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Abstract

Panoramic images enable deeper understanding and
more holistic perception of 360◦ surrounding environment,
which can naturally encode enriched scene context infor-
mation compared to standard perspective image. Previous
work has made lots of effort to solve the scene understand-
ing task in a hybrid solution based on 2D-3D geometric
reasoning, thus each sub-task is processed separately and
few correlations are explored in this procedure. In this pa-
per, we propose a fully 3D method for holistic indoor scene
understanding which recovers the objects’ shapes, oriented
bounding boxes and the 3D room layout simultaneously
from a single panorama. To maximize the exploration of
the rich context information, we design a transformer-based
context module to predict the representation and relation-
ship among each component of the scene. In addition, we
introduce a new dataset for scene understanding, including
photo-realistic panoramas, high-fidelity depth images, ac-
curately annotated room layouts, oriented object bounding
boxes and shapes. Experiments on the synthetic and new
datasets demonstrate that our method outperforms previous
panoramic scene understanding methods in terms of both
layout estimation and 3D object detection.

1. Introduction
Single-view indoor scene understanding from a single RGB
image is an essential yet challenging problem and has im-
portant applications such as augmented reality and service
robotics. Most of the existing works solve room layout
estimation, object detection, and reconstruction separately.
Some recent works, including Factor3D [50], CooP [19],
Total3D [35], and IM3D[63], show that learning these tasks
jointly helps to improve the performance on each subtask by
exploiting context information. In addition, panoramic im-
age with a 360◦ field-of-view (FOV) contains much richer
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Figure 1. Given a single RGB panorama, we simultaneously esti-
mate the room layout, oriented object bounding boxes (left), and
full scene meshes (right). The first and second rows are examples
from the iGibson-Synthetic [62] and ReplicaPano datasets.

information than a regular perspective image, whose FOV is
normally around 60◦. PanoContext [64] and DeepPanoCon-
text [62] prove that the context becomes significantly more
robust and powerful with a larger FOV, which further im-
proves the performance and enables accurate holistic scene
understanding. Despite recent progress, the indoor scene
understanding problem remains challenging since predict-
ing object pose and shape from a single RGB image can
be ambiguous without any 3D prior information in a real
indoor environment with occlusion and clutter.

This paper proposes a new method for end-to-end total
3D scene understanding from a single panorama (Fig. 1).
Our approach has two important features. Firstly, we lift
the 2D panorama into 3D space to exploit 3D information
to facilitate indoor scene understanding tasks. In this way,
our method can optimize room layout estimation, objects
detection and reconstruction simultaneously in an end-to-
end fashion. Our experiments show that converting the 2D
panorama as a 3D representation in a scene understanding
framework can boost performance remarkably. Addition-
ally, we observe that the object features used to estimate
boxes also contain information on geometries; therefore,
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different from previous methods [35, 62, 63], we learn a
shape code to represent each object using an MLP without
training a separate network.

Secondly, in order to better capture the 3D context in
the scene, we unify different tasks together and propose a
novel transformer-based context module for simultaneously
predicting object shapes, oriented bounding boxes and 3D
room layout. The key insight of this model is to take various
scene components as input to discover spatial relationships
among object-object and object-layout. Specifically, as the
2D image can provide more high-level semantic informa-
tion, we blend not only the extracted features in 3D space
but also the global image features from panorama. In ad-
dition, the random token masking strategy is employed to
strengthen interactions across objects and room layout. We
verify the benefits of using global image features and token
masking strategy in ablation study.

