 s10-40 s40+
EPE Fl WAUC

C
+T

+S
+K

+H

RAFT [60] 6.79 6.43 64.09 6.00 39.48 4.11 27.09 5.25 30.18 3.13 5.30 41.40 1.476 3.20 90.92
GMA [32] 7.07 6.70 66.20 6.28 39.89 4.28 28.25 5.61 29.26 3.65 5.39 40.33 0.914 3.08 90.72

GMFlow [68] 10.36 9.93 76.61 9.06 63.95 6.80 37.26 8.95 31.68 5.41 9.90 52.94 0.945 2.95 82.34
FlowFormer [26] 6.51 6.14 64.22 5.77 37.29 3.53 29.08 5.50 21.86 3.38 5.53 35.34 0.723 2.38 91.68
MS-RAFT+ [30] 5.72 5.37 61.50 5.04 33.95 3.05 25.97 4.84 19.15 2.06 5.02 38.32 0.643 2.19 92.89

MemFlow 5.76 5.39 63.35 5.11 32.76 3.29 24.42 4.49 24.99 2.92 4.82 32.07 0.627 2.11 92.25

+Spring
CroCo-Flow [65] 4.57 4.21 60.59 3.85 34.20 2.19 22.50 4.48 5.87 1.23 4.33 33.13 0.498 1.51 93.66

MemFlow 4.48 4.12 61.70 3.74 35.12 2.39 20.31 3.93 12.81 1.31 4.44 31.18 0.471 1.42 93.86

Ground-truth SKFlow VideoFlow-MOF MemFlow MemFlow-T

Frame 1 of  “Ambush_2”

Frame 41 of “Ambush_5”

Frame 48 of “Ambush_5”

Frame 1 of “Bamboo_1”

Figure 4. Qualitative comparison on the training set of Sintel final pass after pre-training on FlyingChair and FlyingThings3D. Notable
areas are marked by a bounding box. Please zoom in for details.

Table 4. Left: End-point-error of flow prediction on FlyingTh-
ings3D (Final), Sintel (Final), and KITTI-15. Right: Comparison
of next frame prediction on KITTI test set (256x832). Note that
our method is not trained for video prediction specifically.

Method Things Sintel KITTI

Warped Oracle 14.76 5.76 -
MemFlow 15.70 6.23 12.95
OFNet [14] 13.76 6.03 12.43

MemFlow-P 7.56 5.38 8.82

Method SSIM↑ LPIPS↓

VPVFI [67] 0.827 0.123
VPCL [23] 0.820 0.172

Ours 0.825 0.138

to train MemFlow. Training on longer video only results
in comparable results but with much more computational
overhead, e.g. GPU memory and training time.
Warm-start. Warm-start was originally proposed by RAFT
for better initialization with the previous flow. It’s also com-
patible with MemFlow. However, equipped with our mem-
ory module, warm-start has little effect on the results as
shown in Tab. 5. So we don’t use warm-start by default.
Resolution-adaptive Re-scaling. We ablate the proposed
resolution-adaptive re-scaling on the newly proposed 1080p
Spring dataset, which has optical flow groundtruth at a res-
olution of 1920x1080 and therefore an ideal testbed for
research of cross-resolution generalization. MemFlow is
trained at a resolution of 368x768 by default, while we also
train another model at a much higher resolution of 432x960

Table 5. Ablation studies. Parameters used in our final model are
underlined. * means finetuning SKFlow [59] with 1200k steps.

Experiment Method
Sintel KITTI-15

Clean Final Fl-epe Fl-all

Baseline SKFlow∗ 1.13 2.39 4.03 14.63

Reference Model, Training: 300k on FlyingThings, max Mem is 2

2-Frame Pretraining
No 1.16 2.18 4.27 16.55
Yes 1.00 2.19 3.86 14.76

Inference Mem Length

0 1.16 2.41 4.20 15.44
1 1.00 2.19 3.86 14.76
2 1.02 2.36 3.86 14.65
3 1.07 2.25 3.87 14.64

Reference Model, Training: 600k on FlyingThings, max Mem is 2

Training Video Length
3 0.93 2.08 3.88 13.71
5 0.97 2.11 3.80 14.14
8 0.95 2.08 3.64 14.65

Warm-start
With 1.02 2.14 3.92 13.70

Without 0.93 2.08 3.88 13.71

for comparison. As shown in Tab. 6, our proposed method
can substantially improves the cross-resolution generaliza-
tion performance. Compared to high-resolution finetuning,
our method also performs better with minimal training cost.

