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Abstract

Adversarially robust knowledge distillation aims to com-
press large-scale models into lightweight models while pre-
serving adversarial robustness and natural performance on
a given dataset. Existing methods typically align probabil-
ity distributions of natural and adversarial samples between
teacher and student models, but they overlook intermediate
adversarial samples along the “adversarial path” formed
by the multi-step gradient ascent of a sample towards the
decision boundary. Such paths capture rich information
about the decision boundary. In this paper, we propose a
novel adversarially robust knowledge distillation approach
by incorporating such adversarial paths into the alignment
process. Recognizing the diverse impacts of intermediate
adversarial samples (ranging from benign to noisy), we
propose an adaptive weighting strategy to selectively em-
phasize informative adversarial samples, thus ensuring ef-
ficient utilization of lightweight model capacity. Moreover,
we propose a dual-branch mechanism exploiting two fol-
lowing insights: (i) complementary dynamics of adversar-
ial paths obtained by targeted and untargeted adversarial
learning, and (ii) inherent differences between the gradient
ascent path from class ci towards the nearest class bound-
ary and the gradient descent path from a specific class cj
towards the decision region of ci (i ̸= j). Comprehensive
experiments demonstrate the effectiveness of our method on
lightweight models under various settings.

1. Introduction
Deep Neural Networks (DNNs) have advanced image clas-
sification [17, 18, 24, 27, 39, 41] and retrieval [61], gener-
ative models [35, 36, 45], deblurring [59], few-shot learn-
ing [23, 29, 51, 52], medical diagnosis [9], and biometrics
[32]. However, DNNs are vulnerable to adversarial exam-
ples: images with imperceptible perturbations [48]. Despite
their visual similarity to the natural images, adversarial ex-
amples can fool DNNs, leading to incorrect or harmful pre-
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Figure 1. Comparison of distillation methods. (i) Vanilla distilla-
tion employs a naturally trained teacher model without adversar-
ial samples, resulting in susceptibility to adversarial attacks. (ii)
Standard adversarially robust distillation incorporates adver-
sary generation from each natural sample x (black frame) to its ad-
versarial counterpart x̂ (red frame). The robust teacher is adversar-
ially pre-trained, and thus the student can distill its responses for
natural and adversarial samples. (iii) Our adversarially robust
knowledge distillation with intermediate adversarial samples
extends upon this by introducing intermediate adversarial sam-
ples x̂(1), · · · , x̂(n−1) collected from intermediate steps along the
“adversarial path”, thereby enabling a more nuanced transfer of
robust knowledge based on the comprehensive adversarial land-
scape. Distillation types are further illustrated in Appendix A.

dictions with high confidence. Thus, the adversarial vulner-
abilities undermine public confidence in the reliability of
DNNs and raise trustworthiness concerns [22].

Adversarial training [16] helps models become adversar-
ially robust by augmenting the training set with adversarial
samples. However, adversarial training is computationally
costly, with limited usage in resource-constrained scenar-
ios. Moreover, the robustness achieved by adversarial train-
ing is mainly observed in large models, leaving lightweight
models vulnerable to adversarial attacks [3]. Unlike vanilla
knowledge distillation [19], “adversarially robust knowl-
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edge distillation” [15] overcomes this issue by compressing
an adversarially robust large-scale model into a lightweight
one without sacrificing much performance.

Adversarially robust knowledge distillation typically fo-
cuses on transferring the robustness of a large-scale model
to a resource-efficient model by training the student model
to mimic outputs of the robust teacher model using merely
natural and adversarial samples [15, 63, 64]. However, ne-
glecting intermediate adversarial samples from the “adver-
sarial path” obtained during iterative adversary generation
(e.g., multi-step gradient ascent) is suboptimal. Specifi-
cally, weighted intermediate adversarial samples contribute
auxiliary information about the decision boundary, while
appropriate weights can amplify informative samples and
suppress noisy ones. Fig. 1 shows a comparison of our ro-
bust distillation with the adversarial path alongside both the
standard adversarially robust and vanilla distillation.

We also notice that previous methods primarily rely on
untargeted adversarial samples (robustness w.r.t. the near-
est decision boundary of a natural sample). In contrast, our
work extends this by exploiting complex decision bound-
aries between pairs of classes via “targeted adversarial
paths”. Specifically, we propose a dual-branch mechanism
that comprises: (i) an untargeted adversarial branch, where
the predictions of natural samples of class ci from teacher
and untargeted adversarial samples from student should
align, (ii) a targeted adversarial branch, which aligns the
prediction scores of natural samples of class cj (i ̸=j) from
teacher and targeted adversaries from student, and (iii) a di-
vergence criterion that push apart predictions of samples be-
tween both branches to differentiate untargeted and targeted
adversaries based on underlying semantic distinctions.

Extensive experiments and analyses demonstrate the su-
perior performance of our method compared with other ro-
bust knowledge distillation approaches under various sce-
narios. Our contributions can be summarized as follows:

i. We propose a novel adversarially robust knowledge
distillation method that integrates intermediate adver-
saries along the adversarial path. An adaptive weight-
ing mechanism is proposed to calibrate the influence of
each intermediate sample to facilitate the distillation of
adversarial paths, refining a robust “understanding” of
the decision boundary. Our strategy also leads to mini-
mizing an upper bound of the adversarially robust risk.

ii. To capture relations between decision boundaries, we
devise a dual-branch mechanism by harnessing the
complementary characteristics of untargeted and tar-
geted adversarial samples. This inter-class relational
learning facilitates a more effective robustness transfer.

iii. Extensive experiments showcase the superiority of our
method compared with the state-of-the-art approaches
across various settings, including diverse backbones,
auxiliary data, and cross-dataset distillation.

