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Abstract

Micro-mesh (u-mesh) is a new graphics primitive for
compact representation of extreme geometry, consisting of
a low-polygon base mesh enriched by per micro-vertex dis-
placement. A new generation of GPUs supports this struc-
ture with hardware evolution on pu-mesh ray tracing, achiev-
ing real-time rendering in pixel level geometric details.

In this article, we present a differentiable framework to
convert standard meshes into this efficient format, offering
a holistic scheme in contrast to the previous stage-based
methods. In our construction context, a pu-mesh is defined
where each base triangle is a parametric primitive, which is
then reparameterized with Laplacian operators for efficient
geometry optimization. Our framework offers numerous ad-
vantages for high-quality p-mesh production: (i) end-to-
end geometry optimization and displacement baking; (ii)
enabling the differentiation of renderings with respect to [i-
mesh for faithful reprojectability; (iii) high scalability for
integrating useful features for u-mesh production and ren-
dering, such as minimizing shell volume, maintaining the
isotropy of the base mesh, and visual-guided adaptive level
of detail. Extensive experiments on [i--mesh construction for
a large set of high-resolution meshes demonstrate the supe-
rior quality achieved by the proposed scheme.

1. Introduction

Micro-Mesh (u-mesh) [38] is a promising graphics primi-
tive for compact storage and efficient ray tracing rendering,
supported by a new generation of GPUs. A u-mesh can be
seen as a special displacement-mapped mesh, consisting of
a low-polygon base mesh and per-p-vertex scalar displace-
ment (see Fig. 1 (a)), where the p-vertex is produced by
subdivision at rendering time. The p-mesh construction,
i.e. converting a standard mesh to this format, is critical to
p-mesh accuracy and rendering efficiency.

A straightforward choice is to combine existing poly-
gon mesh processing methods [5], including mesh decima-
tion [12], remeshing [24], displacement baking [10, 11] and
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Figure 1. (a) A p-mesh produced by our method in 1 : 64 deci-
mation. (b) Overview of our differentiable y-mesh construction.

so on, which is adopted in [29, 38]. This forms a stage-
based pipeline, where each stage independently minimizes
some local objective, such as the quadric error metric for
decimation, or the centroidal voronoi tessellation energy for
remeshing. However, both of these objective functions are
designed for specific mesh processing tasks, while the ulti-
mate goals of building a u-mesh, i.e. faithful reproduction
and minimal bounding shell volume, are not directly con-
sidered. The most recent state-of-the-art method proposed
by [28] significantly improves the p-mesh quality, but they
still continue with the staged pipeline and pose risks in error
accumulation and suboptimal construction.

We propose to alleviate these limitations through the
end-to-end optimization, taking the ultimate goals of u-
mesh as the objective for both the base mesh optimization
and displacement baking. This is made possible by (i) a
holistic u-mesh construction system that is full of differen-
tiable operations for end-to-end backpropagation, (ii) a cur-
riculum optimization strategy exploiting the level of detail
nature of u-mesh, and (iii) several novel objectives that well
instantiate the goals of producing a high quality p-mesh.
See Fig. 1 (b) for an illustration. Our system is designed
according to the following principles:

* Reprojectability. The primary requirement for building

a p-mesh is to reproduce the original mesh. Since the p-
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mesh is eventually presented to users in 2D, the construc-
tion system must consider not only the geometry error but
also the rendering reproduce error.

 Scalability. p-mesh makes additional requirements to
maximize its strengths, either in memory efficiency or
rendering cost. In contrast to the less flexible stage-based
methods, our goal is to develop a holistic framework, em-
bracing new functionality in a plug-and-play fashion.

* Robustness. Meshes vary dramatically in topology, fre-
quency and mesh resolution, which poses challenges to
the design of an automatic construction system. Case-
specific design eventually leads to brittle systems. We
strive for a solution that is robust to mesh variations.