When it comes to the panoramic datasets for holistic
scene understanding, more efforts should be put into this
area. Existing panoramic datasets are either for single ap-
plication [52, 56, 59, 66] or missing critic 3D ground truth
such as object boxes [1, 3] and object shapes [64, 65]. Com-
pared with annotating the oriented object boxes and 3D
shapes which is extremely labor-costing, it could be easier
to generate ground truth from a simulator. Zhang et al. [62]
release the first holistic panoramic scene dataset with com-
plete ground truth, rendering from synthetic scenes, while
the panoramas lack realism and may set the barrier to de-
ploy the algorithm into real-world. To minimize the do-
main gap between synthetic and real data, we render photo-
realistic panoramas and depth images based on high-fidelity
scene scan [44], then label room layout, 3D object boxes
and shapes semi-automatically. Qualitative evaluations in-
dicate that this new dataset offers accurate and comprehen-
sive ground truths.

In general, the main contributions of our work can be
summarized as follows:

• We propose a new fully 3D method for total scene under-
standing from a single RGB panorama in an end-to-end
fashion, which will better preserve the intrinsic structure
of the indoor scene.

• We introduce a novel transformer-based context module
with global image feature and token masking mechanism
that takes the environmental context into account in a sin-
gle step.

• We introduce ReplicaPano, a new dataset comprising
photo-realistic images, real-world object arrangement,
room layout, and object meshes for panoramic 3D scene
understanding.

• The proposed method achieves state-of-the-art perfor-
mance on both synthetic and real-world datasets.

2. Related work
Single-View Scene Understanding Scene understanding
from a single image is highly ill-posed and ambiguous be-
cause of the unknown scale and severe occlusion in the
scene. Many works have been proposed to study room lay-
out estimation, 3D object detection and pose estimation,
and 3D object reconstruction. Early room layout estima-
tion works often make cuboid assumption [9, 17, 26, 33]
or Manhattan assumption [45, 46, 53, 59, 60, 67], while
Pintore et al. [38] model room structure as a 3D mesh to
exploit the possibility of estimating arbitrary room layout.
Object detection works [6, 13, 19, 49] aim to infer 3D
bounding boxes and object poses from 2D representation,
with a 2D object detection [8, 16] stage. In terms of ob-
ject reconstruction, CAD models are selected from a large
dataset to match the 2D object proposals in [20, 21, 24],
while [7, 15, 34, 36, 37] demonstrated that implicit neu-
ral representations outperform grid, point, and mesh-based
representations in parameterizing geometry and seamlessly
allow for learning priors over shapes.

Some recent works start to solve multiple tasks together
to exploit context information. CooP [19] introduces the
target parameterizing and cooperative training scheme to
solve for object poses and the layout of the indoor scene,
but object shapes are absent. Total3D [35] is the first work
to solve layout, 3D object detection and pose estimation,
and object reconstruction jointly. Zhang et al. [63] pro-
poses to improve the performance of all three tasks via im-
plicit neural functions and graph convolutional networks.
Liu et al. [29] further improves the visual quality of in-
door scene reconstruction using implicit representation. All
these aforementioned methods only work on the perspec-
tive images, which lack enough information to better parse
the entire scene. Zhang et al. [64] first introduced to parse
indoor scenes using 360◦ full-view panorama. Then, the
follow-up work [62] utilizes a hybrid framework that lever-
ages image information and scene context to estimate ob-
jects’ shapes, 3D poses and the room layout from a sin-
gle panorama. Instead, we propose to lift the 2D input to
3D representation and design a transformer-based context
module for the panoramic scene understanding task, which
can fully explore spatial context information among differ-
ent components of an indoor scene.
Transformer Transformer [10, 30, 51] has been the domi-
nant network in the field of NLP for a few years. Inspired
by ViT [12], researchers have designed many efficient net-
works [2, 31, 48, 55, 61] to combine the advantages of both
CNNs and transformers.