Related works. Given the security risks posed by adversar-
ial attacks [11, 47], extensive solutions have been proposed
to improve DNN robustness [7, 30, 56]. Among them, ad-
versarial training [12, 38, 53, 58] has emerged as a power-
ful technique to achieve non-trivial robustness by augment-
ing adversaries into training data. However, its performance
highly relies on the network capacity [3], limiting its practi-
cal applicability for small models. To bridge this gap, recent
studies [15, 54, 62–64] have delved into robust knowledge
distillation to transfer adversarial robustness to lightweight
models. Zi et al. [64] incorporated soft labels from a ro-
bust teacher model as fixed references for distribution align-
ment. Besides the logit-level alignment, Bai et al. [1] intro-
duced contrastive learning to robustness transfer via latent
features. However, previous works primarily focus on the
use of natural and adversarial samples for distillation, over-
looking the significance of untargeted and targeted interme-
diate adversaries (paths) to the decision boundary.
Background. The goal of adversarially robust knowledge
distillation is to transfer adversarial robustness from a large-
scale model (teacher model) to a lightweight model (stu-
dent model), where the teacher model is adversarially pre-
trained to obtain robustness. Let a DNN-based classifier
fθ : X → [0, 1]C with network parameters θ, which out-
puts probabilities of C classes. Given a dataset with distri-
bution D, standard adversarial training [30] under the ℓ∞-
norm threat model solves the following minimax problem:

min
θ

E(x,y)∼D

[
max

∥δ∥∞<ϵ
LCE (fθ (x+ δ) , y)

]
, (1)

where δ denotes the adversarial perturbation bounded
within the ℓ∞-norm of magnitude ϵ, and LCE represents the
Cross-Entropy (CE) loss. The outer minimization optimizes
the adversarial empirical risk over the network parameters
θ, while the inner maximization finds the worst-case adver-
sarial examples x̂ = x+δ. The Projected Gradient Descent
(PGD) [30] is used to optimize the inner maximization:

x̂(i+1) = ϑα(x̂
(i), y)

= Π
B(x,ϵ)

(
x̂(i) + α · sign

(
∇x̂(i)LCE

(
fθ(x̂

(i)), y
)))

,
(2)

where α is the gradient descent step size. ΠB(x,ϵ)(·) is the
projection into the constraints box with ℓ∞ radius ϵ around
x. We randomly initialize x̂(0) ∼x + 0.001 · N (0, I). Af-
ter n steps, one obtains x̂ and intermediate samples I(x)=
{x̂(i)}n−1

i=1 that are also adversarial due to the non-linear dy-
namics of decision boundaries. DNNs are also vulnerable to
intermediate adversarial samples, which motivates our idea.
See Appendix C.1 for further details of teacher pre-training.

2. Proposed Approach
In this section, we propose our novel dual-branch (untar-
geted and targeted) adversarially robust knowledge distilla-
tion method based on intermediate adversarial samples.
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2.1. Distillation with Intermediate Adversaries

In contrast to vanilla knowledge distillation, which merely
relies on natural samples (non-robust features), robust
knowledge distillation additionally incorporates adversaries
(robust features) for robustness transfer. Existing works
typically utilize predictions of teacher on natural examples
as the only reference points for aligning with predictions of
student for both natural and adversarial samples, yet such a
strategy fails to mimic the responses of teacher to adversar-
ial samples. In our work, we refine this alignment by match-
ing predictions (softmax logits) between the robust teacher
model fθt

(·) and the student model fθs
(·) on both natural

samples and their adversarial counterparts. We define the
Adversarially Robust Knowledge Distillation (ARKD) as:

LARKD =LKL
(
fθt (x) ∥fθs(x)

)︸ ︷︷ ︸
alignment of “natural distributions”

+β ·LKL
(
fθt(x̂) ∥fθs (x̂)

)︸ ︷︷ ︸
alignment of “adversarial distributions”

,
(3)

where LKL represents Kullback–Leibler (KL) divergence,
and β ≥ 0 controls the trade-off between natural perfor-
mance and adversarial robustness. Note that Eq. (3) aligns
prediction scores without relying on ground-truth labels,
which facilitates the adversarially robust knowledge trans-
fer instead of adversarial training from scratch. To obtain
an adversarial sample x̂ from its natural counterpart x, one
may use the true label y of x or the prediction pt(x) of
the teacher during the adversary generation process towards
x̂. Our method performs such an “adversarially consis-
tent alignment” as adversaries generated against the student
model help probe responses of the adversarially pre-trained
teacher, capturing the structure of decision boundaries.

However, Eq. (3) and existing methods only employ nat-
ural samples and their adversarial counterparts–they ignore
the intermediate adversarial samples (see Fig. 1). In con-
trast, to explore and capture well the decision boundary of
the teacher, we propose to augment intermediate adversar-
ial samples Is

(
(x, y)

)
=

{
(x̂(i), y)

}n−1

i=1
generated from a

sample (x, y) into the distillation process. Intermediate Ad-
versarial Knowledge Distillation (IAKD) is defined as:

LIAKD =

n−1∑
i=1

w
(
x̂(i)|x

)
· LKL

(
fθt(x̂

(i))∥fθs(x̂
(i))

)
, (4)

where w(·) denotes the instance-wise training weight (nor-
malized within the range of [0, 1]) for each intermediate ad-
versarial sample. Weights are designed as interpolating be-
tween (i) an index-based prior, i.e., penalty i/(n− 1) gives
stronger weights to intermediate samples closer to the final
adversarial sample x̂, and (ii) batch-level discrepancy be-
tween the student model’s predictions on intermediate ad-
versaries and the teacher model’s predictions on their corre-
sponding natural samples. Specifically, we define:

w
(
x̂(i)|x

)
=

(1−γ) i

n
+

γ
∣∣(fθt (x)