Reprojectability. The first principle necessitates a differen-
tiable renderer to support the inverse rendering of p-mesh.
Existing differentiable renderers [14, 20, 44], however, are
designed for standard meshes, for which we introduce a
differentiable u-mesh pre-tessellation to utilize the existing
techniques. Still, naive application of differentiable render-
ing often results in tangled mesh, as indicated by Nicolet et
al. [34]. To this end, a u-mesh reparameterization is in-
troduced to bias gradient steps towards smooth solutions
without requiring the final p-mesh to be smooth [34]. In
other views, instantiating reprojectability with images error
instead of geometry error (e.g., Chamfer Distance, Quadric
Error Metric [8]) gains in: (i) better robustness to mesh res-
olutions due to the efficient rasterization and no sampling
required on geometry surface, and (ii) higher p-mesh ren-
dering quality since imperceptible rendering degeneration is
more likely achieved by construction with visual-guidance.
Scalability. An end-to-end differentiable system enjoys
greater scalability than stage-based pipelines, especially for
functionalities that involve multiple stages. For instance,
the p-mesh bounding shell volume, which is key to ren-
dering performance [38], should be minimized during con-
struction. For the staged pipeline, the shell volume is fixed
right after producing the base mesh, while the exact volume
value is calculated after baking displacements. As a result,
multiple stages are involved to minimize the bounding shell
volume. Recent method [28] makes compromises and tack-
les this by introducing a post processing after baking dis-
placements. In contrast, our holistic system handle this via
simultaneous optimization of base mesh and displacements,
guided by a novel shell volume regularization.

Robustness. One of the benefits of p-mesh is the self-

governed nature of base triangles. In our system, the key

requirements for a high quality p-mesh are all realized upon

a base triangle or one-ring neighboring base triangles of a

base vertex, including minimizing shell volume, isotropy,

and adaptive level of detail. These local operations are del-
icately designed to maintain robustness.

In summary, we highlight the following contributions:
* We present a novel end-to-end system for p-mesh con-

Symbol Domain  Definition

M standard mesh

M p-mesh

% RNvx3 base vertex

F NNFx3 base face

C; Uinax N level of detail

1% RNvx3 p-vertex at level ¢

Ft N4‘Nrx3 u-face at level ¢

) RNvX3  base vertex offset

D RV p-vertex displacement
Df RN p-vertex displacement at level £
[@] RNvx3 reparameterization of O
D RN reparameterization of D’
P parametric primitive
Tess(-) M — M p-mesh tessellation

struction, together with extensive experiments to demon-
strate the superior quality achieved by our method.

* Several differentiable operations dedicated to efficient p-
mesh construction are proposed to support this system.

* Critical features for producing high quality p-mesh are
elegantly and effectively devised.

2. Related Work

Our method is related to p-mesh construction, differentiable
rendering, and Laplacian operator.

2.1. Micro-Mesh Construction

Given a standard mesh, the process of constructing a pu-
mesh [28, 29, 38] can be roughly divided into three stages:
(i) Firstly, an edge collapse decimation and a remeshing are
applied on the high-polygon input mesh to get an isotropic
simplification, called base mesh, where the base triangle is
taken as the elementary primitive at rendering time. (ii)
Secondly, the base triangles are then stationarily subdivided
into u-faces in a 1-to-4 manner, and recursively repeat this
until reach the maximum level or meet some stopping cri-
teria. (iii) Lastly, the geometric surface details are baked
into the base surface via ray-casting at p-vertices along nor-
mal directions, where the resulting scalar displacements are
then quantized and packed. After finishing these steps, a
compact p-mesh consisting of a base mesh and displace-
ments is saved and ready for rendering. We refer to the
white paper [38] for more details about p-mesh structure,
compression, and rendering.

This stage-based construction poses risks in error accu-
mulation, oversize shell volumes stemmed from the sub-
optimal base mesh, and the lack of flexibility in further ge-
ometry processing that involves multiple stages. In contrast,
we strive for an end-to-end solution that bridges as much in-
termediate processes as possible.
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2.2. Differentiable Rendering

Differentiable rendering has proven to be a powerful tool
in the realm of computer vision and graphics, including
geometry optimization [13, 34, 49], uv and texture opti-
mization [19], 3D reconstruction [32, 36], and many in-
verse rendering tasks [9, 54]. Volumetric renderings are
inherently differentiable and often used in the inverse ren-
dering tasks defined upon volume representation [30, 31].
Instead, rasterization rendering pipeline processes geome-
try surface, and thus is more suitable for inverse rendering
on meshes. Due to the discrete rasterization, several ap-
proaches [7, 16, 20, 26] employ various techniques like mi-
nor image blurring or antialiasing operations to enable dif-
ferentiation. Differentiable rasterization is computationally
efficient, offering great feasibility in optimization-based
problems, such as the recent 3D generations [0] relying on
2D supervision [45], radiance field reconstruction [17], and
shape optimization [34]. Similarly, we can efficiently op-
timize a u-mesh with the rendering guidance, i.e. towards
similar renderings with the original mesh.

