
Differentiable Micro-Mesh Construction

Yishun Dou2 Zhong Zheng2 Qiaoqiao Jin1 Rui Shi1 Yuhan Li1 Bingbing Ni1,2*

1Shanghai Jiao Tong University, Shanghai 200240, China 2 Huawei
yishun.dou@gmail.com nibingbing@sjtu.edu.cn

Abstract

Micro-mesh (µ-mesh) is a new graphics primitive for
compact representation of extreme geometry, consisting of
a low-polygon base mesh enriched by per micro-vertex dis-
placement. A new generation of GPUs supports this struc-
ture with hardware evolution on µ-mesh ray tracing, achiev-
ing real-time rendering in pixel level geometric details.

In this article, we present a differentiable framework to
convert standard meshes into this efficient format, offering
a holistic scheme in contrast to the previous stage-based
methods. In our construction context, a µ-mesh is defined
where each base triangle is a parametric primitive, which is
then reparameterized with Laplacian operators for efficient
geometry optimization. Our framework offers numerous ad-
vantages for high-quality µ-mesh production: (i) end-to-
end geometry optimization and displacement baking; (ii)
enabling the differentiation of renderings with respect to µ-
mesh for faithful reprojectability; (iii) high scalability for
integrating useful features for µ-mesh production and ren-
dering, such as minimizing shell volume, maintaining the
isotropy of the base mesh, and visual-guided adaptive level
of detail. Extensive experiments on µ-mesh construction for
a large set of high-resolution meshes demonstrate the supe-
rior quality achieved by the proposed scheme.

1. Introduction
Micro-Mesh (µ-mesh) [38] is a promising graphics primi-
tive for compact storage and efficient ray tracing rendering,
supported by a new generation of GPUs. A µ-mesh can be
seen as a special displacement-mapped mesh, consisting of
a low-polygon base mesh and per-µ-vertex scalar displace-
ment (see Fig. 1 (a)), where the µ-vertex is produced by
subdivision at rendering time. The µ-mesh construction,
i.e. converting a standard mesh to this format, is critical to
µ-mesh accuracy and rendering efficiency.

A straightforward choice is to combine existing poly-
gon mesh processing methods [5], including mesh decima-
tion [12], remeshing [24], displacement baking [10, 11] and

*Corresponding author: Bingbing Ni.

Input

Base Mesh Displaced

Subdivided - mesh

Parameters

Base Mesh

Displaced

(b)

(a)

Isotropy
Reprojectability

Differentiable Operations

Differentiation w.r.t. - mesh Minimizing
Shell Volume

Figure 1. (a) A µ-mesh produced by our method in 1 : 64 deci-
mation. (b) Overview of our differentiable µ-mesh construction.

so on, which is adopted in [29, 38]. This forms a stage-
based pipeline, where each stage independently minimizes
some local objective, such as the quadric error metric for
decimation, or the centroidal voronoi tessellation energy for
remeshing. However, both of these objective functions are
designed for specific mesh processing tasks, while the ulti-
mate goals of building a µ-mesh, i.e. faithful reproduction
and minimal bounding shell volume, are not directly con-
sidered. The most recent state-of-the-art method proposed
by [28] significantly improves the µ-mesh quality, but they
still continue with the staged pipeline and pose risks in error
accumulation and suboptimal construction.

We propose to alleviate these limitations through the
end-to-end optimization, taking the ultimate goals of µ-
mesh as the objective for both the base mesh optimization
and displacement baking. This is made possible by (i) a
holistic µ-mesh construction system that is full of differen-
tiable operations for end-to-end backpropagation, (ii) a cur-
riculum optimization strategy exploiting the level of detail
nature of µ-mesh, and (iii) several novel objectives that well
instantiate the goals of producing a high quality µ-mesh.
See Fig. 1 (b) for an illustration. Our system is designed
according to the following principles:
• Reprojectability. The primary requirement for building

a µ-mesh is to reproduce the original mesh. Since the µ-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4294

mesh is eventually presented to users in 2D, the construc-
tion system must consider not only the geometry error but
also the rendering reproduce error.

• Scalability. µ-mesh makes additional requirements to
maximize its strengths, either in memory efficiency or
rendering cost. In contrast to the less flexible stage-based
methods, our goal is to develop a holistic framework, em-
bracing new functionality in a plug-and-play fashion.

• Robustness. Meshes vary dramatically in topology, fre-
quency and mesh resolution, which poses challenges to
the design of an automatic construction system. Case-
specific design eventually leads to brittle systems. We
strive for a solution that is robust to mesh variations.

Reprojectability. The first principle necessitates a differen-
tiable renderer to support the inverse rendering of µ-mesh.
Existing differentiable renderers [14, 20, 44], however, are
designed for standard meshes, for which we introduce a
differentiable µ-mesh pre-tessellation to utilize the existing
techniques. Still, naı̈ve application of differentiable render-
ing often results in tangled mesh, as indicated by Nicolet et
al. [34]. To this end, a µ-mesh reparameterization is in-
troduced to bias gradient steps towards smooth solutions
without requiring the final µ-mesh to be smooth [34]. In
other views, instantiating reprojectability with images error
instead of geometry error (e.g., Chamfer Distance, Quadric
Error Metric [8]) gains in: (i) better robustness to mesh res-
olutions due to the efficient rasterization and no sampling
required on geometry surface, and (ii) higher µ-mesh ren-
dering quality since imperceptible rendering degeneration is
more likely achieved by construction with visual-guidance.
Scalability. An end-to-end differentiable system enjoys
greater scalability than stage-based pipelines, especially for
functionalities that involve multiple stages. For instance,
the µ-mesh bounding shell volume, which is key to ren-
dering performance [38], should be minimized during con-
struction. For the staged pipeline, the shell volume is fixed
right after producing the base mesh, while the exact volume
value is calculated after baking displacements. As a result,
multiple stages are involved to minimize the bounding shell
volume. Recent method [28] makes compromises and tack-
les this by introducing a post processing after baking dis-
placements. In contrast, our holistic system handle this via
simultaneous optimization of base mesh and displacements,
guided by a novel shell volume regularization.
Robustness. One of the benefits of µ-mesh is the self-
governed nature of base triangles. In our system, the key
requirements for a high quality µ-mesh are all realized upon
a base triangle or one-ring neighboring base triangles of a
base vertex, including minimizing shell volume, isotropy,
and adaptive level of detail. These local operations are del-
icately designed to maintain robustness.