)
y
−

(
fθs

(
x̂(i)

))
y

∣∣
max
j∈B

∣∣(fθt (xj)
)
yj
−

(
fθs

(
x̂
(i)
j

))
yj

∣∣ , (5)
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Figure 2. The dual-branch mechanism contains (i) untargeted and
(ii) targeted adversary generation branches. The untargeted branch
takes sample x of class y = ci and produces (intermediate) ad-
versarial samples x̂, x̂(1), · · · , x̂(n−1) by iterative gradient ascent
towards ¬ci (not ci class). In contrast, the targeted branch takes
sample x′ of class y′ = cj and produces (intermediate) adversar-
ial samples x̂′, x̂′(1), · · · , x̂′(n−1) by iterative gradient descent to-
wards class ci. Subsequently, in each branch, the student’s predic-
tions for (intermediate) adversarial samples are attracted towards
the teacher’s predictions for the natural sample, i.e., p̂s → pt

and p̂
(1)
s , · · · , p̂(n−1)

s →pt for untargeted adversarial branch and
p̂′
s → p′

t and p̂
′(1)
s , · · · , p̂′(n−1)

s → p′
t for targeted adversarial

branch. Moreover, to improve complementarity of both branches,
in each branch, predictions of the student model for (intermediate)
adversarial samples are repelled from that of the teacher model for
the natural sample of the other branch, e.g., p̂′

s↔pt and p̂s↔p′
t.

where 0≤γ≤1 interpolates between the prior and the pre-
diction discrepancy for a mini-batch B, and

(
f(·)

)
y

extracts
the y-th coefficient from prediction scores of function f(·).

2.2. Dual-branch Adversarially Robust knoWledge
dIstillatioN (DARWIN)

Several studies have demonstrated the significance of deci-
sion surface modeling to adversarial robustness [8, 28, 34,
60]. The well-established decision boundaries are simulta-
neously applicable to natural samples and their adversarial
counterparts. As existing works typically use untargeted ad-
versarial samples, we propose to use a combination of both
untargeted and targeted adversaries with the goal of more
effectively capturing the structure of decision boundaries of
teacher. Fig. 2 illustrates our dual-branch mechanism.

Untargeted adversarial samples are generated via multi-
step gradient ascent towards the nearest decision boundary
in Eq. (2), where fθ(·) is replaced with fθs(·). Targeted
adversaries are obtained by crossing the decision boundary
towards a chosen class. Specifically, we choose x̂′(0)∼x′+
0.001·N (0, I) where x′∈{x : y(x)=cj} and define:

x̂′(i+1)= ϑ′
α(x̂

′(i), y′)

= Π
B(x′,ϵ)

(
x̂′(i)−α · sign

(
∇x̂′(i)LCE

(
fθs (x̂

′(i)), y′
)))

,
(6)
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Algorithm 1 Dual-branch Adversarially Robust knoWl-
edge dIstillatioN (DARWIN).
Input: Adversarially pre-trained teacher model fθt with parameters θt;
student model fθs with parameters θs; dataset D=

{
(xi, yi)

}D

i=1
with

D data points and C classes; batch size m; learning rate τ ; maximum ra-
dius of the adversarial perturbation ϵ and the attack step size α; mini-batch
size m; the number of intermediate adversarial samples n−1 (iteration
steps n); hyper-parameters λ1, λ2 and β.
1: Initialize student network parameters θs
2: while not at end of distillation do

3:
Form mini-batches for targeted/untargeted adversary generation:
B=

{
(xj , yj)

}m

j=1
and B′=

{
(x′

j , y
′
j) : y

′
j ̸= yj

}m

j=1

4: Set lARKD =0, lIAKD =0 , and lDBKD =0
5: for j = 1, 2, . . . ,m (in parallel) do
6: Draw x̂

(0)
j ∼xj+0.001·N (0, I) , x̂′(0)

j ∼x′
j+0.001·N (0, I)

7: for i = 1, 2, . . . , n do

8:
Generate untargeted/targeted (intermediate) adv. samples:
x̂
(i)
j ←ϑα(x̂

(i−1)
j , yj) and x̂

′(i)
j ←ϑ′

α(x̂
′(i−1)
j , y′j)

9:

Use Eq. (8) to accumulate the DBKD loss:
lDBKD← lDBKD

+w
(
x̂
(i)
j |xj

)
Ltri

(
fθt

(
x
(i)
j

)
, fθs

(
x̂
(i)
j

)
, fθs

(
x̂
′(i)
j

))
+w

(
x̂
′(i)
j |x

′
j

)
Ltri

(
fθt

(
x
′(i)
j

)
, fθs

(
x̂
′(i)
j

)
, fθs

(
x̂
(i)
j

))
10: end for

11:
Use Eq. (4) to accumulate the IAKD loss:

lIAKD← lIAKD+
n−1∑
i=1

w
(
x̂
(i)
j |xj

)
LKL

(
fθt (x̂

(i)
j )∥fθs (x̂

(i)
j )

)
12: Set x̂j = x̂

(n)
j (untargeted adversarial sample)

13:
Use Eq. (3) to accumulate the ARKD loss:
lARKD ← lARKD

+LKL
(
fθt (xj) ∥fθs (xj)

)
+β ·LKL

(
fθt (x̂j) ∥fθs (x̂j)

)
14: end for

15:
Update student network parameters:
θs ← θs − τ ∇θs

[
lARKD + λ1 lIAKD + λ2 lDBKD

]
16: end while
17: return Student network parameters θs.

where y′=ci, ci ̸=cj and i ̸=j. For simplicity of notations,
let adversarial sample x̂ be appended to intermediate adver-
sarial samples