There is also an active research area focusing on physics-
based differentiable rendering [3, 22, 27, 35, 37, 48-53],
aiming at solving the inverse rendering with shadow, indi-
rect illumination, and other high-order effects. However, in-
stead of recovering the whole rendering scene, where many
local minima exist, we optimize the geometry with frozen
material and illumination, for which a computationally effi-
cient rasterization renderer is sufficient for our purpose.

2.3. Laplacian Operator in Mesh Processing

The Laplacian is a elementary differentiable operator of ge-
ometry processing. Consider a mesh with n vertices V, its
Laplacian representation A € R™"*3 is defined as A = LV,
where L € R™*™ is a sparse matrix, referred to as the dis-
crete Laplacian operator. L is defined locally on derivatives
along edge; A of a vertex encodes its local neighborhood
on surface. We refer to [5] for a review of Laplacian mesh
processing. Built upon Laplacian, Nicolet et al. [34] show
an application in inverse rendering of geometry. We step
further in exploiting the usage in p-mesh.

3. Methodology

Our goal is to develop a fully differentiable framework for
p-mesh construction. In this section, we first parameter-
ize the p-mesh in Sec. 3.1, which is then reparameterized
with differentiable Laplacian operators in Sec. 3.2. We
then present the optimization algorithm instantiated within
a differentiable rendering framework in Sec. 3.3. Finally,
Sec. 3.4 demonstrates that broad requirements and features
can be easily realized upon such a differentiable framework,
which is critical either for p-mesh compression or render-
ing. Figure 2 illustrates the overall construction pipeline.

3.1. Micro-Mesh Parameterization

We denote a p-mesh as M = (V, F, O, D) with base ver-
tices V € R™ >3 and base triangle faces 7 € NV#x3,
where Ny, and N are the number of vertices and faces re-
spectively. The base mesh M (V, F) is initialized with mesh
decimation and remeshing [1, 12].

Subdivision. Building a pu-mesh necessitates subdivision.
We use Loop [25] 1-to-4 subdivision without vertex update
to obtain finer topology from the base mesh. From the view
of level of detail, the base mesh has the initial level £ = 0,
and the finest topology level ¢, is obtained by applying
subdivision £, times. Regardless of the various granulari-
ties at different levels, for brevity, we denote the subdivided
faces as micro-face (u-face) F¢ € NANFX3_ a5 well as
vertices as micro-vertex (u-vertex) V¢ € RNv*3 for level
0€{0,1,..., max}, where N3, is the p-vertex number that
depends on the mesh topology '. Indeed, V° is the initial
base vertex V and p-vertices at level £ are a subset of those
atlevel ¢ + 1 (ie. VO =V, VE C Vi),

Trainable Parameters. We define the following train-
able parameters: (i) 3-dimensional vectors on base vertices,
which we refer to offset @ € R™Mv*3 and (i) scalar dis-
placements D € RY Y™ on p-vertices, from which we can
extract the displacements for level £ via slicing the first Né
values in D (i.e. D[: NbJ), denoted as D € RN

Parametric Primitive. Particularly, the set of parameters
belonging to a base triangle at level ¢ is deemed as an ele-

mentary parametric primitive P:

P=(0eR*3, deRTLTY), (1)
where o C O indicates the vector offsets of the three base
vertices and d C D is the scalar displacements of the in-
clusive p-vertices. Notably, we also make the position of
base vertex optimizable in contrast to the staged p-mesh
construction methods that freeze the base vertex once it
is initialized [38] or rely on further post process after dis-
placement baking [28]. This enhances robustness to sub-
optimal simplification and provides scalability for further
extensions, e.g., minimizing the shell volume.

In practice, only the updated base mesh M(V + O, F)
and the displacements D are asked to be saved to disk after
our optimization-based construction. The remaining com-
ponents, i.e. topology and p-vertex positions, are discarded
and generated on the fly during rendering.