The review [57] shows that the transformer structure
can better learn context information among multi-modal in-
put data. CLIP [39] jointly trains the image encoder and
text encoder at the pretraining stage and converts an image
classification task as a text retrieval task at test time. Hu
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Figure 2. The framework of the proposed holistic scene understanding pipeline. (a) The LEN module maps an panorama to a watertight
3D mesh of the room layout. (b) The ODN module jointly solves the oriented object bounding box and shape based on the estimated
point cloud of the indoor scene. (c) The Context Module integrates various embeddings from LEN and ODN modules to fully explore
the relationship among each component of the scene. Finally, refined features go through different heads, and the layout, oriented object
bounding boxes, and shapes are recovered to reconstruct the full scene.

and Singh [18] combined image and text to conduct multi-
modal multi-task training and achieved good results in 7 vi-
sual and text tasks. Group-Free [32] and Mask3D [40] uti-
lize the attention mechanism in transformers to fuse the ob-
ject features and point features iteratively to improve 3D ob-
ject detection and 3D semantic segmentation respectively.
PQ-Transformer [5] and AnchorRec [11] further predicts
3D objects and layouts simultaneously from point clouds,
but has limitations in parsing complex and inclined walls.
Similarly, conditional object query was used in [54] to fuse
point cloud and image features to obtain better results on
the 3D detection task. There is a notable advantage of trans-
formers for multi-modal tasks, in this paper, we introduce a
transformer-based context module to facilitate holistic in-
door scene understanding.

Panoramic Dataset SUN360 [56] is the first real-world
panoramic dataset used for place recognization, then it is
annotated by Zhang et al. [64] for indoor scene understand-
ing, but only room layout and objects’ axis aligned bound-
ing box are provided. 2D-3D-S [1] and Matterport3D [3]
are published concurrently with real-world panoramas, but
oriented object boxes and meshes are absent. In addi-
tion, there are some datasets [52, 59, 66] published re-
cently for the purpose of depth estimation or layout esti-
mation on panorama. Zheng et al. [65] propose a large
photo-realistic panoramic dataset for structured 3D model-
ing, namely Structured3D, but both mesh ground truths of
scenes and objects are not published. To tackle that there
is no panorama dataset with complete ground truths, au-
thor in [62] uses iGibson [41] to synthesize 1500 panora-
mas with detailed 3D shapes, poses, semantics as well
as room layout. However, the real-world indoor scene

dataset containing all ground truth is still missing. To min-
imize the gap, we introduce a new dataset rendered from
real-scan [44], containing 2,700 photo-realistic panorama,
real-world room layouts, and object bounding boxes and
shapes.

3. Our Method

The proposed pipeline simultaneously predicts the room
layout, oriented 3D object bounding boxes and shapes. As
shown in Fig. 2, we use a depth estimator to lift the 2D
panorama into the point cloud, which is then fed into the
Object Detection Network (ODN) to jointly predict 3D ob-
ject boxes and shape codes. In the meantime, the layout
is recovered as a triangle mesh from the input through the
Layout Estimation Network (LEN). In this paper, we ex-
ploit the transformer’s intrinsic advantages and scalability
in modeling different modalities and tasks, making learning
appropriate spatial relationships among objects and layout
easier. Features from layout, image, and 3D objects are fed
into the context module to better estimate representations
and relations among objects and layout. Finally, the room
layout and object shapes are recovered as mesh, then scaled
and placed into appropriate locations to reconstruct the full
scene. We elaborate on the details of each module in this
section.

3.1. Layout Estimation

We model the room layout as a 3D mesh from the input
panorama, which also relaxes the geometrical constraints
(e.g., forcing vertical walls and/or planar walls and ceil-
ings). Similar to Deep3DLayout [38], we map panoramic
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image to a triangle mesh representation (V,E, F ), where
V (n, 3) is the set of n = 642 vertices, E(m, 2) is the set
of m edges, each connecting two vertices, and F (n, d) are
the image feature vectors of dimension d = 288 associ-
ated to vertices, denoted as Flayout in the following. Two
Graph Convolution Network (GCN) blocks deform an ini-
tial tessellated sphere by offsetting its vertices, driven by
associating image features to mesh vertices in a coarse-to-
fine form. Unlike Deep3dlayout [38] which only extracts
features from equirectangular view, we additionally extract
features from perspective views (e.g., ceiling and flooring
views) through Equirectangular-to-Perspective (E2P) con-
version. Then, E2P-based feature fusion [59] is employed
to fuse two types of features and get gravity aligned fea-
tures. Specifically, we use ResNet-18 as the architecture for
both equirectangular view and perspective views, the input
dimension of image I is 3× 512× 1024, the output dimen-
sion of fused global image feature Fimage is 512× 16× 32.
The ablation experiment in Sec. 4.3 shows that the accuracy
of room layout benefits from perspective features.