{
x̂(i)

}n−1

i=1
so that x̂(n)= x̂. By analogy, we

set x̂′(n)= x̂′. Hence, our dual-branch mechanism performs
the following attraction and repulsion steps:

at
tr

ac
t{{

fθs(x̂
(i))

}n

i=1
→fθt(x){

fθs(x̂
′(i))

}n

i=1
→fθt(x

′)
,

re
pe

l

{{
fθs(x̂

(i))
}n

i=1
↔fθt(x

′){
fθs(x̂

′(i))
}n

i=1
↔fθt(x)

, (7)

where → and ↔ represent the attraction and repulsion oper-
ations, respectively. The above steps form our Dual-Branch
Knowledge Distillation (DBKD) triplet-based loss:

LDBKD =

n∑
i=1

[
w
(
x̂(i)|x

)
Ltri

(
fθt(x), fθs

(
x̂(i)), fθs

(
x̂′(i)))

+ w
(
x̂′(i)|x′)Ltri

(
fθt(x

′), fθs

(
x̂′(i)), fθs

(
x̂(i)))], (8)

where Ltri (p,q, r) with a margin constant m is defined as:

Ltri (p,q, r)=max
(
∥p−q∥22−∥p−r∥22 +m, 0

)
. (9)

Considering the underlying domain shift between untar-
geted and targeted adversarial samples [14], we further pro-
pose to utilize separate Batch Normalization (BN) [21] lay-
ers for both branches, which facilitates the disentanglement
of the mixed distributions. The main BN layer is primarily
used for natural images and untargeted (standard) adversar-
ial samples, while the auxiliary BN is utilized for the tar-
geted adversarial samples. During the inference stage, only
the primary BN layer is employed.
Objective function. Our final loss is a combination of the
adversarially robust knowledge distillation loss LARKD, the
intermediate adversarial knowledge distillation loss LIAKD,
and the dual-branch knowledge distillation loss LDBKD:

L = LARKD + λ1 LIAKD + λ2 LDBKD, (10)

where λ1 ≥ 0 and λ2 ≥ 0 are weighting hyper-parameters.
The pseudocode of our proposed method is provided in Al-
gorithm 1. During the inference stage, we directly use the
distilled student model for robustness evaluations.

2.3. Label-free Adversarially Robust Distillation

As Eq. (2) and (6) primarily rely on ground-truth labels to
generate untargeted and targeted adversaries, such reliance
can be restrictive when labels are unavailable. To address
this, we propose a label-free robust distillation scheme,
called DARWIN-LF, by leveraging the predictions of the
teacher to simulate ground-truth labels. Hence, untargeted
(intermediate) adversarial samples can be obtained by re-
placing cross-entropy between fθs

(x̂(i)) and y in Eq. (2)
with KL divergence between fθs

(x̂(i)) and ỹ=fθt
(x):

x̂(i+1) = ϑα(x̂
(i), ỹ)

= Π
B(x,ϵ)

(
x̂(i) + α · sign

(
∇x̂(i)LKL(fθs (x̂

(i))∥ỹ)
))

.
(11)

For targeted adversary generation in Eq. (6), we also replace
the cross-entropy between fθs

(x̂(i)) and y′ with KL diver-
gence between fθs

(x̂(i)) and ỹ′=fθt
(x′) where x′̸=x:

x̂′(i+1)= ϑ′
α(x̂

′(i), ỹ′)

= Π
B(x′,ϵ)

(̂
x′(i)−α·sign

(
∇x̂′(i)LKL

(
fθs (x̂

′(i))∥ỹ′))). (12)

Note that the assertion y′ ̸= y for Eq. (6) may not al-
ways hold if we randomly draw two samples x and x′.
For a dataset of size D partitioned equally into C classes,
the chance of them sharing the same label is p

(
y(x) =

y(x′)
)
= 1/C2, which is extremely low for typical C ≥

10. Alternatively, one may compare indexes of the top-k
most confident prediction scores fθt

(x) and fθt
(x′). One

may repeat random sampling for x′ if resulting indexes
agree, i.e., 1

[(
sort(fθt

(x))
)
1:k

=
(
sort(fθt

(x′))
)
1:k

]
, or

if ∥fθt
(x)− fθt

(x′)∥1 ≤ h where h = 1/C, etc. Here,
1(v = v′) returns 1 if v = v′ and (v)1:k returns the first
k coefficients of v. By default, we use the “comparison of
indexes” strategy for DARWIN-LF. See also Appendix C.2.
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2.4. DARWIN Minimizes an Upper Bound of the
Adversarially Robust Risk

Let f∗
θ (x) = argmaxc[fθ(x)]c be the index of maximum

predicted probability. Zhang et al. [58] decompose the
so-called robust risk Rrob(fθs

;V) of the distilled student
model fθs

under set V as in the following definition.

Definition 1. The so-called robust, natural, and boundary
risks are defined by Zhang et al. [58] as:

Rrob(fθs ;V) :=E(x,y)∼V [1(∃x̂ ∈ B(x, ϵ) :f∗
θs
(x̂) ̸=y)],

Rnat(fθs ;V) :=E(x,y)∼V [1(f
∗
θs
(x) ̸= y)], (13)

Rbdy(fθs ;V) :=E(x,y)∼V [1(∃x̂ ∈ B(x, ϵ) :f∗
θs
(x̂) ̸=f∗

θs
(x)=y)],

where ϵ≥ 0 is the radius of a ball around x under the ℓ∞
norm1. Also, Rrob(fθs

;V)=Rnat(fθs
;V)+Rbdy(fθs

;V).
The natural risk corresponds to the error on natural ex-

amples, while the boundary risk represents how close nat-
ural samples are to the decision boundary under ϵ. Typical
adversarially robust classification models minimize the ro-
bust risk, which ensures good performance on natural and
adversarial samples due to low natural and boundary risks.