3.2. Laplacian on Micro-Mesh

With the above parameterization, the p-mesh is immedi-
ately ready for optimizing within a differentiable geometry
optimization framework, given an objective such as a ren-
dering consistency loss, and a gradient-based optimizer.

¢
A base triangle contains Z?:l'li p-vertices at level £. p-vertices

along base mesh edges are shared between two base triangles.
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Figure 2. Illustration of our y-mesh construction pipeline. Starting from an initial simplification, we progressively optimize the u-
mesh parameters O and D. After each 1-to-4 Loop subdivision @, p-mesh reach the level ¢ with newly introduced p-vertices, whose
displacements are initialized with interpolation. We then displace base vertices and pu-vertices @, resulting in a new base mesh and
a new subdivided mesh, which are used to update the discrete Laplacian operators L and L* ®. Afterwards, u-mesh parameters are
reparameterized @ to O and D, which are optimized ® in a fully differentiable system, with the objectives of rendering and important
functionalities for ;-mesh. We then update @ @ yi-mesh parameters O, D . These steps will be repeated until reach the maximum level ©.

However, as indicated by pioneer works in mesh defor-
mation and editing [33, 47], learning on the vertex positions
is unstable and often lead to tangled p-mesh. A conven-
tional approach to tame distortion in geometry processing
is to append a Laplacian smooth regularizer [46]. Still, the
convergence result must now compromise between solving
the reprojectability and being smooth [34].

To this end, inspired by the diffusion reparameterization
on meshes [34], we develop a reparameterization method
tailored for p-mesh. Specifically, two cotangent Laplacian
operators [41] are computed after each subdivision, among
which one for updated base mesh and another for tessel-
lated pi-mesh at level ¢, denoted as L and L¢. Note that we
employ progressive learning (Sec. 3.3) and the shape after
each subdivision is different. The vector-valued offset O
and the scalar-valued displacement D are reparameterized
following [34]:

O=(I+ML)0, D =@+\LYD, ()
where )\ can be seen as the temporal duration of diffusion
(like the smooth regularizer weight). The reparameterized

offset O € RM >3 and displacement D € RM bear some
resemblance to the differentiable coordinate [23, 34, 46].
Note that the Laplacian can be applied to any functions that
takes values at every vertex, such as our case that involves
both vector-valued and scalar-valued functions.

3.3. Optimization

We choose to instantiate the optimization procedure within
a differentiable rendering framework, because of the ren-
dering consistency immediately reflects the reprojectabil-
ity quality of a u-mesh. The rendering-guided optimization
problem is modeled as:

argmin ®(R(M)), (3)
o,p

where @ is a loss function (we use a L; loss in our exper-
iments) measuring the reconstruction accuracy of images
produced by a differentiable renderer R with known cam-
eras surrounding the mesh.

Solving this problem involves p-mesh rendering. Dif-
ferent from the p-mesh rendering pipeline in a deployment
version [38], in which the tessellation is deferred, we in-
stead pre-tessellate ji-mesh before rendering to make use of
the off-the-shelf differentiable renderer [21].

Micro-Mesh Tessellation. We denote a tessellation of -
mesh up to level £ as Tess’ (M) = M(V¢, Ft), where V' is
the p-vertices position after tessellation. The p-vertices are
firstly assigned with the subdivided positions by applying
subdivision ¢ times on the offset base mesh M (V + O, F).
The p-vertices, for now, lie on the plane of the belonging
base triangle. Meanwhile, we compute the base vertex nor-
mal V' € RM>*3 on mesh M(V + O, F). The normals
are then interpolated at every u-vertices’ barycentric coor-
dinate, resulting in p-normals, which are further used as the
moving directions for scalar-valued displacements. In sum-
mary, the p-vertex after tessellation is given as:

V! = subdiv(M(V 4+ O, F)) + interp(N) - D¢, (4)
where subdiv(-) and interp(-) are functions of subdivision
and barycentric interpolation respectively, both of which are
naturally differentiable. By substituting O and D in Eq. (4)
with the corresponding reparameterizations formulated in
Eq. (2), we reach the following p-mesh tessellation form:

V¢ = subdiv(M(V + (I+ \L)7O, F))

+interp(N) - (I + ALY ~D". (5)
These steps constitute a fully differentiable ;-mesh tessel-
lation computation graph, as depicted in Fig. 3. Afterwards,
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with the above reparameterized V*, the optimization prob-
lem at target level £ is given as:
argmin ®(R(M(V¢, FY)). (6)

}

Both of the tessellation, reparameterization, and renderer
introduced above are differentiable, which then constitute a
fully differentiable p-mesh construction framework. Next,
we show the derivatives with respect to p-mesh under the
reparameterized regime.