Drawing on the previous multi-modal transformer mod-
els [27, 28], in order to fully utilize the layout information
and the high-level image information, we inject the global
image feature Fimage and layout features Flayout from the
first GCN block into the context module. Then the refined
layout representation is sent into the layout head (the sec-
ond GCN block). As a result, the second block returns the
final deformed vertices V ∗(4n− 6, 3) for the layout mesh.

3.2. 3D Object Detection and Mesh Generation

After lifting the panorama into 3D space as a point cloud,
our ODN can accurately detect the oriented bounding box
and regress shape code for each object. We adopt a sim-
ilar strategy as Group-Free [32], first downsampling the
point cloud through Fabinacci sampling and then feeding
the downsampled point cloud S ∈ RN×3 into the backbone
network and the Initial Object Sampling module to get point
cloud features and K initial object candidates denoted as
Fpoint ∈ Rdo×M and Fobject ∈ Rdo×K respectively, where
K = 256,M = 1024 and the feature dimension do = 288.
To automatically learn the contribution of all points to each
object, these intermediate results will serve as point tokens
and object tokens in the next subsection.

Inspired by [22, 23], we observe that shape information
is embedded in the object feature in the process of 3D object
detection. Thus, in addition to the existing object prediction
head, we add a shape prediction head to jointly predict the
shape latent code and bounding box of the candidate object.
The shape latent code is supervised by a pretrained autoen-
coder of object mesh, here we choose ONet [34] to serve as
the autoencoder, because of its computation-friendly size of
object shape latent code (1D vector of size 512 ), which can
be easily used to construct the shape loss during the train-

ing. The ONet is pre-trained on ShapeNet [4] and refined
on iGibson-Synthetic [62] with data augmentation.

3.3. Transformer-based Context Module

Given a single panorama, our goal is to further explore
the intrinsic relationships among different components of
the indoor scene. We designed the transformer-based con-
text module with a multi-layer encoder structure to ex-
tract better representations of objects and room layouts
from different features. As shown in Fig. 3, the posi-
tion embeddings of point, object, layout, and global im-
age are computed by applying independent linear layers
on the parameterization vector of point (x, y, z), 3D box
(x, y, z, l, h, w), layout vertice (x, y, z), and unit spheri-
cal coordinate (cosϕ sin θ, sinϕ, cosϕ cos θ), respectively.
The global image feature Fimage along with point feature
Fpoint, object feature Fobject, and layout feature Flayout are
point-wise summed with their position embeddings and
then are concatenated together and act as the input for the
context module:

Z = [Fimage,Flayout,Fpoint,Fobject]. (1)

The context module is composed of 6 stacked trans-
former encoder layers, each layer includes a multi-head
self-attention (MHSA) layer and a feed-forward network
(FFN). MHSA is the foundation of a transformer, allow-
ing the model to jointly attend to information from different
representation subspaces. In a self-attention module, em-
bedding Z will go through three projection matrices (WQ,
WK , WV ) to generate three embedding Q(query), K(key)
and V(value):

Q = ZWQ,K = ZWK,V = ZWV. (2)

The output of self-attention is the aggregation of the val-
ues that are weighted by the attention weights. In our case,
we propose a token random masking scheme to help the en-
coder to be robust and effective in handling situations with
heavy occlusions, formulated as:

