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Abstract

Spike camera is a neuromorphic vision sensor that can

capture highly dynamic scenes by generating a continuous

stream of binary spikes to represent the arrival of photons

at very high temporal resolution. Equipped with Bayer

color filter array (CFA), color spike camera (CSC) has

been invented to capture color information. Although spike

camera has already demonstrated great potential for high-

speed imaging, its spatial resolution is limited compared

with conventional digital cameras. This paper proposes

a Color Spike Camera Super-Resolution (CSCSR) network

to super-resolve higher-resolution color images from spike

camera streams with Bayer CFA. To be specific, we first

propose a representation for Bayer-pattern spike streams,

exploring local temporal information with global percep-

tion to represent the binary data. Then we exploit the CFA

layout and sub-pixel level motion to collect temporal pix-

els for the spatial super-resolution of each color channel.

In particular, a residual-based module for feature refine-

ment is developed to reduce the impact of motion estima-

tion errors. Considering color correlation, we jointly uti-

lize the multi-stage temporal-pixel features of color chan-

nels to reconstruct the high-resolution color image. Ex-

perimental results demonstrate that the proposed scheme

can reconstruct satisfactory color images with both high

temporal and spatial resolution from low-resolution Bayer-

pattern spike streams. The source codes are available at

https://github.com/csycdong/CSCSR.

1. Introduction

With the quick development of high-speed vision applica-

tions such as autonomous driving and unmanned aerial ve-
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Figure 1. Pipeline of super-resolution reconstruction from Bayer-

pattern spike streams. The super-resolution scale is denoted as s.

hicles, the demand for cameras that can capture high-speed

motion and respond quickly is increasing. Most conven-

tional digital cameras use a certain exposure time window to

accumulate photoelectric signals and create a snapshot im-

age, which requires the scene to be still during the exposure

interval. Due to the exposure time, conventional cameras

suffer from motion blur when capturing high-speed scenes.

To be specific, a given point of moving objects can move

during exposure time, bringing undesired motion blur to the

image. Therefore, it’s hard for conventional digital cameras

to meet the requirements of high-speed imaging.

Mimicking the structure of human vision, neuromor-

phic cameras with ultra-high temporal resolution (e.g.,

20,000Hz) show great potential in capturing high-speed

scenes. A well-known type of neuromorphic camera called

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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event camera [19, 21, 24] is sensitive to motion in dynamic

scenes, which can record relative light intensity changes.

To record more texture details, another type of neuromor-

phic camera called spike camera [8, 9, 49] captures absolute

light intensity via an “integrate-and-fire” mechanism. As

the first-generation spike camera can only reproduce gray-

level signals, color spike camera, which employs the Bayer-

pattern color filter array (CFA), has been invented to record

dynamic scenes with color information and meanwhile en-

joy the benefits of high-speed imaging.

Although capable of capturing color information like

conventional cameras, the spatial resolution of color spike

cameras is limited compared to recent digital cameras,

which is a trade-off for high temporal resolution and low

latency. Therefore, we aim to reconstruct high-resolution

(HR) color images from low-resolution (LR) Bayer-pattern

spike streams, achieving both high temporal and spatial res-

olution with a color spike camera. An intuitive way is to

combine color spike camera reconstruction methods [10]

with image super-resolution (SR) algorithms [7, 18, 20].

However, information among temporal neighboring frames

that is essential for SR will be degraded in the first recon-

struction stage of this scheme. Besides, high-speed mo-

tion and quantization noise within the Bayer-pattern spike

streams also bring challenges to the SR task. As a result,

how to improve the spatial resolution as well as the imaging

quality for color spike cameras is worth studying.

In this paper, we propose a Color Spike Camera Super-

Resolution (CSCSR) network to super-resolve dynamic

scenes from Bayer-pattern spike streams. To represent the

binary data with color and motion information, we first de-

velop a Bayer-pattern Spike Stream Representation (BSSR)

to explore local temporal information with global percep-

tion. As the pixels of a single frame are limited for spa-

tial super-resolution, we propose a Motion-guided Super-

Resolution (MSR) module to search temporal pixels of each

color channel according to the Bayer-pattern color layout

and sub-pixel level motion jointly estimated from color

channels. In most cases, there are errors in the estimated

motion, causing an undesired impact on the temporal pixel

search. Therefore, a Feature Refinement (FR) module is

designed based on the residual between a temporal aver-

age reference and the temporal pixels, resulting in refined

temporal-pixel features. Finally, we further extract features

and jointly utilize multi-stage features of each color chan-

nel to restore the final HR image, achieved by our Color

Correlation-based Reconstruction (CCR) module.