Differentiation w.r.t. Micro-Mesh. Differentiating the ren-
dering loss with respect to u-mesh is actually to the repa-

rameterizations O and 56. Considering the Eq. (5) and
Eq. (6), the update rule for reparameterized offset O and

displacement D are given as:

Oye Og
O« 00— 771%67‘}[, @)
¢ ¢ Oyt Os
D «— D — 2852 6‘7\,/ (8)

where 77 and 7y are learning rates. This is sufficient for
training a p-mesh now, whose original parameters can be
calculated according to Eq. (2). In order to get an intuition
of how the original y-mesh parameters are updated, we first
rewrite the above Eq. (7) by applying chain rule:

— — 0o Oye Op

O« 0 Th%aoaw, €))
where 9o /0 = (I+ A1L) ! is the Jacobian of offset O as
a function of the reparameterization O. The scalar-valued
displacement D also follows the similar update rule, which
can be found in supplementary material. We can then derive
the following update rule for original parameters O:

i — 0o Oy Op
\@ _,, 900yt Jo
O + I+ML)HO-n o 8w)
dve 0.
— (9—771(1+)\1L)‘2—8‘:; 8‘1). (10)
V({

This is similar to the update rule for coordinate positions
in [34], thus allowing stable training and anti-distortion.

Progressive Subdivision and Optimization. The above
derivation are formulated in the level of detail context in-
tentionally, as we design the training procedure under a cur-
riculum learning paradigm [4], shown in next:
1. ¢ =0: Warmup with optimizing base mesh, which is
similar to the mesh deformation under fixed topology.
2.4 € {1,...,ln}: Subdivision and solving Eq. (6)
alternately, forming a progressive learning paradigm.
Right after each subdivision (¢ — 1 to £), (i) the new in-
volved p-vertices are initialized with interpolation, i.e.
DIN, ' © Nf] = interp(D[: Ny, ']); (ii) cotangent
Laplacian operators L and L¢ are recomputed.

3. Finally, we freeze the base offset O and tune the dis-
placement D of all levels simultaneously.

Figure 2 omits the warmup and the last tuning for brevity.

This scheme provides better construction results, validated

in our ablation studies. Furthermore, it also offers the pos-

sibilities for manipulation at each level separately.

3.4. Beyond the Reconstruction

The fully differentiable nature is useful for developing novel
features beyond the reprojectability. We demonstrate the
most important features supported by our differentiable sys-
tem, minimizing shell volume and isotropic base mesh. We
also show a better adaptive level of detail achieved by the
visual-guided subdivision stopping criterion.

3.4.1 Minimizing Shell Volume

In contrast to the AABB for conventional meshes, a new
generation GPUs ray trace a u-mesh with a tighter and more
efficient BLAS (bottom level acceleration structure), i.e. a
prismoid for each base triangle. Connecting the top and
bottom triangles of all prismoids results in a shell that en-
velopes the geometry surface, as shown in Fig. 4 (a).

The shell volume, i.e. sum of the volume of all pris-
moids, is a crucial factor that affects the rendering time
cost. Specifically, a -mesh with smaller shell volume gains
in: (i) effective occlusion culling [40], and (ii) lower ray-
p-face miss ratio within the prismoid. However, the shell
volume of a p-mesh built from previous methods is almost
determined right after the initial decimation [29, 38], or is
slightly adjustable within a post processing after baking p-
vertex displacement [28].

Recall that the positions of base vertices is optimized to-
gether with displacements, which is key to minimize shell
volume. Given a p-mesh, the bounding prismoid for each
base triangle is computed by min/max fitting [38]. A pris-
moid containing non-parallel side edges could be divided
into three tetrahedrons [42], and thus the shell volume is
the sum of all tetrahedrons volume. Although we can di-
rectly differentiate the tetrahedron volume w.r.t. the y-mesh
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parameters, it is deficient since the involved parameters to
be optimized are only those corresponding to the minimum
and maximum, according to the min/max fitting strategy.