In summary, we highlight the following contributions:
• We present a novel end-to-end system for µ-mesh con-

Symbol Domain Definition
M standard mesh
M µ-mesh
V RNV×3 base vertex
F NNF×3 base face
ℓ; ℓmax N level of detail
Vℓ RNℓ

V×3 µ-vertex at level ℓ
Fℓ N4ℓNF×3 µ-face at level ℓ
O RNV×3 base vertex offset
D RNℓmax

V µ-vertex displacement
Dℓ RNℓ

V µ-vertex displacement at level ℓ
O RNV×3 reparameterization of O
Dℓ RNℓ

V reparameterization of Dℓ

P parametric primitive
Tess(·) M→M µ-mesh tessellation

struction, together with extensive experiments to demon-
strate the superior quality achieved by our method.

• Several differentiable operations dedicated to efficient µ-
mesh construction are proposed to support this system.

• Critical features for producing high quality µ-mesh are
elegantly and effectively devised.

2. Related Work
Our method is related to µ-mesh construction, differentiable
rendering, and Laplacian operator.

2.1. Micro-Mesh Construction
Given a standard mesh, the process of constructing a µ-
mesh [28, 29, 38] can be roughly divided into three stages:
(i) Firstly, an edge collapse decimation and a remeshing are
applied on the high-polygon input mesh to get an isotropic
simplification, called base mesh, where the base triangle is
taken as the elementary primitive at rendering time. (ii)
Secondly, the base triangles are then stationarily subdivided
into µ-faces in a 1-to-4 manner, and recursively repeat this
until reach the maximum level or meet some stopping cri-
teria. (iii) Lastly, the geometric surface details are baked
into the base surface via ray-casting at µ-vertices along nor-
mal directions, where the resulting scalar displacements are
then quantized and packed. After finishing these steps, a
compact µ-mesh consisting of a base mesh and displace-
ments is saved and ready for rendering. We refer to the
white paper [38] for more details about µ-mesh structure,
compression, and rendering.

This stage-based construction poses risks in error accu-
mulation, oversize shell volumes stemmed from the sub-
optimal base mesh, and the lack of flexibility in further ge-
ometry processing that involves multiple stages. In contrast,
we strive for an end-to-end solution that bridges as much in-
termediate processes as possible.

4295

2.2. Differentiable Rendering
Differentiable rendering has proven to be a powerful tool
in the realm of computer vision and graphics, including
geometry optimization [13, 34, 49], uv and texture opti-
mization [19], 3D reconstruction [32, 36], and many in-
verse rendering tasks [9, 54]. Volumetric renderings are
inherently differentiable and often used in the inverse ren-
dering tasks defined upon volume representation [30, 31].
Instead, rasterization rendering pipeline processes geome-
try surface, and thus is more suitable for inverse rendering
on meshes. Due to the discrete rasterization, several ap-
proaches [7, 16, 20, 26] employ various techniques like mi-
nor image blurring or antialiasing operations to enable dif-
ferentiation. Differentiable rasterization is computationally
efficient, offering great feasibility in optimization-based
problems, such as the recent 3D generations [6] relying on
2D supervision [45], radiance field reconstruction [17], and
shape optimization [34]. Similarly, we can efficiently op-
timize a µ-mesh with the rendering guidance, i.e. towards
similar renderings with the original mesh.

There is also an active research area focusing on physics-
based differentiable rendering [3, 22, 27, 35, 37, 48–53],
aiming at solving the inverse rendering with shadow, indi-
rect illumination, and other high-order effects. However, in-
stead of recovering the whole rendering scene, where many
local minima exist, we optimize the geometry with frozen
material and illumination, for which a computationally effi-
cient rasterization renderer is sufficient for our purpose.

2.3. Laplacian Operator in Mesh Processing
The Laplacian is a elementary differentiable operator of ge-
ometry processing. Consider a mesh with n vertices V, its
Laplacian representation ∆ ∈ Rn×3 is defined as ∆ = LV,
where L ∈ Rn×n is a sparse matrix, referred to as the dis-
crete Laplacian operator. L is defined locally on derivatives
along edge; ∆ of a vertex encodes its local neighborhood
on surface. We refer to [5] for a review of Laplacian mesh
processing. Built upon Laplacian, Nicolet et al. [34] show
an application in inverse rendering of geometry. We step
further in exploiting the usage in µ-mesh.

3. Methodology
Our goal is to develop a fully differentiable framework for
µ-mesh construction. In this section, we first parameter-
ize the µ-mesh in Sec. 3.1, which is then reparameterized
with differentiable Laplacian operators in Sec. 3.2. We
then present the optimization algorithm instantiated within
a differentiable rendering framework in Sec. 3.3. Finally,
Sec. 3.4 demonstrates that broad requirements and features
can be easily realized upon such a differentiable framework,
which is critical either for µ-mesh compression or render-
ing. Figure 2 illustrates the overall construction pipeline.

3.1. Micro-Mesh Parameterization
We denote a µ-mesh asM = (V,F ,O,D) with base ver-
tices V ∈ RNV×3 and base triangle faces F ∈ NNF×3,
where NV and NF are the number of vertices and faces re-
spectively. The base mesh M(V,F) is initialized with mesh
decimation and remeshing [1, 12].

Subdivision. Building a µ-mesh necessitates subdivision.
We use Loop [25] 1-to-4 subdivision without vertex update
to obtain finer topology from the base mesh. From the view
of level of detail, the base mesh has the initial level ℓ = 0,
and the finest topology level ℓmax is obtained by applying
subdivision ℓmax times. Regardless of the various granulari-
ties at different levels, for brevity, we denote the subdivided
faces as micro-face (µ-face) Fℓ ∈ N4ℓNF×3, as well as
vertices as micro-vertex (µ-vertex) Vℓ ∈ RNℓ

V×3 for level
ℓ ∈ {0, 1, . . . , ℓmax}, where N ℓ

V is the µ-vertex number that
depends on the mesh topology 1. Indeed, V0 is the initial
base vertex V and µ-vertices at level ℓ are a subset of those
at level ℓ+ 1 (i.e. V0 ≡ V , Vℓ ⊂ Vℓ+1).

