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Abstract

Music recommendation for videos attracts growing in-
terest in multi-modal research. However, existing systems
focus primarily on content compatibility, often ignoring the
users’ preferences. Their inability to interact with users
for further refinements or to provide explanations leads to
a less satisfying experience. We address these issues with
MuseChat, a first-of-its-kind dialogue-based recommenda-
tion system that personalizes music suggestions for videos.
Our system consists of two key functionalities with associ-
ated modules: recommendation and reasoning. The rec-
ommendation module takes a video along with optional in-
formation including previous suggested music and user’s
preference as inputs and retrieves an appropriate music
matching the context. The reasoning module, equipped with
the power of Large Language Model (Vicuna-7B) and ex-
tended to multi-modal inputs, is able to provide reason-
able explanation for the recommended music. To evalu-
ate the effectiveness of MuseChat, we build a large-scale
dataset, conversational music recommendation for videos,
that simulates a two-turn interaction between a user and
a recommender based on accurate music track informa-
tion. Experiment results show that MuseChat achieves sig-
nificant improvements over existing video-based music re-
trieval methods as well as offers strong interpretability and
interactability. The dataset of this work is available at
https://dongzhikang.github.io/musechat.

1. Introduction
Music is an essential component in videos, enhancing both
the viewer’s experience and their understanding of the
content. While existing music recommendation systems
are proficient at selecting tracks that align with a video’s

*Equally contributed. Work partially done during the internship at Tik-
Tok.

theme—such as scary music for a horror film or upbeat
tunes for a dance clip—these systems often neglect individ-
ual user preferences. For example, an ‘80s enthusiast may
favor synth-pop over modern pop music for a nostalgia-
themed video, even though both are categorized as “pop.”

The challenge of personalized recommendation remains
relevant, as many systems leverage user profiles and activity
data to generate recommendations. However, we identify
two key limitations: (1) the inability to consistently meet
user preferences, and (2) the cold-start problem for new
users without prior data. Current music recommendation
systems aim to provide lists of songs based on user history,
but these may not always align with user needs for specific
videos. This not only affects user experience but also under-
scores the complexity of predicting preferences, which may
deviate due to factors like user’s recent trends. We propose
a feedback mechanism to mitigate these limitations. This
would allow the system to adjust its recommendations ac-
cording to user feedback, aligning more closely with chang-
ing preferences. For new users without historical data, a
cold-start scenario arises, leading to content-driven recom-
mendation once again.

In this study, we introduce MuseChat, a comprehensive
conversational music recommendation system for videos.
As shown in Figure 1, MuseChat consists of two main mod-
ules: the music recommendation module and the sentence
generator module. Users begin with uploading a video and
receive a music recommendation tailored to the video’s con-
tent. MuseChat enables user-system interactions through
dialogues in natural language. At each dialogue turn, users
are empowered by the music recommendation module in
MuseChat. They can refine recommendations by specifying
their preferences in natural language, such as mood, genre,
instruments, theme, and artist details. This process contin-
ues until they identify their desired music track. Another
distinguishing feature is the system’s interpretability versus
the “black box” nature of conventional music recommenda-
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Figure 1. MuseChat features two modules: the Music Recommendation Module, which processes either video input alone or in combination
with user prompts and past music suggestions, and the Sentence Generator Module, which uses these inputs to create natural language music
recommendations.

tion models. Our sentence generator module can not only
justify the recommended music with reasons but also craft
personal narratives for users based on the selected music.

Building upon this framework, our contributions are as
follows: (1) We introduce a large-scale dataset tailored for
a novel task, dialogue-driven music recommendations and
reasoning within the context of videos. The data contains
98,206 quartets: a video, original music, candidate music
and a two-turn conversation. This setup mimics the user’s
interaction with recommendation systems. It starts with
uploading a video, receiving an initial music recommen-
dation, and then accommodating a user’s textual prompt
to finalize the music selection; (2) We present a tri-modal
architecture designed for music-video matching that incor-
porates with textual input. This model not only processes
the previously recommended music and video content but
also refines recommendations based on user-provided tex-
tual prompts; (3) We augment our model with the capability
to offer clear, logical explanations for its music recommen-
dations, achieved through the deep understanding of musi-
cal features by our LLM-based sentence generation module.