=N

Prlsmold Volume =
Sum of the Tetrahedrons

var(| 1)

Minimizing Objective

(b) Shell Volume

(a) u mesh Shell

Figure 4. (a) pu-mesh shell. Shell inside, pu-mesh surface, and
shell outside. (b) Shell volume. A shell volume is the sum of all
prismoids; a prismoid volume is the sum of three tetrahedrons.

We instead propose a more elegant and effective way:
(i) Given a base vertex v, we find its adjacent base faces.
(ii) Then the corresponding parameter of v is P¥Y =
unique({P1,Pa,...,P:}), where P; is parametric primi-
tive of each adjacent base face, ¢ denotes the neighbors
number, and unique(-) is a function removing the duplicated
parameters along edges. (iii) We then take the variance of
the displacements as the minimizing objective. (iv) Lastly,
repeat (i) (ii) (iii) for all base vertices and take the variance
summation. Figure 4 (b) depicts this strategy. In short, the
shell volume regularization is the sum of the displacement
variances of all base vertex:

L = Zvar(P".d), an

where var(-) denotes a function computing variance. Al-
though this objective does not directly constraint the offset
0, minimizing the variance of local displacements facili-
tates the base mesh fitting the original geometry surface.
As a bonus, L, leads to smaller displacement, for more
accurate low-bit quantization [28, 38] of u-mesh.

3.4.2 Isotropy

Meshes with roughly equilateral triangles are often obtained
via isotropic remeshing [1, 2], which is a longstanding task
that plays an important role in geometry processing. The
roughly equilateral-shaped base triangle allows more effi-
cient subdivision and baking [28]. Consequently, previ-
ous p-mesh construction methods [28, 38] always employ
isotropic remeshing before baking displacement.

To maintain the isotropic of the base mesh during evolu-
tion, we impose as-equilateral-as-possible constraint. This
is also achieved by applying regularizer upon our paramet-
ric primitive P: given a base triangle face f that is offset by
the corresponding Pf.0, we formulate the regularization as
the variance of edge lengths

Liso = Zvar(efl,e';,eg), (12)
f

where e denotes lengths between the offset base vertices. In
contrast to the naive global edge length regularizer that is
often used for preventing distortions, our design takes ef-
fects locally and may less distract other global targets, such
as the rendering and shell volume. This allows us to make
fewer assumptions about the isotropy of initial decimation.

3.4.3 Adaptive Level of Detail

p-mesh supports per-base triangle subdivision level, i.e.
adaptive level of detail (LOD), benefiting from the self-
governed management nature of the base triangle. Intu-
itively, we can assign lower level for flat surface regions.
In order to meet the water-tightness between displaced base
faces, the level difference among adjacent base faces is lim-
ited to a maximum of 1. Two possible avenues to achieve
adaptive LOD: (i) applying subdivision early stop during
optimization; (ii) uniformly subdividing all triangles, then
pruning the overkill subdivision in a post process.

Both of which necessitate
a stopping criterion. One can
employ the usual geometry
metric, such as the common
used Chamfer Distance and
those proposed in [8, 12, 15].
Although these metrics per-
form well for most cases, they may fail to handle the fine-
grained details since they rely on surface sampling. Accord-
ingly, we devise a visual-guided stopping criterion that can
be used independently or as a supplement to other metrics.

The visual-guided subdivision metric is shown in Algo-
rithm 1. It measures the visual improvements bring from
a finer level. Given a base face f, a hard rasterizer is em-
ployed to get the projected pixels for each camera ¢ view.
Then the image space error is measured at two adjacent lev-
els. With this metric, the above two avenues can be achieved
with further neighborhood level adjustment to meet water-
tightness (full algorithms are shown in supplementary ma-
terial). We use the first strategy since we find they achieve
similar results but the first one is more efficient.

ALGORITHM 1: Visual Metric for Adaptive LOD

Function SubdivisionCriterion (M, £, f):
68 0; 61«0
for each camera c do
pix’ Rasterlze(Tess (M), f, c)
s e 8¢ + ®(R(Tess* (M ) ), pix")
pixt 1 Rasterlze(Tess M), f, c)
81— 671 + B(R(Tess' 1 (M), ¢), pixt™1)
end

Return (57!
End Function

_ 52)/5271
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Figure 5. pi-mesh construction results. ”Staged” denotes the previous state-of-the-art method proposed in [28]. With the similar number
base triangles (upper-left corner), our method exhibits better visual quality, and significant numeric improvements in terms of PSNR of
rendered p-mesh. Sizes of p-mesh storage are affected by subdivision stopping criteria. The similar storages and the better visual effects
together suggest the effectiveness of our visual-based criterion. Moreover, our method also performs better in terms of shell volume.