Trainable Parameters. We define the following train-
able parameters: (i) 3-dimensional vectors on base vertices,
which we refer to offset O ∈ RNV×3, and (ii) scalar dis-
placements D ∈ RNℓmax

V on µ-vertices, from which we can
extract the displacements for level ℓ via slicing the first N ℓ

V
values in D (i.e. D[: N ℓ

V]), denoted as Dℓ ∈ RNℓ
V .

Parametric Primitive. Particularly, the set of parameters
belonging to a base triangle at level ℓ is deemed as an ele-
mentary parametric primitive P:

P = (o ∈ R3×3, d ∈ R
∑2ℓ+1

i=1 i), (1)
where o ⊂ O indicates the vector offsets of the three base
vertices and d ⊂ D is the scalar displacements of the in-
clusive µ-vertices. Notably, we also make the position of
base vertex optimizable in contrast to the staged µ-mesh
construction methods that freeze the base vertex once it
is initialized [38] or rely on further post process after dis-
placement baking [28]. This enhances robustness to sub-
optimal simplification and provides scalability for further
extensions, e.g., minimizing the shell volume.

In practice, only the updated base mesh M(V + O,F)
and the displacements D are asked to be saved to disk after
our optimization-based construction. The remaining com-
ponents, i.e. topology and µ-vertex positions, are discarded
and generated on the fly during rendering.

3.2. Laplacian on Micro-Mesh
With the above parameterization, the µ-mesh is immedi-
ately ready for optimizing within a differentiable geometry
optimization framework, given an objective such as a ren-
dering consistency loss, and a gradient-based optimizer.

1A base triangle contains
∑2ℓ+1

i=1 i µ-vertices at level ℓ. µ-vertices
along base mesh edges are shared between two base triangles.

4296

base vertex

base offset

micro-vertex

displacement

- mesh Parameters Laplacian Reparameterization

Optimization

1
2

3

4

6

tessellation
- mesh

a Rendering Consistency
b Minimizing Shell Volume

Other Requirements...

c Isotropy

5

8

7

9
Optimize Next Level

Initial Simplication

9
If

SaveObjectives: ,

2

Figure 2. Illustration of our µ-mesh construction pipeline. Starting from an initial simplification, we progressively optimize the µ-
mesh parameters O and D. After each 1-to-4 Loop subdivision ❶, µ-mesh reach the level ℓ with newly introduced µ-vertices, whose
displacements are initialized with interpolation. We then displace base vertices and µ-vertices ❷, resulting in a new base mesh and
a new subdivided mesh, which are used to update the discrete Laplacian operators L and Lℓ ❸. Afterwards, µ-mesh parameters are
reparameterized ❹ to O and D, which are optimized ❻ in a fully differentiable system, with the objectives of rendering and important
functionalities for µ-mesh. We then update ❼ ❽ µ-mesh parametersO,D . These steps will be repeated until reach the maximum level ❾.

However, as indicated by pioneer works in mesh defor-
mation and editing [33, 47], learning on the vertex positions
is unstable and often lead to tangled µ-mesh. A conven-
tional approach to tame distortion in geometry processing
is to append a Laplacian smooth regularizer [46]. Still, the
convergence result must now compromise between solving
the reprojectability and being smooth [34].

To this end, inspired by the diffusion reparameterization
on meshes [34], we develop a reparameterization method
tailored for µ-mesh. Specifically, two cotangent Laplacian
operators [41] are computed after each subdivision, among
which one for updated base mesh and another for tessel-
lated µ-mesh at level ℓ, denoted as L and Lℓ. Note that we
employ progressive learning (Sec. 3.3) and the shape after
each subdivision is different. The vector-valued offset O
and the scalar-valued displacement D are reparameterized
following [34]:

O = (I+ λ1L)O, Dℓ
= (I+ λ2L

ℓ)Dℓ, (2)
where λ can be seen as the temporal duration of diffusion
(like the smooth regularizer weight). The reparameterized
offset O ∈ RNV×3 and displacement Dℓ ∈ RNℓ

V bear some
resemblance to the differentiable coordinate [23, 34, 46].
Note that the Laplacian can be applied to any functions that
takes values at every vertex, such as our case that involves
both vector-valued and scalar-valued functions.

3.3. Optimization
We choose to instantiate the optimization procedure within
a differentiable rendering framework, because of the ren-
dering consistency immediately reflects the reprojectabil-
ity quality of a µ-mesh. The rendering-guided optimization
problem is modeled as:

argmin
O,D

Φ(R(M)), (3)

where Φ is a loss function (we use a L1 loss in our exper-
iments) measuring the reconstruction accuracy of images
produced by a differentiable renderer R with known cam-
eras surrounding the mesh.

Solving this problem involves µ-mesh rendering. Dif-
ferent from the µ-mesh rendering pipeline in a deployment
version [38], in which the tessellation is deferred, we in-
stead pre-tessellate µ-mesh before rendering to make use of
the off-the-shelf differentiable renderer [21].