As DARWIN utilizes intermediate adversarial samples,
our proposed weighting mechanism assigns higher weights
to such samples proportionally to δy

(
x, x̂(i)

)
=
∣∣(fθt

(x)
)
y
−(

fθs

(
x̂(i)

))
y

∣∣, signifying how fast the change of soft-score

for label y is as x→ x̂(i) based on the following theorem.

Theorem 1. The weighting mechanism in Eq. (5) captures
the localized κ-Lipschitz smoothness of the student network
when fθt

(·)≈ fθs
(·) (reasonably holds when the student is

converging) and γ=1 (holds for any γ∈(0, 1]). We have:∣∣δy(x, x̂(i)
)∣∣

ϵ
≤

∣∣δy(x, x̂(i)
)∣∣

∥x−x̂(i)∥∞
≤κ≤

∣∣δy(x, x̂(i)
)∣∣

α
,∀ i=1,··· ,

n−1
. (14)

Proof. See Appendix D.3. Here, |·| is the absolute val.

Hence, higher weights for intermediate adversaries indi-
cate higher κ and higher weighted boundary risk.

Definition 2. The weighted boundary risk is defined as:

R̂bdy(fθs ;V) :=
∑

(x,y)∼V

w(x̂|x)
ω

1(∃x̂∈B(x, ϵ) :f∗
θs
(x̂) ̸=f∗

θs
(x)=y) ,

= E
(x,y)∼Vw

[
1(∃x̂∈B(x, ϵ) :f∗

θs
(x̂) ̸=f∗

θs
(x)=y)

]
, (15)

where ω =
∑

(x,y)∼V w(x̂|x) ensures normalized weights
and Vw is the distribution resulting from V under weights.

Definition 3. Let Is contain intermediate adversarial sam-
ples for dataset D. Let Is = ∪(x,y)∈D Is

(
(x, y)

)
be split

into sets I✗
s ={(x, y)∈Is :f∗

θs
(x) ̸=y} and I✓

s ={(x, y)∈
Is :f∗

θs
(x)=y} that contain incorrectly and correctly clas-

sified intermediate adversarial samples, respectively.
1Please note that (x, y) is a sample-label pair enumerated from the set

V (which can contain clean samples, adversarial samples, etc.), so the role
and meaning of x and y depend on what set V contains.

Theorem 1 indicates that applying the IAKD loss from
Eq. (4) (which uses weighting) decreases locally the
Lipschitz constant κ, resulting in a smoother student
function, implying better stability against adversarial at-
tacks. This is signified by Definition 2, which suggests
that with high probability, R̂bdy(fθs ;V)≥Rbdy(fθs ;V)
holds, which explains that we minimize the (more chal-
lenging) upper bound of the robust risk that simultane-
ously improves the smoothness of the student net.

Theorem 2. The difference between the robust risk of D∪Is
(dataset and its intermediate adversarial samples) and the
robust risk of dataset D alone is given as:
Rrob(D∪Is)−Rrob(D)= (16)∣∣I✗

s

∣∣ (Rrob(I✗
s )−Rrob(D))

|D|+|Is|
+

∣∣I✓
s

∣∣ (Rrob(I✓
s )−Rrob(D))

|D|+ |Is|
Proof. See Appendix D.1. Here, |·| is the cardinality.

Theorem 3. DARWIN minimizes the robust risk Rrob(D∪
Is), which is the upper bound of the robust risk of D, i.e.,
Rrob(D∪Is) ≥ Rrob(D) if τbdy ≥ Rnat(D) where the
boundary risk gain obtained from introducing intermediate
adversarial samples Is is τbdy=Rbdy(I✓

s )−Rbdy(D)≥0.
Proof. See Appendix D.2.

Theorem 3 tells that if the boundary risk gain τbdy ≥
Rnat(D), the use of intermediate adversarial samples Is
with dataset D leads to minimization of an upper bound
of the robust risk. Moreover, the weighted boundary risk
is “focused” on the most perturbing cases. Thus, we
expect that R̂bdy(fθs ; I✓

s ) ≥ Rbdy(fθs ; I✓
s ) with high

probability, yet we cannot guarantee that (the weights do
not capture the decision boundary). We conclude that
the use of the weighted boundary risk increases τbdy ,
helping ensure the upper bound we optimize holds.

If τbdy < Rnat(fθs
;D), DARWIN achieves improve-

ment in adversarial robustness but we expect a small drop
in the natural performance as the boundary risk gain τbdy=
Rbdy(I✓

s )−Rbdy(D)≥ 0 is insufficient to compensate for
Rnat(fθs ;D) so that the assertion τbdy ≥ Rnat(fθs ;D)
from Theorem 3 cannot hold. Section 3.2 shows that when
the assertion is violated, a small drop in the natural perfor-
mance occurs (note that this happens in many such pipelines
for adversarially robust self-distillation).

3. Experiments
Below, we provide our experimental setups and compare
DARWIN with other adversarially robust distillation works.
Datasets. We conduct experiments on four datasets:
CIFAR-10, CIFAR-100 [25], ImageNet-100, and TinyIm-
ageNet [42]. See Appendix B.1 for details.
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Table 1. CIFAR-10 and CIFAR-100: Comparisons of our DARWIN with other robust knowledge distillation methods when distilled from
the large-scale WRN-34 teacher model. The ℓ∞-norm adversarial perturbations are restricted within ϵ = 8/255. We report both natural
accuracy (%) and robust accuracy (%). “y” indicates if class labels are required. The best distillation result in each column is in bold.