2. Related Work

Automatic music tagging. Music tags efficiently summa-
rize songs by providing descriptive keywords that cover var-
ious elements such as emotion, genre, and theme. Numer-
ous studies dive into the domain of automatic music tag-

ging, as evidenced by works such as [4, 5, 28, 29, 38, 48].
Specifically, [49] employs a model that uses shallow con-
volutional layers to extract acoustic features, which are
then processed by stacked self-attention layers in a semi-
supervised setting. Similarly, [57] introduces S3T, a self-
supervised pre-training method based on the Swin Trans-
former [32] architecture, further optimized by a music-
specific data augmentation process.

Music description in free-form natural language. De-
scribing music in free-form natural language has also
gained research attention [22, 23, 34, 48]. For instance, [11]
proposes a universal retrieval system to handle both tag- and
sentence-level inputs. This system demonstrates adaptabil-
ity across nine different music classification tasks. More-
over, [35] introduces “Song Describer,” an open-source tool
designed to gather text descriptions of music tracks from
users. This initiative has led to the creation of a public
audio-caption dataset in the music domain.

Music recommendation for video. The task of music
recommendation based on video attributes receives atten-
tion in recent studies [39, 42, 52, 53]. While some works
focus on creating joint embeddings of music and free-form
natural language [23, 34], other studies examine the rela-
tionship between video, everyday audio sounds (excluding
music), and language [18, 50]. [36] develops a method for
guiding music recommendations with a single text descrip-
tion of music attributes. However, their approach does not
incorporate user feedback, nor does it adapt its recommen-
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dations based on such feedback or prior recommendation
results. Our work with MuseChat aims to address these lim-
itations.

Conversational recommendation system. Conversa-
tional Recommender Systems (CRS) gain research atten-
tion for their ability to support task-oriented, multi-turn dia-
logues with users [8, 14, 16, 24, 51]. These systems capture
the user’s detailed and current preferences, provide explana-
tions for suggested items, and process user feedback on rec-
ommendations. The emergence of LLMs substantially en-
hances the capabilities of CRS, particularly in understand-
ing and generating natural language. [47] proposes an inter-
active evaluation approach that balances the focus between
matching ground truth and maintaining interactivity. [13]
utilizes LaMDA [43] to create a YouTube video recommen-
dation system, relying on textual metadata instead of visual
information.

Multi-modalities and Large language models. The
rapid evolution of LLMs becomes a game-changer in the
landscape of artificial intelligence, becoming a focal point
in contemporary research. Originating from transformer ar-
chitectures [46], these models train on extensive corpora,
containing billions of words [10, 40]. Noteworthy mod-
els like OpenAI’s GPT-3 [3], Meta’s LLaMA [45], and
Google’s LaMDA [43] set benchmarks for textual gener-
ation that closely resembles human articulation. Moreover,
with the increasing importance of computer vision and other
modality tasks [7, 12, 25–27, 59], recent advances in LLMs
extend beyond text-only input to incorporate multi-modal
capabilities. These models are proficient at synthesizing
and interpreting information across different data types. For
instance, [60] introduces MiniGPT-4, which incorporates a
visual encoder into a large language model. This leads to
the model’s ability to generate narratives inspired by im-
ages. Other notable works include [54], which can inter-
pret video content to generate informed textual responses,
and [30], which demonstrates how to encode answer can-
didates into GPT-3 prompts, enabling external knowledge
integration. [31] proposes a novel method to answer audio-
visual related questions in their balanced audio-visual-text
dataset. Recent developments such as fine-tuning adapters
[9, 15, 21, 55] make it easier for smaller research groups to
adapt large models for specific uses, overcoming the high
computational costs.

3. Dataset
We create the conversation part of the dataset by simulat-
ing a two-turn dialogue. In the first turn, the user provides
only the video, and then a pretrained video-to-music re-
trieval system suggests a candidate music. In the second
turn, based on this candidate music, the user provides more
specific preferences in natural language as a prompt to guide
the recommendation system. With the video, the candidate

music, and the prompts, the system suggests the target mu-
sic. While we only focus on generating two-turn dialogues
here, we claim that our approach could easily extend to
more dialogue turns. This is because our approach can treat
subsequent dialogue turns as a “second turn”, continuously
adapting recommendations based on the previous result and
current user instructions. Our approach involves the follow-
ing steps, as Figure 2 shows: (1) collecting a large number
of video and music pairs from an existing data source; (2)
using a pretrained video-to-music retrieval model to select
a candidate music for each video; (3) gathering music tags
and other metadata for both the original and candidate mu-
sic, which are then used to construct prompts; (4) feeding
these prompts into GPT-3.5 for dialogue generation. We il-
lustrate each step separately below.