Micro-Mesh Tessellation. We denote a tessellation of µ-
mesh up to level ℓ as Tessℓ(M) = M(Vℓ,Fℓ), where Vℓ is
the µ-vertices position after tessellation. The µ-vertices are
firstly assigned with the subdivided positions by applying
subdivision ℓ times on the offset base mesh M(V +O,F).
The µ-vertices, for now, lie on the plane of the belonging
base triangle. Meanwhile, we compute the base vertex nor-
mal N ∈ RNV×3 on mesh M(V + O,F). The normals
are then interpolated at every µ-vertices’ barycentric coor-
dinate, resulting in µ-normals, which are further used as the
moving directions for scalar-valued displacements. In sum-
mary, the µ-vertex after tessellation is given as:
Vℓ = subdiv(M(V +O, F)) + interp(N) · Dℓ, (4)

where subdiv(·) and interp(·) are functions of subdivision
and barycentric interpolation respectively, both of which are
naturally differentiable. By substituting O and D in Eq. (4)
with the corresponding reparameterizations formulated in
Eq. (2), we reach the following µ-mesh tessellation form:

Vℓ = subdiv(M(V + (I+ λ1L)
−1O, F))

+ interp(N) · (I+ λ2L
ℓ)−1Dℓ

. (5)
These steps constitute a fully differentiable µ-mesh tessel-
lation computation graph, as depicted in Fig. 3. Afterwards,

4297

ADD

SUBDIV

NORMAL

MUL

INTERP

ADD

Attached Node

Detached Node

Forward

Backward

Parameter

Non-Parameter

Figure 3. µ-mesh tessellation computation graph. µ-normals
for displacing µ-vertex are detached from the computation graph.
As a special note, the normal of tessellated µ-mesh fed into (dif-
ferentiable) renderer R is not detached, because of the gradient of
the normal consumed during shading would boost the gradients.

with the above reparameterized Vℓ, the optimization prob-
lem at target level ℓ is given as:

argmin
O,D

Φ(R(M(Vℓ,Fℓ))). (6)

Both of the tessellation, reparameterization, and renderer
introduced above are differentiable, which then constitute a
fully differentiable µ-mesh construction framework. Next,
we show the derivatives with respect to µ-mesh under the
reparameterized regime.
Differentiation w.r.t. Micro-Mesh. Differentiating the ren-
dering loss with respect to µ-mesh is actually to the repa-
rameterizations O and Dℓ

. Considering the Eq. (5) and
Eq. (6), the update rule for reparameterized offset O and
displacement Dℓ

are given as:

O ← O − η1
∂Vℓ

∂O

∂Φ
∂Vℓ

, (7)

Dℓ ← Dℓ − η2
∂Vℓ

∂Dℓ

∂Φ
∂Vℓ

, (8)

where η1 and η2 are learning rates. This is sufficient for
training a µ-mesh now, whose original parameters can be
calculated according to Eq. (2). In order to get an intuition
of how the original µ-mesh parameters are updated, we first
rewrite the above Eq. (7) by applying chain rule:

O ← O − η1
∂O
∂O

∂Vℓ

∂O

∂Φ
∂Vℓ

, (9)

where ∂O/∂O = (I+λ1L)
−1 is the Jacobian of offsetO as

a function of the reparameterization O. The scalar-valued
displacement D also follows the similar update rule, which
can be found in supplementary material. We can then derive
the following update rule for original parameters O:

O ← (I+ λ1L)
−1(O − η1

∂O
∂O

∂Vℓ

∂O

∂Φ
∂Vℓ

)

= O − η1(I+ λ1L)
−2 ∂Vℓ

∂O

∂Φ
∂Vℓ

. (10)

This is similar to the update rule for coordinate positions
in [34], thus allowing stable training and anti-distortion.
Progressive Subdivision and Optimization. The above
derivation are formulated in the level of detail context in-
tentionally, as we design the training procedure under a cur-
riculum learning paradigm [4], shown in next:
1. ℓ = 0: Warmup with optimizing base mesh, which is

similar to the mesh deformation under fixed topology.
2. ℓ ∈ {1, . . . , ℓmax}: Subdivision and solving Eq. (6)

alternately, forming a progressive learning paradigm.
Right after each subdivision (ℓ − 1 to ℓ), (i) the new in-
volved µ-vertices are initialized with interpolation, i.e.
D[N ℓ−1

V : N ℓ
V] = interp(D[: N ℓ−1

V]); (ii) cotangent
Laplacian operators L and Lℓ are recomputed.

3. Finally, we freeze the base offset O and tune the dis-
placement D of all levels simultaneously.

Figure 2 omits the warmup and the last tuning for brevity.
This scheme provides better construction results, validated
in our ablation studies. Furthermore, it also offers the pos-
sibilities for manipulation at each level separately.

3.4. Beyond the Reconstruction

The fully differentiable nature is useful for developing novel
features beyond the reprojectability. We demonstrate the
most important features supported by our differentiable sys-
tem, minimizing shell volume and isotropic base mesh. We
also show a better adaptive level of detail achieved by the
visual-guided subdivision stopping criterion.

3.4.1 Minimizing Shell Volume
In contrast to the AABB for conventional meshes, a new
generation GPUs ray trace a µ-mesh with a tighter and more
efficient BLAS (bottom level acceleration structure), i.e. a
prismoid for each base triangle. Connecting the top and
bottom triangles of all prismoids results in a shell that en-
velopes the geometry surface, as shown in Fig. 4 (a).

The shell volume, i.e. sum of the volume of all pris-
moids, is a crucial factor that affects the rendering time
cost. Specifically, a µ-mesh with smaller shell volume gains
in: (i) effective occlusion culling [40], and (ii) lower ray-
µ-face miss ratio within the prismoid. However, the shell
volume of a µ-mesh built from previous methods is almost
determined right after the initial decimation [29, 38], or is
slightly adjustable within a post processing after baking µ-
vertex displacement [28].

Recall that the positions of base vertices is optimized to-
gether with displacements, which is key to minimize shell
volume. Given a µ-mesh, the bounding prismoid for each
base triangle is computed by min/max fitting [38]. A pris-
moid containing non-parallel side edges could be divided
into three tetrahedrons [42], and thus the shell volume is
the sum of all tetrahedrons volume. Although we can di-
rectly differentiate the tetrahedron volume w.r.t. the µ-mesh

4298

parameters, it is deficient since the involved parameters to
be optimized are only those corresponding to the minimum
and maximum, according to the min/max fitting strategy.

Shell Inside
Shell Outside

- mesh

(a) - mesh Shell (b) Shell Volume

Var()

Prismoid Volume =
Sum of the Tetrahedrons

Minimizing Objective

Figure 4. (a) µ-mesh shell. Shell inside, µ-mesh surface, and
shell outside. (b) Shell volume. A shell volume is the sum of all
prismoids; a prismoid volume is the sum of three tetrahedrons.