To train and evaluate our models, we design a simula-

tor based on the mechanism of color spike cameras, which

can generate data pairs for SR reconstruction. Besides, we

also capture some real-world Bayer-pattern spike streams

for further evaluation. Experimental results on both syn-

thetic and real-world captured data show that our method

can reconstruct HR color images from LR Bayer-pattern

spike streams, with good texture details. The main contri-

bution of our work can be summarized as follows:

• We develop a color spike camera super-resolution net-

work to reconstruct high-resolution color images from

low-resolution Bayer-pattern spike streams, which is the

first attempt to the best of our knowledge.

• To reconstruct details beyond the sensor resolution, we

explore the sub-pixel level motion of each color channel

and propose a motion-guided super-resolution module to

collect temporal pixels according to the color layout.

• Experiments demonstrate that our method outperforms all

the existing methods, achieving better quantitative and

qualitative results in color spike camera super-resolution.

2. Related Work

2.1. Reconstruction

Event Camera Reconstruction. Event camera [19, 21, 24]

is a kind of neuromorphic camera that monitors relative

light intensity changes, making it promising in capturing

motion. With the high temporal resolution, reconstructing

intensity images with an event camera is an active topic.

Extended Kalman Filter [16] is the early attempt at event

camera reconstruction, which is based on photometric con-

stancy. Bardow et al. [1] estimate intensity as well as optical

flow via the primal-dual algorithm. Inspired by the success

of deep learning, E2VID [25] and FireNet [26] were pre-

sented with promoting reconstruction performance.

Spike Camera Reconstruction. Spike camera [8, 9, 33,

41, 49] is another type of neuromorphic camera. Different

from event cameras, spike camera produces a continuous

spike stream to record the dynamic scenes by accumulat-

ing photons and firing spike signals. To reconstruct images

from spike streams, some exploration [11, 39, 40, 44] has

been performed. Zhu et al. [48] proposed to utilize the num-

ber of spike signals within a temporal window (TFP) and

neighboring spike intervals (TFI). For better performance,

some work [37, 43, 47] tried to design reconstruction net-

works for spike cameras. In addition, there are also attempts

at hybrid input [5, 32, 50] for reconstruction. Focusing on

the newly invented color spike camera, 3DRI [10] was pro-

posed for scene reconstruction with color information.

2.2. Super­Resolution

Image and Video Super-Resolution. In the last ten years,

many researchers have been devoted to learning to super-

resolve images. Dong et al. [7] proposed SRNet as the first

SR network, bringing great performance gains. In recent

years, Liang et al. [18] have achieved significant improve-

ment based on Transformer [28]. Besides the progress in

image SR, there are also some video SR work [2, 3, 14, 15]

proposed to restore HR frames from LR video frames.
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Event Camera Super-Resolution. Event camera SR in-

cludes upsampling from LR events to HR events [12, 17]

and HR image reconstruction from LR events [6, 29, 31]. Li

et al. [17] designed a two-stage scheme to solve the spatial

SR problem of spatiotemporal events. Then a deep neural

framework EventZoom [12] was proposed for event SR. To

restore SR images from events directly, Choi et al. [6] pro-

posed a network E2SRI and trained models using synthetic

data. In contrast, another deep network EventSR [29] was

implemented without ground truth HR images.

Spike Camera Super-Resolution. As a trade-off of

temporal resolution, the spatial resolution of spike cameras

is limited. To restore images with both high temporal and

spatial resolution, there is some research about spike cam-

era super-resolution. Zhao et al. [42] exploited relative mo-

tion and derived the relationship between light intensity and

each spike for super-resolution. Xiang et al. [34] proposed

an end-to-end network VidarSR to reconstruct HR images

from LR spike streams. Besides, another network SpikeSR-

Net [45] is designed based on the observation model of

spike camera, achieving state-of-the-art performance.