Video-music pairs collection. We use the YouTube8M
dataset [1] to create our conversational music recommen-
dation dataset. YouTube8M is a large-scale labeled video
dataset, encompassing millions of YouTube video IDs and
relevant features for audio and visual content. It comes with
thousands of labels covering a wide range of categories,
such as music, sports, documentaries, and more. We select
videos labeled as “music video” and remove unavailable
videos, resulting in a collection of 98,206 music videos.
From each music video, we extract a 120-second clip from
the center. We choose this 120-second segment for three
reasons: (1) It often captures the core information of the
video, serving as a representative sample for music recom-
mendation; (2) It minimizes noise from musical elements
like intros and outros that could negatively impact the rec-
ommendation process; (3) It reduces computational costs.

Preparing candidate music. We implement a video-
to-music retrieval model, named as Music-Video Pretrained
(MVP) model, to retrieve an appropriate candidate music
from the music pool to pair with the video. The MVP is
a two-tower model, sharing a similar architecture with the
models described in [23, 42]. It takes raw video and mu-
sic clips as inputs, utilizing the pretrained CLIP Image en-
coder [41] for video feature extraction and the pretrained
Audio Spectrogram Transformer (AST) [17] for music fea-
ture extraction.1 This model is trained on our proprietary
dataset consisting of 3 million high quality music-video
pairs. More details for MVP are included in supplemen-
tary materials. We randomly divide the 98,206 music tracks
from the music video clips into non-overlapping pools, with
each containing 2,000 tracks. We employ the MVP model
to select the candidate music from the same pool in which
target track resides but excludes the target track. We em-
pirically find that setting the pool size to 2000 could ensure
the quality and diversity of candidate music as well as stay
different from the target track. The MVP model computes

1The pretrained weights used are clip-vit-large-patch14 for the CLIP
Image encoder and MIT/ast-finetuned-audioset-10-10-0.4593 for the AST.
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Figure 2. The generation pipeline for Conversational Music Recommendation Dataset.

the similarity between the input video and each track in the
pool, ranking the tracks by descending similarity to deter-
mine the candidate music.

Constructing prompts. Our objective in this step is to
construct prompts that effectively incorporate both the tar-
get and the candidate music tracks. Since each video from
YouTube8M “music video” category has a paired music, we
use it as the target music track in our simulated dialogue,
towards which the user prompt would “steer” the recom-
mendation from the candidate music. We employ the music
tagging method from [38] to assign top 5 tags to each target
music track. We leverage two distinct tagging systems for
this purpose: one from the MagnaTagATune (MTT) dataset
[19] and another from the Million Song dataset (MSD) [2].
Each system has a vocabulary of 50 tags, and the use of both
systems increases the robustness of the tagging. The details
and statistics of music tags in our dataset are provided in
the supplementary material. Alongside music tags, we also
collect metadata for music videos, which includes video ti-
tle, video description, track name, artists, albums, and etc.
These metadata are downloaded from the YouTube website
for corresponding videos. Although each music video has
a title and description, supplementary details such as of-
ficial artist names, album specifics, and release dates are
available for only around 30,000 tracks. We manually cre-
ate various prompt templates using music tags and metadata
from both original and candidate music tracks to diversify
the synthetic conversations.

Dialogue turn generation. In the final stage, we gener-
ate dialogues that bridge the gap between the target mu-
sic and candidate music. Utilizing GPT-3.5, we process
the prompts constructed in the previous step. We observe
that GPT-3.5 can effectively leverage its extensive knowl-
edge base to enrich the conversations, even when the music
metadata is unavailable. This integration of our carefully
crafted prompts and GPT-3.5’s generative capabilities en-
sures that our training data is both high-quality and varied,
successfully imitating human interactions in the music rec-
ommendation context. The example prompt is available in
the supplementary materials.

4. Approach

We propose a novel approach to address the conversational
music recommendation task on this dataset, establishing a
new baseline performance. As shown in Figure 1, there
are two main modules involved in the system: music rec-
ommendation and sentence generator. We illustrate them
below.