We instead propose a more elegant and effective way:
(i) Given a base vertex v, we find its adjacent base faces.
(ii) Then the corresponding parameter of v is Pv =
unique({P1,P2, . . . ,Pt}), where Pi is parametric primi-
tive of each adjacent base face, t denotes the neighbors
number, and unique(·) is a function removing the duplicated
parameters along edges. (iii) We then take the variance of
the displacements as the minimizing objective. (iv) Lastly,
repeat (i) (ii) (iii) for all base vertices and take the variance
summation. Figure 4 (b) depicts this strategy. In short, the
shell volume regularization is the sum of the displacement
variances of all base vertex:

Lsv =
∑
v

var(Pv.d), (11)

where var(·) denotes a function computing variance. Al-
though this objective does not directly constraint the offset
O, minimizing the variance of local displacements facili-
tates the base mesh fitting the original geometry surface.
As a bonus, Lsv leads to smaller displacement, for more
accurate low-bit quantization [28, 38] of µ-mesh.

3.4.2 Isotropy

Meshes with roughly equilateral triangles are often obtained
via isotropic remeshing [1, 2], which is a longstanding task
that plays an important role in geometry processing. The
roughly equilateral-shaped base triangle allows more effi-
cient subdivision and baking [28]. Consequently, previ-
ous µ-mesh construction methods [28, 38] always employ
isotropic remeshing before baking displacement.

To maintain the isotropic of the base mesh during evolu-
tion, we impose as-equilateral-as-possible constraint. This
is also achieved by applying regularizer upon our paramet-
ric primitive P: given a base triangle face f that is offset by
the corresponding P f .o, we formulate the regularization as
the variance of edge lengths

Liso =
∑
f

var(ef1, e
f
2, e

f
3), (12)

where e denotes lengths between the offset base vertices. In
contrast to the naı̈ve global edge length regularizer that is
often used for preventing distortions, our design takes ef-
fects locally and may less distract other global targets, such
as the rendering and shell volume. This allows us to make
fewer assumptions about the isotropy of initial decimation.

3.4.3 Adaptive Level of Detail

µ-mesh supports per-base triangle subdivision level, i.e.
adaptive level of detail (LOD), benefiting from the self-
governed management nature of the base triangle. Intu-
itively, we can assign lower level for flat surface regions.
In order to meet the water-tightness between displaced base
faces, the level difference among adjacent base faces is lim-
ited to a maximum of 1. Two possible avenues to achieve
adaptive LOD: (i) applying subdivision early stop during
optimization; (ii) uniformly subdividing all triangles, then
pruning the overkill subdivision in a post process.

Both of which necessitate
a stopping criterion. One can
employ the usual geometry
metric, such as the common
used Chamfer Distance and
those proposed in [8, 12, 15].
Although these metrics per-
form well for most cases, they may fail to handle the fine-
grained details since they rely on surface sampling. Accord-
ingly, we devise a visual-guided stopping criterion that can
be used independently or as a supplement to other metrics.

The visual-guided subdivision metric is shown in Algo-
rithm 1. It measures the visual improvements bring from
a finer level. Given a base face f, a hard rasterizer is em-
ployed to get the projected pixels for each camera c view.
Then the image space error is measured at two adjacent lev-
els. With this metric, the above two avenues can be achieved
with further neighborhood level adjustment to meet water-
tightness (full algorithms are shown in supplementary ma-
terial). We use the first strategy since we find they achieve
similar results but the first one is more efficient.

ALGORITHM 1: Visual Metric for Adaptive LOD

Function SubdivisionCriterion(M, ℓ, f):
δℓ ← 0; δℓ−1 ← 0
for each camera c do

pixℓ ← Rasterize(Tessℓ(M), f, c)
δℓ ← δℓ +Φ(R(Tessℓ(M), c), pixℓ)
pixℓ−1 ← Rasterize(Tessℓ−1(M), f, c)
δℓ−1 ← δℓ−1 +Φ(R(Tessℓ−1(M), c), pixℓ−1)

end
Return (δℓ−1 − δℓ) / δℓ−1

End Function

4299

Reference Ours Staged ReferenceOursStaged

43.14 (PSNR)
1.44MB (Storage)

0.0810 (Shell Volume)

43.24
2.66MB
0.0886

42.69
2.88MB
0.0912

41.07
1.46MB
0.0816

12.7K12.5K1.00M (Triangles) 1.01M16.3K16.2K

17.7K17.2K2.38M

30.93
1.76MB
0.0841

33.65
2.03MB
0.0822

39.42
2.62MB
0.0904

41.09
2.64MB
0.0887

9.8K 10.0K

21.3K 21.1K 2.14M

2.58M

35.27
2.85MB
0.0890

36.67
2.74MB
0.0861

74.1MB (Storage)

48.88
2.88MB
0.0847

45.16
2.53MB
0.0887

90.1MB

114.0MB

41.3MB

102.0MB

101.0MB

2.20M 13.3K13.2K

Figure 5. µ-mesh construction results. ”Staged” denotes the previous state-of-the-art method proposed in [28]. With the similar number
base triangles (upper-left corner), our method exhibits better visual quality, and significant numeric improvements in terms of PSNR of
rendered µ-mesh. Sizes of µ-mesh storage are affected by subdivision stopping criteria. The similar storages and the better visual effects
together suggest the effectiveness of our visual-based criterion. Moreover, our method also performs better in terms of shell volume.

4. Experiments
All experiments were performed on a Linux workstation
(i9 12900k and RTX 3090). The parametric µ-mesh is im-
plemented as a PyTorch [39] neural module, rendered with
nvdiffrast differentiable rasterizer [21], along with a spher-
ical harmonics shading model [43]. In order to meet a min-
imum requirement of a scene for rendering, we set all the
mesh surfaces to smooth diffuse material, and adopt Klop-
penheim (©3DHEVEN) as the environment map.