3. Preliminary

3.1. Color Spike Camera

Color spike camera (CSC) is a recently implemented neuro-

morphic sensor with H×W pixels that work independently.

To capture color information of dynamic scenes, color filter

array is employed on the sensor. As a result, each pixel of

the sensor corresponds to one of the three colors, red, green

and blue, according to the Bayer-pattern color layout.

As shown in Fig. 1, CSC is a neuromorphic vision sen-

sor that mimics the structure of human vision. Conventional

digital cameras usually use a certain time window for expo-

sure to accumulate photoelectric signals and compact them

into a snapshot. In contrast, CSCs accumulate photons and

fire spikes continuously to record dynamic scenes, result-

ing in a Bayer-pattern spike stream. As shown in Fig. 2,

every individual pixel denoted as (x, y) within the sensor

accumulates photons continuously and converts the instan-

taneous intensity into an electric signal. When the accu-

mulated electric signals reach a predetermined threshold θ,

the pixel triggers a flag indicating firing a spike. Then the

pixel will be reset and continue to accumulate photons after

the flag is checked, starting a new accumulating and firing

process. The accumulated electric signal of a certain pixel

(x, y) at arbitrary time point t can be formulated as

A(t, x, y) =

∫ t

0

η · IC(τ, x, y)dτ mod θ, (1)

where η denotes the photoelectric conversion rate of the

sensor, IC(τ, x, y) denotes the instantaneous intensity of a

certain color at time τ , and C ∈ {R,G,B} denotes the

color determined by the Bayer-pattern color layout.
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Figure 2. Illustration of the spike camera model. (a) The instan-

taneous intensity of a certain pixel. (b) The accumulated electric

signal of the pixel. (c) The number of spikes that have been fired at

the pixel. (d) The spike stream by the pixel, controlled by a clock.

Ideally, the pixels on the sensor would be reset immedi-

ately after firing a spike. The number of spikes that have

been fired before arbitrary time point t can be written as

Φ(t, x, y) = ⌊
1

θ

∫ t

0

IC(τ, x, y)dτ⌋. (2)

Then the read-out spike signal at the n-th (n ∈ N
+)

frame can be formulated as follows:

Sn(x, y) =

{

1, Φ(tn, x, y)− Φ(tn−1, x, y) > 0

0, Φ(tn, x, y)− Φ(tn−1, x, y) = 0
, (3)

where tn denotes the time point according to the n-th spike

frame. However, the flags of firing spikes are checked and

reset at discrete time points in real hardware implementa-

tion, bringing undesired quantization errors. To be specific,

CSCs can only check them at discrete time points with a

fixed sensor period T , which is controlled by a clock. If

the flag of the pixel (x, y) is set up between time points

t = n · T and t′ = (n − 1) · T , we can read out the spike

signal Sn(x, y) as 1. Otherwise, we have Sn(x, y) = 0.

After N times of the checking and resetting process, CSC

outputs a binary Bayer-pattern spike stream {Si}
N
i=1 with a

spatial-temporal shape of N ×H ×W .

3.2. Bayer­Pattern Spike Stream to Raw Images

To reconstruct color images from the Bayer-pattern spike

stream, an intuitive way is to convert it to raw images for

demosaicing. To infer the raw images, we can employ some

spike camera reconstruction methods that don’t fuse val-

ues of spatial neighboring pixels of multiple colors, such

as the spike interval-based method (TFI [48]). Specifically,

the spike interval of two temporally neighboring spikes that

covers the n-th spike frame can be formulated as

Ψn(x, y) = min{k|Si(x, y) = 1, k ≥ n}

−max{k|Si(x, y) = 1, k < n}.
(4)
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Then the n-th Bayer-pattern raw image can be estimated

according to the intervals, which can be written as

Rn(x, y) =
δ

Ψn(x, y)
, (5)

where δ denotes the maximum dynamic range. As to a spike

number-based method (TFP [48]), the raw image Rn(x, y)
can also be inferred based on the spike number within a

temporal window with an odd window length w:

Rn(x, y) =
δ

w

n+w
∑

i=n+1

S
i−

w+1

2

(x, y). (6)

4. Method

4.1. Overall Architecture

To reconstruct HR color images from LR Bayer-pattern

spike stream, we develop a CSCSR network whose over-

all architecture is shown in Fig. 3. The input of the network

is a clip of the spike stream with a shape of N×H×W , de-

noted as {Si}
N
i=1. To represent color and motion informa-

tion within the binary input, we first pass it to our proposed

Bayer-pattern spike stream representation (BSSR) module.