4.1. Music Recommendation

The goal of the music recommendation module is to select
the most relevant music from the music pool using video,
candidate music, and user text prompt. Each training sam-
ple is defined as a quartet (v,mc,mt, t3), where v is the
video, mc denotes the candidate music track, mt is the tar-
get music track and t3 is the text of user prompt showing
preferences. As illustrated in Figure 3, we focus on enhanc-
ing the model’s ability to transit the recommendation from
the existing candidate music mc to target music mt. Intu-
itively, when user prompt is given as an additional context
to the candidate music and original video, the information
combined from these modality contexts should arrive at a
representation staying as close to the target music as pos-
sible. This motivates our formulation of the recommenda-
tion module as a metric learning problem: To learn a com-
mon embedding space between the tri-modal combination
(candidate music + video + user prompt) and music. To-
wards this end, we propose a novel MVT-Fusion Module,
as shown in Figure 3 (right), that explores music-text-video
fusion in a fine-grained manner to obtain the tri-modal em-
bedding. The embedding then serves as a goal embedding
with which the target music is aligned. We utilize con-
trastive learning for the embedding alignment. We detail
MVT-Fusion Module and contrastive formulation respec-
tively.

MVT-Fusion Module takes the candidate music mc

(represented as mel-spectrogram), user prompt t3, and
video frames v as inputs. Each input is encoded via pre-
trained encoder in their corresponding modality. The can-
didate music is encoded using an AST encoder [17] gmc .
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Figure 3. The music recommendation module combines video, the candidate music (1st round result), and user prompt (2nd round input)
to retrieve a music in a common embedding space, trained using multi-modal contrastive loss (left). The candidate music corrected by user
prompt along with the original video should result in a representation “closer” to the target music than other music. MVT-Fusion Module
(right) is designed to combine the 3 modalities into an embedding space: i). The candidate music is encoded using the Audio Spectrogram
Transformer (AST) [17]. ii). User prompt is fed into CLIP [41] text encoder (freeze) to get unpooled features. iii). Average pooling
is performed on CLIP (freeze) vector of each video frame to obtain the video representation. iv). To foster fusion between candidate
music and user prompt, self-attention layers and cross-modal attention (A2T and T2A, ‘T’ - text, ‘A’ - audio) are added to obtain the fused
music-text vector.

The user prompt is fed into CLIP [41] text encoder gt to
obtain contextualized language features (unpooled). Each
video frame is transformed into a vector using CLIP image
encoder gv , and is then averaged along the temporal axis to
obtain a single vector xv̄ , representing the semantics of the
video.

To better capture the correlation between the candidate
music and the user text prompt, we develop a fusion method
for merging the features from music and text modalities.
We adopt the “late fusion” strategy, applying several self-
attention layers to both output features from the CLIP text
encoder and the AST encoder before fusion. The output
features from self-attention layers of two branches are xt3 ∈
Rnt×d and xmc ∈ Rnm×d, and expanded as:

xt3 =
[
xt3

cls, x
t3
1 , . . . , xt3

(nt−1)

]
,

xmc =
[
xmc

cls , x
mc
1 , . . . , xmc

(nm−1)

]
,

(1)

where variable with subscript cls serves as their summary
of the respective sequence, along with the other elements
capturing detailed features.

Then, we fuse the transformed features by implement-
ing a cross-modal attention layer, which is defined as:
Att(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V , where dk is the di-

mensionality of key vectors. Q and K, V are from two
different modalities.

We add the video vector xv̄ to obtain the tri-modal fusion

vector representation xf :

xf = xv̄ +Att(xt3
cls,x

mc ,xmc) + Att(xmc

cls ,x
t3 ,xt3) (2)

Contrastive Formulation Once xf is obtained as the tri-
modal fusion feature, it is necessary to align the represen-
tation of the target music with it. To achieve this, we first
transform music from the pool into a vector space using a
separate AST encoder gmt . Then we propose a contrastive
learning approach to learn a common vector space between
tri-modal fusion vector and music vector. Specifically, we
use the hidden state of the last layer corresponding to the
cls token as the music vector. We denote the target music

vector as xmcls
t

+ , and any other music vector as xmcls
t

− . Then,
we formulate a contrastive loss aiming at keeping the vector

distance between xf and x
mcls

t
+ closer while pushing away

x
mcls

t
− from any other music, as illustrated in Figure 3 (left).