Discussion: why set max memory length to 1? We’ve
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Reference Frame SKFlow VideoFlow-MOF (Online) MemFlow MemFlow-T
Figure 5. Qualitative comparison on test set of KITTI-15 after finetuning. Ours do much better at distinguishing between different vehicles
(first row) and between the foreground and the sky (second row). Please zoom in for details.

Reference Frame CroCo-Flow MemFlow

Error visualization color code:

CroCo-Flow (Error Map) MemFlow (Error Map)

Figure 6. Qualitative comparison with CroCo-Flow [65] on Spring test set. MemFlow performs better on fine details. Notable areas are
also marked by a bounding box. Please zoom in for details.
Table 6. Resolution-adaptive re-scaling substantially improves the
generalization to Full-HD (i.e., 1920x1080) Spring training set.

Method
1px

EPE
total s0-10 s10-40 s40+

None 4.245 2.535 12.216 42.630 0.448
High-reso. ft 4.456 2.741 12.360 43.174 0.436

Ada. Re-scaling 4.211 2.512 12.113 42.404 0.433

demonstrated that optimizing the memory buffer’s maxi-
mum length to 1 achieves the best performance. Essentially,
this implies that our model operates in a mode similar to a
3-frame setup. The underlying intuition behind this is that
a 3-frame video represents the minimal length needed for
effective temporal modeling, ensuring the most consistent
motion along the time axis for the same object. Moreover,
a 3-frame configuration already encompasses all the match-
ing information required for the center frame [31]. In sim-
pler terms, if there’s a pixel in the center frame, it’s usually
visible in at least one other frame. This is probably one
reason why various methods [31, 37, 38, 49, 53] opt for a 3-
frame approach in flow estimation. However, it’s important
to note that our MemFlow operates differently. Our mem-
ory module efficiently accumulates and updates the motion
state without redundant computations over time and doesn’t
explicitly extract a 3-frame sequence for estimation.

Discussion: why not a longer range? We have taken
an initial step in capturing long-range motion cues for flow
estimation. Specifically, we train MemFlow on an 8-frame
video and enhance motion features in the memory buffer by
adding relative position encoding [56] along the time axis.
Despite these efforts, setting the memory length to 1 contin-
ues to yield the best results, as indicated in Tab. 7. Further-
more, we have also experimented with distilling outdated
memory features into long-term memory based on historical

Table 7. More ablations about memory module. All models are
trained on 8 frames video with relative position encoding here.

Experiment Method
Sintel KITTI-15

Clean Final Fl-epe Fl-all

Inference Mem Length
1 1.05 2.12 3.65 13.78
2 1.06 2.27 3.65 13.81
3 1.03 2.18 3.67 13.83

Long Term Mem
With 1.05 2.12 3.65 13.78

Without 1.03 2.10 3.64 13.80

attention scores, following a similar approach to XMem [9].
However, introducing long-term memory doesn’t signifi-
cantly impact performance, as evidenced in Tab. 7. We be-
lieve a potential avenue for future research involves explor-
ing long-range motion history for optical flow estimation
while ensuring efficiency for real-time applications.

5. Conclusion
We introduced MemFlow, a novel online approach for
video-based optical flow estimation and prediction. What
sets MemFlow apart is its use of a memory module to
store historical motion states. Additionally, MemFlow in-
corporates resolution-adaptive re-scaling, enhancing cross-
resolution performance at minimal training cost. Notably,
MemFlow stands out with state-of-the-art cross-dataset
generalization and high inference efficiency. Besides, with
minimal adjustments, MemFlow can be repurposed for flow
prediction, achieving top-notch prediction performance.
Acknowledgements: Yanwei Fu is the corresponding authour.
Yanwei Fu is also with Shanghai Key Lab of Intelligent Informa-
tion Processing, Fudan University, and Fudan ISTBI-ZJNU Al-
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