Considering the motion consistency of color channels, we

split out four sequences according to the color layout and

jointly estimate sub-pixel level motion from them. Guided

by the motion information, temporal neighboring pixels of

each color channel are searched in the motion-guided super-

resolution (MSR) module, resulting in HR temporal-pixel

features. Finally, the temporal-pixel features of the three

color channels are fused to reconstruct the final HR image,

exploiting the correlation of color channels.

4.2. Bayer­Pattern Spike Stream Representation

The spike signals in the Bayer-pattern spike stream mean

the arrival of a certain photon amount for a certain color

channel, which may suffer from quantization errors as in-

troduced in Sec. 3.1. Considering the motion and color

information within the binary data, how to represent it ap-

propriately is worth studying. As shown in Fig. 4, we pro-

pose a Bayer-pattern spike stream representation module to

represent the information contained in the data.

To keep the color information, we first perform element-

wise multiplication between each frame of the spike se-

quence and the mask of each color, splitting the data into

three sequences. For the sequence of each color channel,

we develop an encoder to extract the temporal features and

retain the relative motion. To be specific, we employ a slid-

ing temporal window to extract the features of each time

point. As the impact of quantization errors can be reduced

by more temporal information, we extract the features from

the whole clip serving as an additional global perception

(GP) to the features of each time point. With the temporal

window sliding, features of each color are obtained.

N

H

W

Encoder

C R CR

0

N

C R CR

Global Perception

Encoded Features 
of Each Time Point

s
lid

e

C RConvBlock ResBlock multiply add

Color Mask

Encoder

Encoder

Figure 4. Illustration of the Bayer-pattern spike stream represen-

tation module, with a temporal sliding window in encoders. In the

figure, “ConvBlock” denotes a 3 × 3 convolution layer followed

by a ReLU activation function. “ResBlock” refers to [13].

4.3. Motion­Guided Super­Resolution

Joint Motion Estimation. Though the spatial pixels are

limited, some pixels from the temporal domain are avail-

able for SR, which makes it essential to analyze the motion

within the Bayer-pattern spike clip. Therefore, we employ

the spike camera optical flow method Spike2Flow [46]. To

apply the method to the Bayer-pattern spike stream, we split

it into four single-channel spike sequences and estimate mo-

tion from each channel as shown in Fig. 3, resulting in op-
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tical flows {wC
j,k}, C ∈ {R,G1, G2, B}, from the middle

time point j to the last time point k. By reversing the spike

sequences, we then estimate optical flows {wC
j,i} from the

middle time point j to the first time point i. Though coming

from different intensities, the color channels of the dynamic

scene share the same motion. For more robust motion es-

timation, we jointly consider the color channels and obtain

the final sub-pixel level optical flows as

(wj,i,wj,k) =

(

1

4

∑

C

w
C
j,i,

1

4

∑

C

w
C
j,k

)

. (7)

Temporal Pixel Search. To provide features for the final

reconstruction of the middle time point, we propose to fill

the gap of spatial pixels from LR to HR based on the known

temporal pixels at non-middle time points, considering the

motion and color layout within the spike stream clip.

The positions of known spatial pixels of a certain color

can be inferred according to the Bayer-pattern color mask.

Denoting the SR scale as s, the target spatial resolution is

sH × sW . In the target, one originally known spatial posi-

tion corresponds to s2 neighboring positions, resulting in an

upsampled color mask as shown in Fig. 5 (b). To get the ex-

tra known pixels after upsampling, we apply bilinear inter-

polation to the features, resulting in the super-resolved fea-

tures F. Utilizing the estimated optical flows (wj,i,wj,k),
we can infer the new spatial position of every pixel at the

middle time point j when moving to a certain time point

t. To be specific, the optical flow wj,i can be formulated

as the pixel offset along x direction and y direction, which

can be written as
[

U
i
j ,V

i
j

]

. Considering the spatial upsam-

pling, the offsets should be multiplied by the scale s. Since

the time span from time point i or k to j is extremely small

(0.025ms × N ), we assume the motion is linear. As a result,

after moving to a certain time point t, the new position of

a certain original position (x, y) at the middle time point j

can be written as follows:














(

x+ s ·
t− j

i− j
U

i
j(x, y), y + s ·

t− j

i− j
V

i
j(x, y)

)

, t < j,

(

x+ s ·
t− j

k − j
U

k
j (x, y), y + s ·

t− j

k − j
V

k
j (x, y)

)

, t > j.