4. Experiments

All experiments were performed on a Linux workstation
(19 12900k and RTX 3090). The parametric p-mesh is im-
plemented as a PyTorch [39] neural module, rendered with
nvdiffrast differentiable rasterizer [21], along with a spher-
ical harmonics shading model [43]. In order to meet a min-
imum requirement of a scene for rendering, we set all the
mesh surfaces to smooth diffuse material, and adopt Klop-
penheim (O3DHEVEN) as the environment map.

4.1. Implementation Details

Optimization. We optimize the parameters by applying
UNIFORMADAM optimizer, a modified ADAM [ 18] by Nico-
let et al. [34], with the same learning rate 2e-3 for offsets
O and displacements D. All the models in our experiments
are trained for 1600 iterations, in which the 50, 150, 400,
and 800 iterations are milestones that will trigger the sub-
division. The first 50 iteration is warmup and the last 200
iteration is the displacement tuning with frozen base ver-
tex. After each subdivision, the learning rates are decayed
by 0.8 and 0.95 for O and D respectively; we apply cosine
annealing for last 200 iteration, lowering the learning rate
of D to 0 at the end of optimization. To balance the losses,
regularizer terms L, and L;,, are weighted by 10 and 100.
Mesh Decimation. The base mesh in our approach is ini-
tialized with a decimated low-polygon mesh, generated by a
GPU-based QEM [12] family of decimation [38], which is
much lighter compared with [28]. For meaningful compari-
son, we keep the similar number of base triangles with [28],

(O Decimation & Remeshing

—_ . A
~3s ~4.2m 0.4 . Adaptive Subdivision
Staged [ ] . . @ Baking Displacement
— 0.2s (@ Minimizing Shell Volume
~4.6m ~75

Figure 6. u-mesh construction time breakdown. Evaluated on
an extreme mesh (DARK_FINGER_REEF_CRAB, 2.14M triangles).

and consequently the similar y-mesh compression ratio.

Datasets. We demonstrate the effectiveness of our ap-
proach with extensive batch p-mesh construction for high-
resolution meshes. The mesh dataset used in experiments is
inherited from [28], including 121 meshes with face num-
bers ranging from 0.1M (million) to 4M. We divide these
meshes into three subsets: medium (< 1M, contains 37
meshes), large (1M ~ 2M, 34), and extreme (> 2M, 50).

4.2. ;,-mesh Construction Results

Table 1 shows comparative results and performances. For
base mesh (after optimization), we report vertex quadrics
geometry error [12] and isotropy; for u-mesh, we report
rendering PSNR that is averaged on 16 evaluation views,
shell volume, and construction time. Note that these evalu-
ation views are randomly selected and have no overlap with
training views of our method. Simplygon [29] lags a lot
behind previous state-of-the-art method proposed by Mag-
giordomo et al. [28] (also denoted as Staged for brevity),
while our method exhibits significant improvements. In ad-
dition to improvements on the metrics that directly measure
p-mesh quality (underlined), our method also shows com-
parable results on base mesh. Nevertheless, we hold that the
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Simplygon  Maggiordomo et al. Ours

Metrics  p-mesh Base p-mesh  Base  p-mesh Base

Geom. Err. | - 4.78 - 4.52 - 4.46
Isotropy 1 - 0.902 - 0.747 - 0.729
Medium PSNR 1 37.22 - 41.61 - 42.93 -
(< 1M, 37) Volume | 0.114 - 0.085 - 0.083
Time (m) | 1.3 - 2.0 - 3.9 -
Geom. Err. | - 2.40 - 2.63 2.65
Isotropy 1 S 0.961 - 0.742 - 0.750
Large PSNR 1 36.63 - 42.42 - 44.18 -
(IM ~ 2M, 34) Volume | 0.108 - 0.086 = 0.082
Time (m) | 2.5 - 4.0 - 43 -
Geom. Err. | - 2.60 1.84 1.80
Isotropy 1 - 0.954 - 0.751 - 0.747
Extreme PSNR T 35.02 - 42.61 - 44.89 -
(> 2M, 50) Volume | 0.124 - 0.089 - 0.083
Time (m) | 3.1 - 5.3 - 4.8