4.1. Implementation Details
Optimization. We optimize the parameters by applying
UNIFORMADAM optimizer, a modified ADAM [18] by Nico-
let et al. [34], with the same learning rate 2e-3 for offsets
O and displacements D. All the models in our experiments
are trained for 1600 iterations, in which the 50, 150, 400,
and 800 iterations are milestones that will trigger the sub-
division. The first 50 iteration is warmup and the last 200
iteration is the displacement tuning with frozen base ver-
tex. After each subdivision, the learning rates are decayed
by 0.8 and 0.95 for O and D respectively; we apply cosine
annealing for last 200 iteration, lowering the learning rate
of D to 0 at the end of optimization. To balance the losses,
regularizer terms Lsv and Liso are weighted by 10 and 100.
Mesh Decimation. The base mesh in our approach is ini-
tialized with a decimated low-polygon mesh, generated by a
GPU-based QEM [12] family of decimation [38], which is
much lighter compared with [28]. For meaningful compari-
son, we keep the similar number of base triangles with [28],

~3s ~4.2m

~4.6m ~7s

0.4s

0.2s

Decimation & Remeshing

Adaptive Subdivision

Baking Displacement

Minimizing Shell Volume

Ours End-to-End -mesh Building

Staged

Figure 6. µ-mesh construction time breakdown. Evaluated on
an extreme mesh (DARK FINGER REEF CRAB, 2.14M triangles).

and consequently the similar µ-mesh compression ratio.
Datasets. We demonstrate the effectiveness of our ap-
proach with extensive batch µ-mesh construction for high-
resolution meshes. The mesh dataset used in experiments is
inherited from [28], including 121 meshes with face num-
bers ranging from 0.1M (million) to 4M. We divide these
meshes into three subsets: medium (< 1M, contains 37
meshes), large (1M ∼ 2M, 34), and extreme (> 2M, 50).

4.2. µ-mesh Construction Results
Table 1 shows comparative results and performances. For
base mesh (after optimization), we report vertex quadrics
geometry error [12] and isotropy; for µ-mesh, we report
rendering PSNR that is averaged on 16 evaluation views,
shell volume, and construction time. Note that these evalu-
ation views are randomly selected and have no overlap with
training views of our method. Simplygon [29] lags a lot
behind previous state-of-the-art method proposed by Mag-
giordomo et al. [28] (also denoted as Staged for brevity),
while our method exhibits significant improvements. In ad-
dition to improvements on the metrics that directly measure
µ-mesh quality (underlined), our method also shows com-
parable results on base mesh. Nevertheless, we hold that the

4300

Simplygon Maggiordomo et al. Ours

Metrics µ-mesh Base µ-mesh Base µ-mesh Base
Geom. Err. ↓ - 4.78 - 4.52 - 4.46

Isotropy ↑ - 0.902 - 0.747 - 0.729
Medium PSNR ↑ 37.22 - 41.61 - 42.93 -
(< 1M, 37) Volume ↓ 0.114 - 0.085 - 0.083 -

Time (m) ↓ 1.3 - 2.0 - 3.9 -
Geom. Err. ↓ - 2.40 - 2.63 - 2.65

Isotropy ↑ - 0.961 - 0.742 - 0.750
Large PSNR ↑ 36.63 - 42.42 - 44.18 -
(1M ∼ 2M, 34) Volume ↓ 0.108 - 0.086 - 0.082 -

Time (m) ↓ 2.5 - 4.0 - 4.3 -
Geom. Err. ↓ - 2.60 - 1.84 - 1.80

Isotropy ↑ - 0.954 - 0.751 - 0.747
Extreme PSNR ↑ 35.02 - 42.61 - 44.89 -
(> 2M, 50) Volume ↓ 0.124 - 0.089 - 0.083 -

Time (m) ↓ 3.1 - 5.3 - 4.8 -

Table 1. µ-mesh construction on 121 high-resolution models.
Both methods have similar reduction ratio. (Geom. Err. ×10−5)

base mesh’s geometry error and isotropy only have rough
correlations to the final µ-mesh quality, a good practice is to
focus on final/global objectives on µ-mesh. We qualitatively
compare the constructed µ-mesh in Fig. 5. Our visual-based
subdivision criterion performs well in determining subdivi-
sions according to surface details. We show the visual effect
and the storage together since they jointly validate the effec-
tiveness of our adaptive level of detail strategy.
Quality over Decimation Ratio. We experiment µ-mesh
construction at different decimation ratios, demonstrated in
Fig. 7. Our method shows stronger competitiveness as the
decimation ratio increases, because of a large one could
raise more demands on global optimization.
Time Breakdown. Figure 6 demonstrates the time break-
down of converting an extreme mesh to µ-mesh. The pre-
vious staged method [28], as indicated, devotes most of the
time in decimation, pursuing a base mesh that can well re-
produce the input surface, with properties of small shell vol-
ume and isotropy. For staged scheme, we believe it’s a good
practice to concentrate on the base mesh, due to the final
µ-mesh quality (reprojectability, shell volume) are almost
determined right after decimation. Instead, we consider the
construction stages as a whole, which is optimized end-to-
end with some global objectives. Consequently, our scheme
has large potential to achieve greater efficiency and quality.

4.3. Ablation Studies
Table 2 shows the impact of key components in our sys-
tem, including progressive scheme, reparameterization, ob-

4 8 16 32 64 128 256
Decimation Ratio

1.2

1.4

1.6

1.8

2.0

Ge
om

et
ry

 E
rro

r (
x1

0−5
)

Base Mesh Error Curve

Geometry Error - Staged
Geometry Error - Ours

4 8 16 32 64 128 256
Decimation Ratio

30

40

50

60

PS
NR

μ-mesh Error Curve

PSNR - Staged
PSNR - Ours
Shell Volume - Staged
Shell Volume - Ours

0.06

0.07

0.08

0.09

0.10

Sh
el

l V
ol

um
e

Figure 7. µ-mesh quality over decimation ratio, evaluated on
extreme subset. Our method exhibits consistent improvements.

jectives, and visual-guided adaptive LOD. (i) Experiments
without progressive scheme and reparameterization degen-
erate the quality most, which we attribute to the lack of
anti-distortion during geometry evolution. (ii) The under-
lined values indicate the effectiveness of the two introduced
objectives. Without any of them, the rendering PSNR of
the µ-mesh degrades. (iii) By replacing our visual-guided
subdivision stopping criterion with Chamfer Distance, the
µ-mesh quality also deteriorates, where the increase of the
shell volume may stem from inappropriate stopping.