Type Architecture Method y
CIFAR-10 CIFAR-100

Natural PGD-20 CW AA Natural PGD-20 CW AA
Teacher WRN-34 TRADES [58] ✓ 84.92 55.34 54.21 52.55 60.04 31.56 28.64 27.38

Student

ResNet-18

ARD [15] ✓ 82.95 52.26 51.69 49.46 57.46 30.14 27.11 25.30
IAD [63] ✓ 82.41 53.06 51.79 49.78 56.38 30.61 27.35 25.51

RSLAD [64] ✗ 83.12 53.91 52.84 51.19 57.23 31.08 28.29 26.62
CRDND [54] ✗ 83.92 52.70 50.95 49.05 58.03 30.16 27.02 25.68
GACD [1] ✗ 82.76 53.42 52.26 50.07 56.82 31.19 27.81 26.12

DARWIN ✓ 84.48 55.07 53.85 52.24 59.12 32.30 28.95 27.26
DARWIN-LF ✗ 84.35 55.02 53.99 52.33 59.04 32.18 28.62 27.13

MNV2

ARD [15] ✓ 82.44 51.91 50.64 48.40 55.28 30.23 27.05 25.28
IAD [63] ✓ 81.61 52.30 50.19 48.34 54.26 30.46 27.13 25.50

RSLAD [64] ✗ 82.89 52.72 52.04 50.04 57.31 30.48 27.86 25.89
CRDND [54] ✗ 82.77 52.57 50.11 49.28 56.24 29.65 26.68 25.61
GACD [1] ✗ 82.90 52.49 51.40 49.55 56.10 30.49 27.18 25.33

DARWIN ✓ 84.06 53.94 53.11 51.28 58.45 31.53 28.36 26.55
DARWIN-LF ✗ 84.08 53.76 52.80 51.09 58.41 31.44 28.33 26.58

Table 2. CIFAR-10 and CIFAR-100: Comparisons of our DARWIN with other robust knowledge distillation methods under the self-
distillation scenario. The ℓ∞-norm adversarial perturbations are restricted within ϵ = 8/255. We report both natural accuracy (%) and
robust accuracy (%). “y” indicates whether class labels are required. The best distillation result in each column is in bold.

Type Architecture Method y
CIFAR-10 CIFAR-100

Natural PGD-20 CW AA Natural PGD-20 CW AA
Teacher ResNet-18 TRADES [58] ✓ 82.45 52.21 50.29 48.90 56.37 28.68 24.87 23.78

Student ResNet-18

ARD [15] ✓ 81.64 52.62 51.35 49.19 57.96 31.34 27.84 26.13
IAD [63] ✓ 80.66 52.63 52.21 48.90 56.45 31.87 28.00 26.66

RSLAD [64] ✗ 81.30 53.80 52.32 50.78 55.17 31.21 27.82 26.46
CRDND [54] ✗ 81.52 52.88 50.85 48.40 56.69 30.13 26.90 26.08
GACD [1] ✗ 81.03 53.26 51.75 49.48 56.95 31.80 28.07 26.30

DARWIN ✓ 82.23 55.15 53.22 51.31 57.74 32.17 28.40 26.89
DARWIN-LF ✗ 82.25 55.12 53.15 51.23 57.82 32.11 28.26 26.73

Teacher MNV2 TRADES [58] ✓ 81.04 50.87 48.46 47.15 54.11 27.28 23.39 22.36

Student MNV2

ARD [15] ✓ 81.25 53.02 50.69 48.85 55.64 30.93 27.47 26.05
IAD [63] ✓ 79.36 53.45 50.93 49.14 54.00 31.01 27.59 26.11

RSLAD [64] ✗ 80.01 53.35 51.04 49.74 53.52 29.95 26.66 25.47
CRDND [54] ✗ 80.27 52.92 50.14 49.10 53.70 29.89 26.70 25.67
GACD [1] ✗ 81.17 53.26 50.85 49.18 54.48 31.23 27.38 26.00

DARWIN ✓ 82.18 54.74 52.65 50.97 57.04 31.89 28.19 26.33
DARWIN-LF ✗ 82.12 54.52 52.35 50.58 56.90 31.96 28.16 26.20

Implementation details. Following [15, 63, 64] & Ro-
bustBench [6], we use ResNet-18/34 [18], MobileNetV2
(MNV2) [43], Wide-ResNet-28-10/34-10 (WRN-28/34)
[57] as teacher and student models. We also try Vision
Transformers (ViTs) [13, 49] as a teacher. We adopt regu-
larization factors β=4.0 and γ=0.5 with margin m=0.1.
In all experiments, loss weighting factors λ1 = 1.0 and
λ2 = 0.5. We use the ℓ∞-norm threat model with pertur-
bation radius ϵ=8/255. See Appendix B.2 for more details
and Appendix E for hyper-parameter evaluations.

3.1. Main Results
DARWIN with the WRN-34 teacher net. Table 1 reports
the classification accuracies on natural examples and their

adversarial counterparts based on three standard adversar-
ial attack methods: PGD [30] of 20 iterations with step size
α=2, CW [4], and AutoAttack (AA) [5]. AA is a powerful
parameter-free robustness evaluation with three white-box
(targeted/untargeted) attacks and a black-box attack. For
fair comparisons, all experiments use the WRN-34 teacher
model. Table 1 shows that DARWIN overall achieves the
best natural and adversarial performances. The superior dis-
tillation results with ResNet-18 [18] and MNV2 [43] stu-
dent backbones show the versatility of DARWIN.

DARWIN in the self-distillation setting. Table 2 evalu-
ates DARWIN in the self-distillation setting for which the
teacher and student backbones are identical. As one can see,
DARWIN and its label-free extension, DARWIN-LF, out-
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Table 3. ImageNet-100: Robust accuracy (%) of distilled models
when using ResNet-18 and MNV2 student backbones.