(8)

According to Eqn. (8), we can map all the pixels at the

middle time point to their new positions at any other time

point. However, the new positions are usually sub-pixel.

Thus we are going to reconstruct the temporal feature value

at the sub-pixel position by the values of known integer-

pixels according to the upsampled color mask. In partic-

ular, the value of the new sub-pixel position (xm, ym) at

time point t can be calculated based on the 4 nearest known

pixels {(xi, yi)}
4
i=1, which can be formulated as follows:

T(t, x, y) =

4
∑

i=1

φi
∑

4

i=1
φi

F(t, xi, yi), (9)

where T denotes the temporal-pixel features, (x, y) denotes

the original position at the middle time point, and ϕi denotes

the weight of each known value, which can be written as

φi =
1

√

(xm − xi)2 + (ym − yi)2
. (10)

After the temporal pixel search process, we can obtain

the temporal-pixel features of each color channel for the fol-

lowing HR reconstruction of the middle time point.

Feature Refinement. In most cases, there are errors in

the estimated motion, causing an undesired impact on the

temporal pixel search. Therefore, we propose a feature re-

finement as shown in Fig. 5 (c). By averaging the input

temporal-pixel features T temporally, a rough temporal av-

erage result of the channel as a reference can be obtained.

Then we compute residuals between the reference and T to

represent the pixel fluctuation of the frames. At last, we ex-

tract deeper features from the residuals and the based T, and

add them together for refined temporal-pixel features T̂.

4.4. Color Correlation­Based Reconstruction

With the temporal-pixel features, we are going to recon-

struct the final HR image. Despite having different intensi-

ties, there is a correlation between color channels. Thus we

can restore the image by integrating the features, achieving

mutual information complementation of color channels.

24875



R

C

R

R

C

R

C

R

R

C

R

C

R

R

C

C

R

C

R

C

R

C

C

R

R

C

R R R

(b)(a)

C

R R R F

F

F

R

R

C

C

(c)

C C C

R R R

C R FResBlockConvBlock CF Module add C concat

C RC R

C

last stage

Figure 6. Illustration of three structures of the reconstruction

module. (a) Our proposed color correlation-based reconstruction
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As shown in Fig. 6 (a), we design a reconstruction mod-

ule utilizing multi-stage features of color channels. In par-

ticular, we first apply residual blocks to extract deeper fea-

tures from the features of each color channel. To fuse the

multi-color features of each stage for better aggregation, we

develop a color fusion (CF) module to encode the features

of color channels with the output of the previous CF stage.

After several stages of CF, we employ residual blocks in the

end to generate the final image from the fused features.

5. Experiments

5.1. Color Spike Camera Simulator

HR Color 
Video Frames

Approximated Latent
Intensity Frames

LR Bayer-Pattern
Spike Stream

SR Scale Color Mask

Intensity 
Frame (HR)

Accumulated 
Signal (LR)

Accumulation

Checking

Frame
Interpolation

Firing

Figure 7. The pipeline of the color spike camera simulator, with

the green channel as an example of signal accumulation.

To train models, a large amount of LR spike stream-HR

color image pairs are required. However, it’s hard to col-

lect corresponding high-quality HR images, especially in

scenes with high-speed motion. Inspired by the success of

gray-scale spike camera simulators [43, 45], we also de-

veloped a simulator for color spike cameras. The pipeline

of our simulator is shown in Fig. 7. To generate spike

streams, we regard the input video as the dynamic scene to

be recorded. As the frame rate of the input video is usually

limited, the temporal information is not enough for the sim-

ulator of CSC with ultra-high temporal resolution to gener-

ate Bayer-pattern spike streams. To address this issue, we

use a frame interpolation method [27] to generate latent in-

tensity frames between the original video frames. To gen-

erate spike signals, we follow the mechanism introduced in

Sec. 3.1 to accumulate light intensity from the latent frames

and compare the accumulated value with the threshold peri-

odically for firing spikes. As a result, a Bayer-pattern spike

stream is generated from the input video. In particular, the

pixel count used to accumulate intensity signals is deter-

mined by SR scales. For example, we accumulate signals

of 4 pixels to generate the signal of one target pixel in the

×2 case. Considering the CFA, the 4 pixels come from one

of the channels according to the Bayer-pattern color layout.