We further investigate the effect of Lsv since the shell
volume is the most critical factor besides reprojectability, as
shown in Fig. 8. Although the rendering loss during training
is almost the same, the µ-mesh rendering PSNR (of this
mesh) decreases from 33.65 to 33.40 after removing Lsv ,
suggesting Lsv leads to smaller displacements, which then
reduce the µ-mesh quantization losses.

µ-mesh Base mesh
Prog. Reparam. Lsv Liso Adap. LOD PSNR↑ Volume↓ Geom. Err.↓ Iso.↑

✗ ✓ ✓ ✓ ✓ 43.65 0.084 1.80 0.745
✓ ✗ ✓ ✓ ✓ 42.25 0.087 1.85 0.740
✓ ✓ ✗ ✓ ✓ 44.60 0.088 1.79 0.746
✓ ✓ ✓ ✗ ✓ 44.52 0.082 1.83 0.730
✓ ✓ ✓ ✓ ✗ 44.78 0.085 1.81 0.747
✓ ✓ ✓ ✓ ✓ 44.89 0.083 1.80 0.747

Table 2. Ablation studies of key components on extreme subset.

0.0822
- 4.75%

0.0863

Subdivision

Figure 8. Ablation studies on the effects of minimizing shell
volume. We show the first 800 iterations for better visualization.

5. Conclusion
In this article, we take steps towards constructing higher
quality µ-mesh. We identify the capability of previous
methods [28, 29, 38] is mainly limited by their staged be-
haviour. We also indicate that a rendering guidance is im-
portant for µ-mesh construction, since the 3D model is
eventually rendered to users. By treating the construction
as an end-to-end optimization task, supported with several
elaborately designed differentiable operations and objec-
tives that well instantiate the demands of a high quality µ-
mesh, our method achieves significant improvements.

6. Acknowledgement
This work was supported by National Science Foundation
of China (U20B2072, 61976137). This work was also
partly supported by SJTU Medical Engineering Cross Re-
search Grant YG2021ZD18.

4301

References
[1] Pierre Alliez, Eric Colin De Verdire, Olivier Devillers, and

Martin Isenburg. Isotropic surface remeshing. In 2003 Shape
Modeling International., pages 49–58. IEEE, 2003. 3, 6

[2] Pierre Alliez, Giuliana Ucelli, Craig Gotsman, and Marco
Attene. Recent advances in remeshing of surfaces. Shape
analysis and structuring, pages 53–82, 2008. 6

[3] Sai Praveen Bangaru, Tzu-Mao Li, and Frédo Durand. Un-
biased warped-area sampling for differentiable rendering.
ACM Transactions on Graphics (TOG), 39(6):1–18, 2020.
3

[4] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Ja-
son Weston. Curriculum learning. In Proceedings of the 26th
annual international conference on machine learning, pages
41–48, 2009. 5

[5] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and
Bruno Lévy. Polygon mesh processing. CRC press, 2010. 1,
3

[6] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia.
Fantasia3d: Disentangling geometry and appearance for
high-quality text-to-3d content creation. arXiv preprint
arXiv:2303.13873, 2023. 3

[7] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith,
Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learn-
ing to predict 3d objects with an interpolation-based differ-
entiable renderer. Advances in neural information processing
systems, 32, 2019. 3

[8] Joel Daniels, Cláudio T Silva, Jason Shepherd, and Elaine
Cohen. Quadrilateral mesh simplification. ACM transactions
on graphics (TOG), 27(5):1–9, 2008. 2, 6

[9] Valentin Deschaintre, Yiming Lin, and Abhijeet Ghosh.
Deep polarization imaging for 3d shape and svbrdf acquisi-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 15567–15576,
2021. 3

[10] Jonathan Dupuy, Eric Heitz, Jean-Claude Iehl, Pierre Poulin,
Fabrice Neyret, and Victor Ostromoukhov. Linear efficient
antialiased displacement and reflectance mapping. ACM
Transactions on Graphics (TOG), 32(6):1–11, 2013. 1

[11] Epic Games. Unreal engine 5: Nanite, 2020. https:
//www.unrealengine.com/en- US/blog/a-
first-look-at-unreal-engine-5. 1

[12] Michael Garland and Paul S Heckbert. Surface simplification
using quadric error metrics. In Proceedings of the 24th an-
nual conference on Computer graphics and interactive tech-
niques, pages 209–216, 1997. 1, 3, 6, 7

[13] Jon Hasselgren, Jacob Munkberg, Jaakko Lehtinen, Miika
Aittala, and Samuli Laine. Appearance-driven automatic 3d
model simplification. In EGSR (DL), pages 85–97, 2021. 3

[14] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin
Nimier-David, Delio Vicini, Tizian Zeltner, Baptiste Nicolet,
Miguel Crespo, Vincent Leroy, and Ziyi Zhang. Mitsuba 3
renderer, 2022. https://mitsuba-renderer.org. 2

[15] Zhongshi Jiang, Ziyi Zhang, Yixin Hu, Teseo Schneider, De-
nis Zorin, and Daniele Panozzo. Bijective and coarse high-
order tetrahedral meshes. ACM Transactions on Graphics
(TOG), 40(4):1–16, 2021. 6

[16] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-
ral 3d mesh renderer. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3907–
3916, 2018. 3

[17] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics
(ToG), 42(4):1–14, 2023. 3

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 7

[19] Julian Knodt, Zherong Pan, Kui Wu, and Xifeng Gao. Joint
uv optimization and texture baking. ACM Transactions on
Graphics, 43(1):1–20, 2023. 3

[20] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol,
Jaakko Lehtinen, and Timo Aila. Modular primitives for
high-performance differentiable rendering. ACM Transac-
tions on Graphics, 39(6), 2020. 2, 3

[21] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol,
Jaakko Lehtinen, and Timo Aila. Modular primitives for
high-performance differentiable rendering. ACM Transac-
tions on Graphics (TOG), 39(6):1–14, 2020. 4, 7