Specifically, we use the Contrastive Multiview Coding Loss
[44], a cross-modal variant of InfoNCE [37]. For each batch
B, we have:

LR = −
B∑
i=1

log h
(
xf
(i),x

mcls
t

(i)

)
∑

j ̸=i h
(
xf
(i),x

mcls
t

(j)

)
+ h

(
xf
(i),x

mcls
t

(i)

)
 ,

(3)
where xf

(i) and x
mcls

t

(i) are i-th fusion vectors and target mu-

sic vectors in the batch respectively. h(x,y) = exp
(

x⊤y
τ

)
is a discriminating function, with τ being a trainable tem-
perature hyperparameter.
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4.2. Sentence Generator

To equip MuseChat with reasoning capability, we propose
a sentence generator to provide justification for the recom-
mended music. Towards this end, we design a multi-modal
LLM, as illustrated in Figure 4, using Vicuna-7B [58] (de-
rived from fine-tuning Llama2-7B [45] model) as the back-
bone. Each training instance comprises a music represen-
tation, denoted as xm̄t , which is the average of the music
embedding xmt = [xmt

cls , x
mt
1 , . . . , xmt

(nm−1)], derived from
the previously fine-tuned AST Encoder gmt . The instance
also includes the corresponding recommendation reasoning
statement, t4, from the simulated conversations. Notably, in
our settings, each piece of music, whether as a candidate or
target, has a corresponding reasoning statement in a conver-
sation. Therefore, we do not specifically use the reasoning
statement of candidate music in the first turn, t2, because
when this candidate music serves as the target in the other
conversation, its reasoning statement is already utilized. We
apply a linear layer fl to project the averaged music features
xm̄t onto the text embedding space. To increase training ef-
ficiency, we leverage LoRA [21] to fine-tune the attention
and output layers of Vicuna. We use next token prediction
task aiming at minimize the negative log-likelihood of re-
sponse tokens conditioned on the recommended music:

LG (y; θ) = −
n∑

i=1

log
[
pθ

(
yi |

[
fl
(
xm̄t

)
, y<i

]
; θ
)]

,

(4)
where yi is the i-th token in the response y, and θ is the
trainable parameters.

Although we train the sentence generator using only mu-
sic embeddings, during inference, we also input the title of
suggested music from the music recommendation module.
This is necessary because the model cannot generate accu-
rate names of unseen music tracks.

5. Experimental Results
5.1. Implementation Details

We allocate 88,000 of music video clips to our training set.
For each 120-second music video clip, we divide it into
twelve 10-second segments and capture 5 frames per sec-
ond from each segment. In our training process for the mu-
sic recommendation module, each training sample includes
a 10-second video clip, a corresponding 10-second target
music clip, a 10-second candidate music clip, and a user
prompt. To extract video and text features, we use Ope-
nAI’s CLIP model. For audio features, we employ the AST
model.2 We project the extracted features from all modal-
ities into 256-dimensional vectors using linear layers. We

2The pretrained weights used are clip-vit-base-patch32 for the CLIP
Image encoder and MIT/ast-finetuned-audioset-10-10-0.4593 for the AST.

Figure 4. Illustration of sentence generator. During training, we
only train the linear projection layer and the additional LoRA
weights while keeping the parameters of Vicuna-7B and AST en-
coder frozen. And the prompt input is “### Recommender: Music
feature: <Music> [music token] </Music>; Generate Recom-
mendation:”. During inference, we give the recommended music
title as additional information, and the prompt input is “### Rec-
ommender: Music title: [title]; Music feature: <Music> [music
token] </Music>; Generate Recommendation:”. “[music token]”
corresponds to the embedding vector projected from AST encoder
output.

Model MR ↓ R@1 ↑ R@5 ↑ R@10 ↑ SR ↑

VM-NET [20] 28 5.31 18.14 28.78 -
MVPt [42] 7 20.71 48.89 63.14 -
ViML [36] 5 22.61 52.43 66.56 -

Sum-Fusion 17 10.58 28.47 40.19 21.70
Self-Attn Fusion 5 21.40 50.83 65.29 28.37
Cross-Attn Fusion 3 25.71 56.97 71.07 31.48
MuseChat (ours) 2 32.79 63.92 76.53 40.49

Chance 250 0.20 1.00 2.00 0.40

Table 1. Music retrieval results for baseline models and MuseChat.

then apply 4 self-attention layers and 1 multi-head cross-
attention layer (with 16 heads each) for fusing the candidate
music and text features. For contrastive loss, we initialize
temperature as 0.1, and set batch size to be 34 per GPU. For
training, we use AdamW optimizer [33] with a learning rate
of 4e-5 and a decay rate of 5e-4. In the sentence generator
module, the maximum sequence length is set to 128, and the
temperature is fixed to 0.1. We set the LoRA rank to 32 and
train the module for 3 epochs using a learning rate of 5e-4
with linear decay. Training for both modules are conducted
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on 16 Nvidia V100 32G GPUs.