MSA(Q,K,V) =

(
QKT

√
d

⊙M

)
V, (3)

where d is the dimension of query embedding and M is the
specific masking matrix. Multiple self-attention layers are
stacked and their concatenated outputs are fused by weight-
ing matrix Wh, to form MHSA:

MHSA(Q,K,V) =

H∑
h=1

MSA(Q,K,V)Wh. (4)

After iterative refinement of MHSA, the resulting embed-
ding of different stages are fed into different prediction
heads to generate the results of each task, which will be
ensemble to produce superior results.
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Figure 3. Architecture of the transformer-based context module.

3.4. Loss Function

In this section, we summarize the learning objectives along-
side their corresponding loss functions, and we describe our
composite loss for end-to-end training.
Layout Loss At first, we adopt the loss function from Pin-
tore et al. [38] to define layout loss which measures the pre-
diction with respect to the ground truth layout:

Llayout = λp · Lpos + λn · Lnorm + λe · Lsharp. (5)

where L∗ and λ∗ are the losses and coefficients for vertex
position, surface normal, and edge sharpness, respectively.
Object Loss The loss for ODN is similar to [32], includ-
ing sampling loss Lsamp, objectness loss Lobjness, classifi-
cation loss Lcls, center offset loss Lcen, size classification
loss Lsize cls, and size offset loss Lsize off . Additionally, 1)
since we aim to estimate the oriented bounding box of the
object, the box’s heading prediction with a cross-entropy
loss Lhead cls and a smooth-L1 loss Lhead off is included.
2) the shape code prediction loss Lshape. Let θ denote the
estimated shape codes, we use a smooth-L1 loss to mini-
mize the errors between predictions and ground truth:

Lshape =
1

K

K∑
k=1

ℓ1
(
θ − θ̄

)
, (6)

where ground truths θ̄ are given from pre-trained autoen-
coder. For the sake of brevity, these losses will be referred
to as a set {Lobject loss}.

Figure 4. Object-Layout physical violation example. The physical
violation loss is calculated only when the object intersection with
layout (b). There is no physical constraint when the object is com-
pletely inside (a) or outside the layout (c).

We define the object estimation losses on all encoder lay-
ers in the context module, which are averaged to form the
final loss:

Lobject =
1

L

L∑
l=1

Ll
obj ,

Ll
obj =

∑
x∈{Lobject loss}

βx ∗ Lx.

(7)

Each βx is the loss weight corresponding to the specific ob-
ject loss.
Physical Violation Loss In order to produce a physically
plausible scene and regularize the relationships between ob-
jects and layout, we add physical violation loss as a part of
the joint loss. As shown in Fig. 4, when the bounding box
of an object intersects with the layout (i.e., walls, ceiling,
or floor), the physical violation loss is calculated with the
Manhattan distance to the layout. Some types of objects do
intersect with the layout, such as windows and doors. So
the physical constraints are only applied for categories that
should never intersect with the layout. The physical viola-
tion loss is defined as:

Lphysic =
1

K

K∑
k=1

1insL3d violation

L3d violation =
8∑

i=1

(relu(xk
i −max(XL))

+ relu(min(XL)− xk
i ))

(8)

where xk
i is corner of the kth object bounding box, XL is

a set of vertices of layout mesh. The relu is applied to
consider only the outside corners. 1ins has a value of 1 if
the bounding box is not completely outside of the layout,
and a value of 0 otherwise.
All the loss functions in joint training can be defined as :

L = σl ∗ Llayout + σo ∗ Lobject + σp ∗ Lphysic. (9)