Type Architecture Method Natural PGD-20 AA

Teacher ResNet-34 TRADES [58] 72.66 40.88 34.70

Student

ResNet-18

ARD [15] 65.41 38.34 30.94
RSLAD [64] 66.60 39.12 32.18

IAD [63] 65.62 39.09 32.63
CRDND [54] 65.39 39.33 31.36
GACD [1] 64.85 38.48 31.83

DARWIN 68.76 40.37 33.58
DARWIN-LF 68.91 40.16 33.29

MNV2

ARD [15] 65.90 37.28 30.20
RSLAD [64] 65.82 37.86 31.66

IAD [63] 64.96 38.00 31.40
CRDND [54] 65.09 37.54 30.56
GACD [1] 64.20 37.27 31.11

DARWIN 67.93 39.38 32.85
DARWIN-LF 67.86 39.24 32.51

Table 4. Comparison of robust self-distillation methods (ResNet-
18→ResNet-18) on CIFAR-10/CIFAR-100 with auxiliary genera-
tive data. We report the natural & (Auto-Attack) robust accuracies.

Dataset Type DDPM Method Natural Robust

CIFAR-10

Teacher ✗ TRADES [58] 82.45 48.90

Student

✓ ARD [15] 82.89 53.41
✓ RSLAD [64] 82.05 52.60
✓ IAD [63] 82.95 53.47
✓ DARWIN 84.13 55.92
✓ DARWIN-LF 84.68 56.41

CIFAR-100

Teacher ✗ TRADES [58] 56.37 23.78

Student

✓ ARD [15] 56.07 26.92
✓ RSLAD [64] 53.40 26.00
✓ IAD [63] 55.82 26.77
✓ DARWIN 58.18 28.24
✓ DARWIN-LF 58.74 28.45

perform other methods and the teacher architecture on the
robust accuracy for CIFAR-10 and CIFAR-100. In terms
of natural performance, DARWIN achieves comparable or
even better results than the teacher model. We attribute
great robust accuracy to the dual-branch mechanism that
helps explore the complex decision boundary.
Robust distillation on ImageNet-100. We here evalu-
ate our approach in the context of larger-scale classifica-
tion with higher-resolution images and a larger number of
classes. Table 3 shows that both DARWIN and DARWIN-
LF retain a significant portion of adversarial robustness in-
herited from the teacher model while simultaneously out-
performing other methods on natural performance.
Robust distillation with auxiliary generative data. Aux-
iliary data generated by the Denoising Diffusion Probabilis-
tic Model (DDPM) [20, 46] has been shown to improve ad-
versarial training [10, 38, 40, 55]. Thus, Table 4 provides
the robustness results on CIFAR-10/100 with an additional
1M generated images [40] in the self-distillation setting.
For CIFAR-10, our DARWIN significantly outperforms the
state-of-the-art method on robust accuracy by a large mar-
gin (2%). In addition, DARWIN improves results on natural
examples for both CIFAR-10 and CIFAR-100.
DARWIN with the ViT teacher. Vision Transformers

Table 5. Robust accuracy (%) of models distilled from ViT vari-
ants on CIFAR-10 using ResNet-18 and MNV2 student nets.

Type Architecture Method Natural PGD-20 AA

Teacher ViT-B AT-PRM [33] 83.98 53.10 49.66

Student ResNet-18

ARD [15] 82.76 52.95 49.03
RSLAD [64] 82.33 54.89 49.74

IAD [63] 82.27 53.42 49.48
CRDND [54] 82.19 53.16 48.98
GACD [1] 81.64 54.24 49.95

DARWIN 83.75 54.80 51.42
DARWIN-LF 83.73 54.95 51.49

Teacher DeiT-S AT-PRM [33] 82.68 52.47 49.27

Student MNV2

ARD [15] 81.59 53.45 49.20
RSLAD [64] 80.86 53.91 50.18

IAD [63] 80.41 54.12 49.62
CRDND [54] 80.27 52.21 48.46
GACD [1] 79.97 54.00 48.91

DARWIN 83.02 54.46 51.19
DARWIN-LF 83.15 54.62 51.13

Table 6. Black-box model extraction. WRN-34 teacher pre-trained
on CIFAR-10/CIFAR-100 is extracted into a ResNet-18 student
with the use of CIFAR-10/CIFAR-100/TinyImageNet. We report
the natural accuracy and (Auto-Attack) robust accuracy.

Pre-training
Dataset

Distillation
Dataset Method Natural Robust

CIFAR-10

CIFAR-100

RSLAD [64] 70.03 37.68
CRDND [54] 69.30 37.29
GACD [1] 69.22 38.05

DARWIN-LF 72.48 41.79

TinyImageNet

RSLAD [64] 64.44 30.29
CRDND [54] 64.95 31.83
GACD [1] 65.78 33.12

DARWIN-LF 66.73 36.20

CIFAR-100 CIFAR-10

RSLAD [64] 44.41 18.51
CRDND [54] 45.38 18.65
GACD [1] 44.34 18.37

DARWIN-LF 46.29 21.90

(ViT) [13, 49] enjoy good adversarial robustness [2, 26, 31,
33]. Thus, we evaluate DARWIN to see if the intrinsic ro-
bustness of ViTs can be distilled into lighter student models.
Table 5 shows that DARWIN consistently achieves robust
performance that even surpasses the teacher model. Such
an improvement in robustness is achieved without compro-
mising the natural performance. Hence, DARWIN is also
effective in inheriting robustness from ViT-based teachers.