5.2. Experimental Settings

Implementation Details. In our implementation, we ran-

domly crop the Bayer-pattern spike frames into patches

with spatial resolution 96 × 96 for training, with the RGGB

Bayer pattern. We set the number of spike frames N to 41

and the batch size to 4. The length w and stride s of the

sliding temporal window are set to 11 and 3. We employ ℓ1
loss function and use Adam optimizer with an initial learn-

ing rate of 10−4, which will decay to 0.8 times after every

7500 iterations. Besides, we employ the PyTorch frame-

work and train the models via an NVIDIA RTX3090 GPU.

Training and Evaluation Datasets. Using our de-

veloped CSC simulator, we generated the training dataset

based on 240 scenes for training from REDS (120fps) [23],

resulting in 5 × 240 = 1200 clips for each super-resolution

scale (×2, ×3 and ×4). Then we generate 5 × 30 = 150 clips

for evaluation based on 30 videos of the REDS evaluation

dataset. To demonstrate the generalization to non-REDS-

based data, we also generated evaluation datasets from two

video SR datasets, Vid4 [22] and Vimeo [35]. Besides, we

also captured some real-world Bayer-pattern spike streams

to verify the performance further. The details of the syn-

thetic evaluation datasets can be found in Table 1.

Source Scenes Samples Resolution Scales

REDS [23] 30 150 720×1280 2, 3, 4

Vid4 [22] 4 4 - 2, 3, 4

Vimeo [35] 7824 7824 448×256 4

Table 1. Details of the three synthetic evaluation datasets.

Comparison Methods. As there are no SR methods for

CSCs, we first choose the state-of-the-art gray-scale spike

camera SR networks SpikeSR-Net [45] and VidarSR [34]

for comparison. To adapt the gray-scale methods to the task,

we adopt two strategies: using Bayer-pattern spike streams

for end-to-end training and handling each color channel

separately. We denote the networks with the second strategy

as SpikeSR-Net∗ and VidarSR∗. Then we combine a CSC

reconstruction method 3DRI [10] and an image/video SR

method SwinIR [18]/BasicVSR [3], resulting in another two

comparison methods 3DRI+SwinIR and 3DRI+BasicVSR.
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Scale Method
REDS-based Dataset Vid4-based Dataset Vimeo-based Dataset