5.2. Ranking Evaluation

Following the setup for measuring music retrieval with free-
form natural language tasks as described in [36], we ran-
domly create non-overlapping music pools using test data,
each containing 500 tracks. Each pool has only one tar-
get music track for each video. For the track-level testing,
we calculate embeddings for all 12 segments of each 120-
second video and music track. We then take the average of
these 12 embeddings to create a single representative em-
bedding for each video and each music track. Using these
averaged embeddings, we evaluate the performance of the
music recommendation module. In the first turn, music is
suggested based solely on video features, as we assume that
the user does not provide any specific preferences at this
point. In the second turn, we include the user’s text prompt
and candidate music along with the video features. This
setup allows us to evaluate the system’s ability to modify
its initial recommendations based on the new information.
For both turns, we rank music tracks by calculating the co-
sine similarity between the features of the music in the pool
and the fusion features. We use various metrics such as Re-
call@K for K = 1, 5, 10, and Median Rank (MR) to evaluate
the performance of the recommendation. We also measure
the “success rate” (abbreviated as SR), defined as the per-
centage of videos whose target music track appears at least
once as the top of the recommended list within two turns.
Since the MVP model cannot accommodate the user prompt
as an input for the second turn, its SR is same as R@1. We
report the average performance for each of these metrics
across all test music pools.

Baselines Comparison We introduce six baseline mod-
els with various structures and modalities to assess the ef-
fectiveness of MuseChat in ranking. (1) VM-NET [20].
We re-implement it in PyTorch and replace the audio and
vision backbone with AST [17] and CLIP [41] respectively
for better performance. (2) MVPt [42] does not have pub-
licly available source code. Thus, we replace their Deep-
Sim [29] audio encoders with the publicly available AST
[17] model. (3) ViML [36] also lacks publicly available
source code. We replace their DeepSim audio encoders
with the publicly available AST model and use their pro-
posed text dropout strategy. Text and video features are
fused using Transformer blocks, following the settings de-
scribed in their paper. (4) Sum-Fusion retains the architec-
ture of MuseChat but employs a different fusion mechanism
by summing up the vectors of the video, music, and text di-
rectly. We use the mean-pooled vector for both candidate
music encoded by AST and text features extracted by CLIP
text encoder. (5) Self-Attn Fusion extends the summation
approach by including self-attention layers for text and mu-
sic modalities before fusion, capturing intra-modal dynam-

ics. (6) Cross-Attn Fusion removes self-attention layers
and keep the cross-attention layer between music and text
branch. We train the baseline models using the same music
video pools and loss function as MuseChat. As shown in Ta-
ble 1, MuseChat outperforms all baseline models. In partic-
ular, in R@1 metric, our model achieves a significant gain
of +7.0% against “Cross-Attn Fusion” and +10.1% against
the ViML model, showing the effectiveness of our fusion
approach as well as the use of all three modalities as inputs.
Notably, for models that could take video, candidate mu-
sic and user prompt as inputs, we report the recall and MR
for the second turn to show the effectiveness of our model
when dealing with user preferences. The first turn results
for these models are detailed in the supplementary materi-
als. Additionally, we explore the contributions of various
modalities to the retrieval performance in our model, with
these specifics also included in the supplementary materials.

5.3. Modality Ablation Studies

To further show the necessities of combining all three
modalities for retrieval, we conduct ablation studies by re-
moving video, candidate music, and text branch in turn dur-
ing training. When excluding candidate music or text fea-
tures, we remove the related cross-attention layers, retain-
ing only the self-attention layers, with the cls token used for
the summation of modality features. As Table 2 indicates,
the model without visual branch, which is only valid for the
second turn, exhibits the worst performance. This reveals
the significance of visual information. Additionally, when
comparing the MVPt [42] model with MuseChat without
candidate music, we observe that user prompt helps to re-
trieve music more accurately.