Table 1. p-mesh construction on 121 high-resolution models.
Both methods have similar reduction ratio. (Geom. Err. x1075)

base mesh’s geometry error and isotropy only have rough
correlations to the final pi-mesh quality, a good practice is to
focus on final/global objectives on pu-mesh. We qualitatively
compare the constructed p-mesh in Fig. 5. Our visual-based
subdivision criterion performs well in determining subdivi-
sions according to surface details. We show the visual effect
and the storage together since they jointly validate the effec-
tiveness of our adaptive level of detail strategy.

Quality over Decimation Ratio. We experiment p-mesh
construction at different decimation ratios, demonstrated in
Fig. 7. Our method shows stronger competitiveness as the
decimation ratio increases, because of a large one could
raise more demands on global optimization.

Time Breakdown. Figure 6 demonstrates the time break-
down of converting an extreme mesh to pu-mesh. The pre-
vious staged method [28], as indicated, devotes most of the
time in decimation, pursuing a base mesh that can well re-
produce the input surface, with properties of small shell vol-
ume and isotropy. For staged scheme, we believe it’s a good
practice to concentrate on the base mesh, due to the final
p-mesh quality (reprojectability, shell volume) are almost
determined right after decimation. Instead, we consider the
construction stages as a whole, which is optimized end-to-
end with some global objectives. Consequently, our scheme
has large potential to achieve greater efficiency and quality.

4.3. Ablation Studies

Table 2 shows the impact of key components in our sys-
tem, including progressive scheme, reparameterization, ob-

Base Mesh Error Curve p-mesh Error Curve

PSNR

Shell Volume

Geometry Error (x107%)

Geometry Error - Staged
—e— Geometry Error - Ours,

a 8 T6 Ed 6 128 256 @ 8 T Ed 6 128 256
Decimation Ratio Decimation Ratio

Figure 7. p-mesh quality over decimation ratio, evaluated on
extreme subset. Our method exhibits consistent improvements.

jectives, and visual-guided adaptive LOD. (i) Experiments
without progressive scheme and reparameterization degen-
erate the quality most, which we attribute to the lack of
anti-distortion during geometry evolution. (ii) The under-
lined values indicate the effectiveness of the two introduced
objectives. Without any of them, the rendering PSNR of
the p-mesh degrades. (iii) By replacing our visual-guided
subdivision stopping criterion with Chamfer Distance, the
p-mesh quality also deteriorates, where the increase of the
shell volume may stem from inappropriate stopping.

We further investigate the effect of L, since the shell
volume is the most critical factor besides reprojectability, as
shown in Fig. 8. Although the rendering loss during training
is almost the same, the p-mesh rendering PSNR (of this
mesh) decreases from 33.65 to 33.40 after removing L,
suggesting Ly, leads to smaller displacements, which then
reduce the p-mesh quantization losses.

p-mesh Base mesh
Prog. Reparam. L, L;,, Adap. LOD PSNR? Volume| Geom. Err.| Iso.t
X v v 7/ v 43.65 0.084 1.80 0.745
4 X v 7/ v 4225  0.087 1.85 0.740
v v X v v 44.60  0.088 1.79 0.746
4 v v X v 4452 0.082 1.83 0.730
4 v v 7/ X 4478  0.085 1.81 0.747
v v v 7/ v 44.89  0.083 1.80 0.747

Table 2. Ablation studies of key components on extreme subset.

Rendering Error (w)

Rendering Error (wo)
—— Shell Volume Error (w)
—— Shell Volume Error (wo)
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Figure 8. Ablation studies on the effects of minimizing shell
volume. We show the first 800 iterations for better visualization.

5. Conclusion

In this article, we take steps towards constructing higher
quality p-mesh. We identify the capability of previous
methods [28, 29, 38] is mainly limited by their staged be-
haviour. We also indicate that a rendering guidance is im-
portant for p-mesh construction, since the 3D model is
eventually rendered to users. By treating the construction
as an end-to-end optimization task, supported with several
elaborately designed differentiable operations and objec-
tives that well instantiate the demands of a high quality u-
mesh, our method achieves significant improvements.
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