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

TFI [48] +TSCNN [4] 29.24dB 0.8173 0.3126 25.06dB 0.7786 0.3196 - - -

TFP[48] +TSCNN 27.43dB 0.7565 0.3671 24.60dB 0.7666 0.3142 - - -

TFI+Real-RawVSR [36] 31.03dB 0.8627 0.2478 26.79dB 0.8422 0.2508 - - -

TFP+Real-RawVSR 30.81dB 0.8535 0.2601 27.10dB 0.8564 0.2329 - - -

3DRI [10] +SwinIR [18] 31.13dB 0.8809 0.2191 26.57dB 0.8668 0.2100 - - -

×2 3DRI+BasicVSR [3] 31.60dB 0.8912 0.2052 27.03dB 0.8748 0.2021 - - -

VidarSR [34] 30.81dB 0.8991 0.1884 26.44dB 0.8911 0.1791 - - -

VidarSR∗ 30.27dB 0.8430 0.2631 25.28dB 0.8106 0.2538 - - -

SpikeSR-Net [45] 32.38dB 0.8913 0.2099 28.34dB 0.8957 0.1833 - - -

SpikeSR-Net∗ 29.66dB 0.8249 0.2861 24.62dB 0.7854 0.2721 - - -

CSCSR (ours) 33.39dB 0.9121 0.1764 28.77dB 0.9110 0.1612 - - -

TFI+TSCNN 27.22dB 0.7505 0.3842 22.91dB 0.6609 0.4058 - - -

TFP+TSCNN 26.55dB 0.7176 0.4137 23.22dB 0.6800 0.3808 - - -

TFI+Real-RawVSR 28.68dB 0.7942 0.3292 24.00dB 0.7225 0.3474 - - -

TFP+Real-RawVSR 28.66dB 0.7883 0.3344 24.39dB 0.7407 0.3326 - - -

3DRI+SwinIR 28.38dB 0.8136 0.2977 23.97dB 0.7534 0.3160 - - -

×3 3DRI+BasicVSR 28.65dB 0.8208 0.2905 24.08dB 0.7568 0.3135 - - -

VidarSR 29.36dB 0.8414 0.2679 24.66dB 0.8009 0.2816 - - -

VidarSR∗ 27.53dB 0.7670 0.3554 22.78dB 0.6742 0.3680 - - -

SpikeSR-Net 29.79dB 0.8270 0.2970 25.33dB 0.7915 0.2989 - - -

SpikeSR-Net∗ 26.73dB 0.7367 0.3908 22.12dB 0.6323 0.4067 - - -

CSCSR (ours) 29.92dB 0.8513 0.2653 25.68dB 0.8240 0.2761 - - -

TFI+TSCNN 25.98dB 0.7010 0.4310 21.69dB 0.5722 0.4659 24.77dB 0.7304 0.3554

TFP+TSCNN 26.55dB 0.7176 0.4137 22.53dB 0.6240 0.4177 25.56dB 0.7587 0.3557

TFI+Real-RawVSR 27.27dB 0.7391 0.3851 22.53dB 0.6240 0.4177 25.12dB 0.7492 0.3244

TFP+Real-RawVSR 27.32dB 0.7347 0.3885 22.81dB 0.6408 0.3634 25.15dB 0.7493 0.3324

3DRI+SwinIR 26.94dB 0.7544 0.3602 22.47dB 0.6533 0.3901 25.21dB 0.7423 0.3218

×4 3DRI+BasicVSR 26.94dB 0.7570 0.3605 22.52dB 0.6507 0.3973 25.05dB 0.7401 0.3204

VidarSR 27.56dB 0.7692 0.3505 22.69dB 0.6712 0.3868 25.19dB 0.7565 0.3098

VidarSR∗ 26.51dB 0.7135 0.4135 21.58dB 0.5880 0.4395 24.64dB 0.7352 0.3423

SpikeSR-Net 28.28dB 0.7755 0.3517 23.59dB 0.6983 0.3727 25.27dB 0.7611 0.3119

SpikeSR-Net∗ 25.93dB 0.6913 0.4403 21.01dB 0.5451 0.4718 24.46dB 0.7240 0.3593

CSCSR (ours) 28.77dB 0.7963 0.3253 23.79dB 0.7223 0.3555 25.34dB 0.7660 0.2967

Table 2. Quantitative comparison. Red and blue indicate the best and the second-best performance, respectively. For each scene of Vimeo

[35], there is a sequence of LR frames but only one corresponding HR frame (×4). Thus only the dataset of ×4 scale is generated for Vimeo.

It’s also intuitive to combine methods of estimating raw im-

ages from Bayer-pattern spike streams (Sec. 3.2) and joint

demosaicing and super-resolution (JDSR) methods. Thus

we employ TFI or TFP [48] to infer raw images, followed

by an image JDSR method TSCNN [4] or a video JDSR

method Real-RawVSR [36] to reconstruct color images. In

addition, we employ PSNR, SSIM [30] and LPIPS [38]

(lower means better) as quantitative metrics for comparison.

5.3. Comparative Results

Quantitative Results. As shown in Table 2, we conduct

comparative experiments on the three SR scales. It can

be found that our method achieves the best quantitative re-

sults in most experiments. The state-of-the-art spike camera

SR methods VidarSR and SpikeSR-Net achieve competitive

performance. However, VidarSR∗ and SpikeSR-Net∗ that

handle each color channel separately don’t perform as well

as VidarSR and SpikeSR-Net, due to the lack of considera-

tion of color correlation. With the temporal information, the

multi-frame method 3DRI+BasicVSR performs better than

the single-frame method 3DRI+SwinIR in most cases. This

is also true for the multi-frame JDSR method RawVSR and

the single-frame JDSR method TSCNN. Besides, with the

increase of the SR scale, TFP-based methods show growing

competitiveness to TFI-based methods.