3.5. Panoramic Dataset

There currently exists no publicly available realistic
panoramic dataset with object shape and orientation anno-
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tations. We publish ReplicaPano, a real-world panoramic
scene understanding dataset with full ground truth. With
the help of the high-fidelity textured mesh provided by
Replica [44], we render photo-realistic panorama from 27
rooms diversely furnished by 3D objects. For each room,
we randomly render 100 pairs of equirectangular RGB and
depth images, all the images are gravity-aligned and the
height of the camera center is 1.6m. Given a panorama,
we utilize PanoAnnotator [58] to accurately label the room
layout. Based on the colored point cloud and semantic
segmentation information provided by Replica, we semi-
automatically annotate the bounding box for each object
in each room. Following the NYU-37 object labels [43],
we select 25 categories of objects that are commonly seen
in indoor scenes. Due to the lack of complete object
mesh in Replica, we manually annotate posed CAD models
on the 3D scene scan from multiple large-scale 3D shape
datasets [4, 14, 47]. Finally, we get 2,700 photo-realistic
panoramas with depth images, room layouts, 3D object
bounding boxes, and object meshes. More quantitative eval-
uations and samples of ReplicaPano can be found in the
supplementary files.

4. Experiment
In this section, we compare our model with both holistic
scene understanding and single-task methods and perform
ablation studies to analyze the effectiveness of the designs.

4.1. Experiment Setup

Dataset. We use two datasets in our experiments. 1)
iGibson-Synthetic. The data is synthesized by the iGib-
son simulator [41]. Same as the setting in DeepPanoCon-
text [62], we use 10 scenes for training and 5 scenes for
testing. 2) ReplicaPano. To demonstrate our work’s effec-
tiveness in real-world scenes, among 27 rooms, we use 16
for training, 4 for validation, and 7 for testing.
Metrics. The results of each sub-task are evaluated with
the metrics used in previous works [35, 62, 63]. Object de-
tection is measured using mean average precision (mAP)
with the threshold of 3D bounding box IoU set at 0.15.
The room layout estimation error is tested by standard met-
rics for indoor layout reconstruction (i.e., 2D-IoU and 3D-
IoU) followed by Pintore et.al [38, 45, 46]. Since the ob-
ject mesh generation in our method is significantly different
from other scene understanding work, we only compare the
result with that of others qualitatively.
Implementation. The borrowed monocular depth estima-
tion network (i.e., Unifuse [25]) and 3D auto-encoder net-
work (i.e., ONet [34]) are finetuned individually on each
dataset from the weights pretrained on Matterport3D and
ShapeNet, respectively. The input point cloud for the object
detection network is sampled to 50K by Fibonacci sampling
from the estimated depth. The auto-encoder network takes

300 points from the surface of each watertight model as in-
put and embeds each sample as a vector of size 512. In the
context module, 10% of tokens are randomly masked. We
trained object detection, layout estimation, and mesh gener-
ation jointly from scratch on a single NVIDIA V100 GPU.
More training details are given in the supplementary files.

4.2. Comparisons with State-of-the-art Methods

Object Detection We compare our 3D object detection
results with previous state-of-the-art holistic scene under-
standing and single-task learning methods. DeepPanoCon-
text [62] is the only method to achieve total 3D scene under-
standing directly on panoramic images. Total3D [35] and
IM3D [63], which work with perspective images, are ex-
tended to panorama for comparison on iGibson-Synthetic
dataset. In order to show the effectiveness of lifting 2D
panorama into the 3D space, we extend DeepPanoContext
(named DeepPanoContext-3D) as follows: we use Point-
Net++ to extract the object geometry feature from point
cloud and then concatenate this feature with other appear-
ance features to estimate 3D bounding boxes. As for the
single task comparison, the point-based object detection
method Group-Free [32] is chosen as baseline. The results
of each method on iGibson-Synthetic are shown in Tab. 1.
Since DeepPanoContext shows higher performance than
Total3D and IM3D, we only compare it and its extension
on ReplicaPano, results can be found in Tab. 2.