Black-box model extraction via DARWIN. The black-box
model extraction recovers an online black-box model with
no access to its model parameters or training data [37, 50].
Thus, we extract the teacher model (pre-trained on an inac-
cessible source dataset) by DARWIN with a target dataset
that differs from the source dataset. We aim to recover
the natural performance and adversarial robustness of the
black-box teacher. Table 6 shows that DARWIN-LF out-
performs other adversarially robust models in both natural
and adversarial evaluation metrics upon testing the student
on the source test set. Thus, DARWIN-LF is effective in ex-
tracting knowledge of the black-box model. Appendix C.3
contains more details about this problem.
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Table 7. Ablation study (WRN-34→ResNet-18) of three loss com-
ponents of DARWIN for accuracy (%) on CIFAR-10/CIFAR-100.

ARKD IAKD DBKD Natural PGD-20 AA

1 ✓ 83.09/57.34 53.95/30.59 50.66/25.32
2 ✓ ✓ 82.74/56.68 54.52/32.11 51.70/26.95
3 ✓ ✓ 84.68/59.23 54.36/31.53 51.21/26.18

4 ✓ ✓ ✓ 84.48/59.12 55.07/32.30 52.24/27.26
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Figure 3. Experiments on CIFAR-10 (WRN-34→ResNet-18).
(a) Average robust accuracy (PGD-20) w.r.t. the index number
i = 6, . . . , 14 of the intermediate adversarial test samples (α =
1/255, ϵ=8/255). (b) Difference of AutoAttack robust accuracy
under different attack strengths (radii ϵ) between DARWIN and
RSLAD [64]. Zoom on tiny pictures: ϵ= 0/255 is a clean sam-
ple, ϵ=8/255, and ϵ=16/255 are adversarial samples. We used
ϵ=8/255 (indicated by the dashed vertical line) for training.

3.2. Ablation Studies

Loss components. Below, we investigate individual loss
components of DARWIN: (i) our baseline of Adversari-
ally Robust Knowledge Distillation (ARKD) in Eq. (3), (ii)
Intermediate Adversarial Knowledge Distillation (IAKD)
in Eq. (4), and (iii) Dual-Branch Knowledge Distillation
(DBKD) in Eq. (8). Table 7 reports accuracy (CIFAR-10)
for both the natural and adversarially robust performance.

Our baseline ARKD-based alignment of the student with
the teacher obtains a competitive performance, and using
intermediate adversarial samples with the IAKD loss further
improves the distillation. The dual-branch module (DBKD)
also boosts the natural performance/adversarial robustness.

Performance w.r.t. the index number i= 1, · · · , n−1 of
the intermediate adversarial test samples. Figure 3a pro-
vides the average robust accuracy w.r.t. the index number on
DARWIN, RSLAD [64], and IAD [63]. DARWIN shows
the largest gain compared to to RSLAD and IAD on early
intermediate adversarial test samples (e.g., i=6).

Performance w.r.t. radius ϵ. Figure 3b shows the robust-
ness gap between DARWIN and RSLAD under several at-
tack radii ϵ (training ϵ = 8/255). DARWIN achieves bet-
ter natural performance and adversarial robustness under
weaker adversaries (ϵ≤ 12). In contrast, RSLAD captures
well the adversarial robustness against strong adversarial
perturbations (ϵ≥12). Thus, DARWIN captures well small
visually undetectable attacks (zoom tiny pictures in Fig. 3b)
whereas RSLAD only handles visually conspicuous attacks.

Performance w.r.t. τbdy vs. Rnat(D). Theorem 3 indicates

TRADES
(Teacher)

DARWIN
(Student)

RSLAD
(Student)

IAD
(Student)

Figure 4. Attention maps of the teacher (WRN-34 obtained by
TRADES [58]) and several students based on ResNet-18. Notice
the similarity of maps of the teacher and DARWIN (student).

Table 8. The boundary risk gain τbdy vs. the natural risk
Rnat(D;θs) for robust self-distillation (ResNet-18, CIFAR-10).

Epoch MNV2 ResNet-18

τbdy Rnat(D;θs) ∆ τbdy Rnat(D;θs) ∆

20-th 0.320 0.306 0.014 0.275 0.261 0.014
40-th 0.358 0.284 0.014 0.237 0.242 -0.005
60-th 0.315 0.272 0.043 0.226 0.240 -0.014
80-th 0.309 0.287 0.022 0.235 0.234 0.001
100-th 0.281 0.253 0.028 0.228 0.230 -0.002

that if the boundary risk gain τbdy < Rnat(D), the use of
intermediate adversarial samples Is with dataset D may vi-
olate the minimization of an upper bound of the robust risk.
Table 8 captures if the boundary risk τbdy compensates for
the natural risk Rnat(fθs

;D). For MNV2, the assertion
τbdy ≥ Rnat(D) holds, and thus Table 2 shows a gain in
the natural performance of the student over the teacher. For
ResNet-18, the assertion fails, leading to a slight drop in the
natural performance of the student model (see Table 2).

3.3. Visualization

Figure 4 shows that the student model distilled by DARWIN
shares similar attention (Grad-CAM [44]) regions with the
teacher model, unlike other methods. Thus, DARWIN cap-
tures the complex decision boundaries of the teacher better
than RSLAD/IAD. Appendix F shows more visualizations.

4. Conclusions
We propose a novel adversarially robust knowledge dis-
tillation approach, DARWIN, that efficiently incorporates
dual-branch intermediate adversarial samples into robust-
ness transfer with the goal of capturing the complex de-
cision boundaries of the teacher model. We demonstrate
that our DARWIN benefits from an instance-wise weighting
scheme, and it minimizes an upper bound of the robust risk.
We make a connection between violating such a theoretical
bound and a slight degradation in the natural performance
exhibited by many adversarially robust distillation methods.
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