5.4. Reasoning Evaluation

We introduce two baseline models to highlight the signifi-
cance of training our sentence generator module using both
music embeddings and music titles as inputs. The first base-
line employs the frozen Vicuna-7B [58] model, which is
fine-tuned on the Llama2-7B [45] weights. Since this model
cannot process music embeddings, we only present it with
the music title. The second baseline (Vicuna w/ Music) uses
the same architecture as our sentence generator module but
takes only music embeddings as input. We employ various
common NLG metrics [6, 56] to evaluate the performance
of the models on simulated conversations. As shown in Ta-
ble 3, the Vicuna-7B model performs the worst. It struggles
to capture the musicality of the given track, as it is a text-
only model. As for Vicuna w/ Music, while capturing the
musicality of the recommended track due to its training on
both music and text, it fails to identify the correct music
name and artist name based on audio information only. In
contrast, by taking both audio information and music title
as inputs, our sentence generator module achieves the best
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Model Modality MR ↓ R@1 ↑ R@5 ↑ R@10 ↑ SR ↑
MVPt [42] Video → Music 7 20.71 48.89 63.14 20.71
MuseChat w/o Video (Music, Text) → Music 19 8.12 24.53 37.11 8.12
MuseChat w/o Candidate Music (Video, Text) → Music 5 22.67 51.53 65.42 26.02
MuseChat (ours) (Video, Music, Text) → Music 2 32.79 63.92 76.53 40.49

Chance - 250 0.20 1.00 2.00 0.40

Table 2. Ablation Studies: Comparing MuseChat’s Performance Without Certain Modality Branches and training from scratch.

Model Input Modality BertScore [56] (f1) ↑ AB Divergence [6] ↓ L2 Distance ↓ Fisher-Rao Distance [6] ↓
Vicuna-7B Music Title 0.9453 3.93 0.382 2.11
Vicuna w/ Music Music Embeddings 0.9526 2.68 0.279 2.02
MuseChat (ours) Music Title + Embeddings 0.9676 1.51 0.208 1.47

Table 3. Comparison of semantic similarity between output and simulated conversations using various metrics. BERTScore [56] assesses
token-level similarity, while AB Divergence, L2 Distance, and Fisher-Rao Distance are derived based on InfoLM [6].

Figure 5. Example: MuseChat retrieves target music in two turns.

performance on reasoning.
We evaluate MuseChat’s effectiveness in music recom-

mendations through a qualitative analysis, highlighting its
capacity for understanding queries, suggesting relevant mu-
sic, and generating responses that integrate visual content,
user preferences, and audio characteristics. Figure 5 shows
how MuseChat interacts with users, dynamically adjusting
its recommendations based on a range of contextual cues.
We include more examples in the supplementary materials.

We also evaluate our model and two baselines via hu-
man assessment, employing a 5-point MOS scale to gauge

correctness (music and artist identification), musicality (de-
scription of music traits), and clarity (response understand-
ability and coherence). Table 4 shows the human evaluation
results. Since Vicuna-7B only takes the music title as input,
it achieves a better score in correctness compared to Vicuna
w/ Music, which struggles to identify the title and artist of
an unknown piece of music based solely on music charac-
teristics. In contrast, the Vicuna w/ Music model captures
musicality better than Vicuna-7B, which relies solely on
its knowledge base for musicality assessment. MuseChat,
however, achieves the best overall performance by both cor-
rectly identifying music and artist name and understanding
music in the context of video and user preference. Details
are included in the supplementary materials.

Model Correctness Musicality Clarity Overall

Vicuna-7B 3.07 2.54 3.60 3.07
Vicuna w/ Music 1.24 3.50 4.05 2.93
MuseChat (ours) 4.63 4.22 4.54 4.46

Table 4. Human evaluation scores for music reasoning outputs.

6. Conclusions
In this work, we establish a closer connection between hu-
man and music recommendation system through an interac-
tive dialogue. We build the first conversational music rec-
ommendation dataset for videos based on public YouTube-
8M dataset. In addition, we propose a system of two mod-
ules that interpret multi-modal inputs and deliver its recom-
mendation with reasoning in natural language. Extensive
experiments show that our proposed system exhibits strong
performance on retrieval task with interpretability and in-
teractivity. Future efforts could be made to design a more
integrated system that combines recommendation and rea-
soning within a single multi-modal LLM.
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