As shown in Tab. 1 and Tab. 2, our proposed method
consistently outperforms both holistic understanding meth-
ods and the point-based detection baseline on most cate-
gories and the average mAP. We can see that DeepPanoCon-
text has been significantly improved by using the recovered
point cloud, which indicates the 3D methodical approach
is absolutely necessary. The Tab. 2 shows our method
gains better results for categories that are closely related to
room layout, such as door and rug, since the transformer-
based context model encourages rational spatial relation-
ships among objects and room layout. For a few categories,
such as floor lamp and chair, DeepPanoContext-3D per-
forms better. The gap in performance for these categories
is due to two factors: 1) The depth estimation model failed
to recover tiny structure, for example, the pole of a floor
lamp, which deteriorates the performance of our method.
2) DeepPanoContext-3D uses a finetuned 2D detector to
initialize the estimation and achieve good performance for
heavily occluded objects (e.g., chairs are occluded behind
a table and dryers are embedded in cabinets). Improving
depth quality and introducing a 2D detector into our method
may help to improve the accuracy further.
Layout Estimation Previous panoramic scene understand-
ing work does not give quantitative analysis in terms of the
layout estimation, thus we only compare our method with
recent state-of-the-art layout estimation methods [38, 45,
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Method chair soft table fridge sink door
floor
lamp

bottom
cabinet

top
cabinet

sofa
chair dryer mAP↑

Total-Pano [35] 20.84 69.65 31.79 43.13 68.42 10.27 16.42 34.42 20.83 62.38 33.78 37.45
Im3D-Pano [63] 33.08 72.15 37.43 70.45 75.20 11.58 6.06 43.28 18.99 78.46 41.02 44.34
DeepPanoContext [62] 27.78 73.96 46.85 74.22 75.29 21.43 20.69 52.03 50.39 77.09 59.91 52.69
DeepPanoContext-3D 39.41 78.03 51.44 75.24 81.46 51.97 60.01 55.56 42.58 79.99 60.07 61.43
Group-Free [32] 27.83 96.04 61.57 84.69 87.69 82.20 27.20 56.46 77.99 79.21 8.29 62.65
Ours 38.47 98.15 66.61 82.77 89.55 87.49 40.31 59.53 80.71 83.42 13.83 67.35

Table 1. Comparisons of object detection on iGibson-Synthetic with state-of-the-art. We use mean average precisions with 3D IoU
threshold 0.15 and evaluate 11 common object categories following [35, 62, 63]. DeepPanoContext-3D is the extended version of Deep-
PanoContext [62] with point cloud.

Method cabinet door chair curtain lamp rug sofa table trash tv mAP↑
DeepPanoContext [62] 35.33 6.78 47.04 13.6 12.15 4.49 26.87 73.34 39.59 4.86 26.41
DeepPanoContext-3D 52.49 11.42 70.39 32.38 20.02 9.10 30.13 82.24 63.22 12.19 38.36
Group-Free [32] 59.56 42.21 52.83 34.07 19.65 32.90 80.59 51.47 44.64 52.76 47.07
Ours 63.69 46.74 54.02 30.41 20.04 48.53 80.96 46.42 51.53 47.82 49.02

Table 2. Comparisons of object detection on ReplicPano.

Method
iGibson-Synthetic ReplicaPano

2D-IoU↑ 3D-IoU↑ 2D-IoU↑ 3D-IoU↑
HorizonNet [45] 89.22 89.18 84.56 83.59
HoHoNet [46] 90.13 89.97 84.76 84.05
Led2Net [53] 90.39 90.30 84.62 83.91
Deep3dLayout [38] 90.65 90.40 84.87 83.50
Ours 92.24 92.04 85.98 84.58

Table 3. Comparisons of layout estimation on iGibson-Synthetic
and ReplicaPano. Evaluation metrics include 2D and 3D
intersection-over-union (IoU) following [38, 45, 46].