Visual Results. Fig. 8 presents the visual comparison

(×4) on the synthetic data. The visual quality of results

by our proposed method is better than the other methods,

with less motion blur and more accurate color. There are

artifacts in the results produced by VidarSR∗ and SpikeSR-

Net∗, which demonstrates the importance of the considera-

tion of color correlation. In addition, the multi-frame meth-

ods show better visual quality. To demonstrate model gen-

eralization, we conduct experiments on real-world captured

Bayer-pattern spike streams as shown in Fig. 9. In contrast,

our method can restore better textures and details.
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Ground Truth TFI+
TSCNN

TFP+
TSCNN

TFI+Real-
RawVSR

TFP+Real-
RawVSR

3DRI+
SwinIR

3DRI+
BasicVSR VidarSR CSCSR

(ours)VidarSR* SpikeSR-
Net

SpikeSR-
Net*

Figure 8. Visual comparison (×4) on the synthetic Bayer-pattern spike streams. The first sample comes from the REDS-based dataset,

while the second one comes from the Vid4-based dataset. Please enlarge the figure for better comparison.

TFI+
TSCNN

TFP+
TSCNN

TFI+Real-
RawVSR

3DRI+
SwinIR

3DRI+
BasicVSR VidarSR VidarSR* SpikeSR-Net SpikeSR-Net* CSCSR

(ours)
TFP+Real-
RawVSR

Full Image &
Spike Frame

Figure 9. Visual comparison (×4) on the real-world Bayer-pattern spike streams. The first spike stream sample is captured by a fast-moving

CSC. The second one records a fast-rotating water bottle. Please enlarge the figure for better comparison.

Case Setting Description ×2 ×3 ×4

(A) Removing BSSR module 33.04 29.57 28.57

(B) Removing GP from BSSR 33.17 29.74 28.68

(C) Interval-based representation 32.05 28.19 28.06

(D) Independent motion estimation 33.22 29.55 28.59

(E) Assembled motion estimation 30.24 27.08 26.66

(F) Removing MSR module 32.66 29.42 28.39

(G) Removing FR from MSR 33.07 29.70 28.56

(H) Reconstruction module (b) 30.19 27.36 26.22

(I) Reconstruction module (c) 33.24 29.69 28.66

(J) Our final network 33.39 29.92 28.77

Table 3. Ablation study on the REDS-based evaluation dataset.

Greener blocks represent higher PSNR(dB) performance.

5.4. Ablation Study

To verify the effectiveness of our methodology, we per-

form ablation studies on our modules and motion estimation

strategy. Case (J) is our final CSCSR network. First, we re-

move the BSSR module in (A) to demonstrate the proposed

representation. Then we remove the additional GP branch

from BSSR in (B). We also replace BSSR with the interval-

based representation [46, 48] in (C). To demonstrate our

joint motion estimation strategy, we employ independent

motion estimation for each color channel in (D) and an op-

tical flow assembly strategy in (E). To be specific, the opti-

cal flows of color channels are assembled according to the

Bayer pattern. After that, we implement studies on the MSR

module. In (F), MSR is removed from the network. In (G),

the FR module is removed from MSE to verify its effective-

ness. Finally, (H) and (I) are the studies on the proposed

reconstruction module, where the module is replaced by the

structures in (b) and (c) of Fig. 6, with the same number of

residual blocks. The study results are shown in Table 3.

6. Conclusions

In this paper, we present a deep network to restore HR color

images from LR Bayer-pattern spike streams. To represent

the binary data, we develop a representation that utilizes

local temporal information with global perception. Then

we propose to collect temporal pixels for spatial super-

resolution according to the color layout and sub-pixel level

motion. To reduce the impact of motion estimation errors,

we design a feature refinement module based on residuals.

Finally, multi-stage temporal-pixel features of each color

channel are jointly considered, resulting in the final HR

color image. Experimental results on both synthetic and

real-world captured data demonstrate our performance.
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