[22] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehti-
nen. Differentiable monte carlo ray tracing through edge
sampling. ACM Transactions on Graphics (TOG), 37(6):1–
11, 2018. 3

[23] Yaron Lipman, Olga Sorkine, Daniel Cohen-Or, David
Levin, Christian Rossi, and Hans-Peter Seidel. Differen-
tial coordinates for interactive mesh editing. In Proceedings
Shape Modeling Applications, 2004., pages 181–190. IEEE,
2004. 4

[24] Yang Liu, Wenping Wang, Bruno Lévy, Feng Sun, Dong-
Ming Yan, Lin Lu, and Chenglei Yang. On centroidal
voronoi tessellation—energy smoothness and fast compu-
tation. ACM Transactions on Graphics (ToG), 28(4):1–17,
2009. 1

[25] C Loop. Smooth subdivision surfaces based on triangles,
master’s thesis. University of Utah, Department of Mathe-
matics, 1987. 3

[26] Matthew M Loper and Michael J Black. Opendr: An
approximate differentiable renderer. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part VII 13, pages
154–169. Springer, 2014. 3

[27] Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob.
Reparameterizing discontinuous integrands for differentiable
rendering. ACM Transactions on Graphics (TOG), 38(6):1–
14, 2019. 3

[28] Andrea Maggiordomo, Henry Moreton, and Marco Tarini.
Micro-mesh construction. ACM Transactions on Graphics
(TOG), 42(4):1–18, 2023. 1, 2, 3, 5, 6, 7, 8

[29] Microsoft. Simplygon: The standard in 3d games content
optimization, 2022. https://www.simplygon.com/.
1, 2, 5, 7, 8

[30] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

4302

Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
3

[31] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics
(ToG), 41(4):1–15, 2022. 3

[32] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao,
Wenzheng Chen, Alex Evans, Thomas Müller, and Sanja Fi-
dler. Extracting triangular 3d models, materials, and lighting
from images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8280–
8290, 2022. 3

[33] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc
Alexa. Laplacian mesh optimization. In Proceedings of
the 4th international conference on Computer graphics and
interactive techniques in Australasia and Southeast Asia,
pages 381–389, 2006. 4

[34] Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. Large
steps in inverse rendering of geometry. ACM Transactions
on Graphics (TOG), 40(6):1–13, 2021. 2, 3, 4, 5, 7

[35] Baptiste Nicolet, Fabrice Rousselle, Jan Novak, Alexander
Keller, Wenzel Jakob, and Thomas Müller. Recursive control
variates for inverse rendering. ACM Transactions on Graph-
ics (TOG), 42(4):1–13, 2023. 3

[36] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 3504–3515, 2020. 3

[37] Merlin Nimier-David, Sébastien Speierer, Benoı̂t Ruiz, and
Wenzel Jakob. Radiative backpropagation: an adjoint
method for lightning-fast differentiable rendering. ACM
Transactions on Graphics (TOG), 39(4):146–1, 2020. 3

[38] NVIDIA. Nvidia ada gpu architecture, 2022. https:
/ / www . nvidia . com / it - it / geforce / ada -
lovelace-architecture, https://images.
nvidia.com/aem- dam/Solutions/geforce/
ada / ada - lovelace - architecture / nvidia -
ada- gpu- architecture- whitepaper- 1.03.
pdf. 1, 2, 3, 4, 5, 6, 7, 8

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
7

[40] Matt Pharr and Randima Fernando. GPU Gems 2: Pro-
gramming techniques for high-performance graphics and
general-purpose computation (gpu gems). Addison-Wesley
Professional, 2005. 5

[41] Ulrich Pinkall and Konrad Polthier. Computing discrete min-
imal surfaces and their conjugates. Experimental mathemat-
ics, 2(1):15–36, 1993. 4

[42] Serban D Porumbescu, Brian Budge, Louis Feng, and Ken-
neth I Joy. Shell maps. ACM Transactions on Graphics
(TOG), 24(3):626–633, 2005. 5

[43] Ravi Ramamoorthi and Pat Hanrahan. An efficient represen-
tation for irradiance environment maps. In Proceedings of
the 28th annual conference on Computer graphics and inter-
active techniques, pages 497–500, 2001. 7

[44] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 2

[45] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 3

[46] Olga Sorkine. Laplacian mesh processing. Eurographics
(State of the Art Reports), 4(4), 2005. 4

[47] Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa,
Christian Rössl, and H-P Seidel. Laplacian surface editing.
In Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing, pages 175–184, 2004.
4

[48] Delio Vicini, Sébastien Speierer, and Wenzel Jakob. Path re-
play backpropagation: differentiating light paths using con-
stant memory and linear time. ACM Transactions on Graph-
ics (TOG), 40(4):1–14, 2021. 3

[49] Delio Vicini, Sébastien Speierer, and Wenzel Jakob. Differ-
entiable signed distance function rendering. ACM Transac-
tions on Graphics (TOG), 41(4):1–18, 2022. 3

[50] Tizian Zeltner, Sébastien Speierer, Iliyan Georgiev, and
Wenzel Jakob. Monte carlo estimators for differential light
transport. ACM Transactions on Graphics (TOG), 40(4):1–
16, 2021.

[51] Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis
Gkioulekas, Ravi Ramamoorthi, and Shuang Zhao. A dif-
ferential theory of radiative transfer. ACM Transactions on
Graphics (TOG), 38(6):1–16, 2019.

[52] Cheng Zhang, Bailey Miller, Kan Yan, Ioannis Gkioulekas,
and Shuang Zhao. Path-space differentiable rendering. ACM
transactions on graphics, 39(4), 2020.

[53] Cheng Zhang, Zihan Yu, and Shuang Zhao. Path-space dif-
ferentiable rendering of participating media. ACM Transac-
tions on Graphics (TOG), 40(4):1–15, 2021. 3

[54] Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and
Noah Snavely. Physg: Inverse rendering with spherical gaus-
sians for physics-based material editing and relighting. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5453–5462, 2021. 3

4303