46, 53]. As shown in Tab. 3, our method achieves the best
performance among other baselines, indicating joint train-
ing with the context model helps to improve the layout esti-
mation from a single panorama.
Holistic Scene Reconstruction Qualitative comparison
with DeepPanoContext and DeepPanoContext-3D are
demonstrated in Fig. 5, our method obtains the best indoor
scene reconstruction, including the object pose, room lay-
out, and object shape reconstruction.

4.3. Ablation Study

In this section, we conduct some ablation studies on
iGibson-Synthetic to clarify the importance of each com-
ponent in our method.
Impact of depth quality We first investigate how the ac-
curacy of the depth map impacts the final 3D object de-
tection. Two depth estimation networks, Unifuse [25] and
PanoFormer [42] are involved in Tab. 4, which reveal that
object detection results benefit from higher depth quality. In
addition, we observe that even if the proposed method uses

Method
depth metric detection metric

Abs.Rel.↓ RMSE↓ mAP↑
Panoformer-pretrain [42] 0.0774 0.2105 54.77
Unifuse-finetune [25] 0.0328 0.1107 67.35
Panoformer-finetune [42] 0.0214 0.0997 69.09
GT-depth - - 79.46

Table 4. The impact of depth accuracy. Evaluation metrics include
absolute relative error (Abs. Rel.) and root mean square error
(RMSE) for depth and mAP for object detection. Panoformer-
pretrain is pre-trained on Matterport3D [3], while *-finetune
means the depth estimator gets finetuned on iGibson-Synthetic.

a depth estimator without finetuning, the performance still
slightly outpasses that of DeepPanoContext ( Tab. 1), which
employed a 2D fine-tuned detector for initialization.
Effect of architecture and loss To figure out the effect of
each module, we provide detailed ablation experiments in
terms of object detection and layout estimation. The results
are summarized in Tab. 5. The first 2 rows show the room
layout benefit from perspective features. The third row in-
dicates that introducing joint training and physical viola-
tion loss consistently improves the results of object detec-
tion and layout estimation. As for the fourth and fifth rows,
we can conclude that our method can generate better rep-
resentation and relationships among objects and the room
layout, with the help of global image tokens and the token
masking strategy, thus obtaining better results on each task.

5. Conclusion
In this paper, we propose a fully 3D method for end-to-end
indoor scene understanding from a single RGB panorama
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Figure 5. Qualitative comparisons on 3D object detection and scene reconstruction. In the top four rows, we compare our object detection
results with DeepPanoContext (DPC), DeepPanoContext-3D (DPC-3D), and ground truth in the panoramic view. The color of the bounding
boxes represents their categories. The bottom four rows show the scene reconstruction results, with two magnified object reconstruction
results presented on the right-hand side. Note that the first three columns are the results on iGibson-Synthetic, and the last three columns
are the results on ReplicaPano.

Perspective
Feature

Joint
Training

Physical
Violation Loss

Token
Masking

Global
Image Token

mAP↑
(11 categories)

mAP↑
(57 categories) 2D-IoU↑ 3D-IoU↑

✗ ✗ ✗ ✗ ✗ 62.59 40.44 90.65 90.40
✓ ✗ ✗ ✗ ✗ - - 90.98 90.73
✓ ✓ ✓ ✗ ✗ 65.68 41.50 91.41 91.20
✓ ✓ ✓ ✓ ✗ 66.27 42.22 92.14 91.78
✓ ✓ ✓ ✗ ✓ 66.78 41.97 91.77 91.56
✓ ✓ ✓ ✓ ✓ 67.35 43.55 92.24 92.04

Table 5. The ablation studies on iGibson-Synthetic dataset, demonstrates how our proposed designs improve the accuracy on object
detection and layout estimation. We show in the last row the full architecture setup.

image. To better learn the context information in the
panorama, we use a Transformer-based context module
to learn the relationship between objects and room lay-
out. In addition, we introduce a new dataset for real-

world panoramic holistic scene understanding. Experi-
ments demonstrate that our method achieves state-of-the-art
performance on both synthetic and real-world datasets.
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