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Abstract
We propose a neural reflectance model (NeuBRDF) that

offers highly versatile material representation, yet with
light memory and neural computation consumption to-
wards achieving real-time rendering. The results depicted
in Fig. 1, rendered at full HD resolution on a contempo-
rary desktop machine, demonstrate that our system achieves
real-time performance with a wide variety of appearances,
which is approached by the following two designs. Firstly,
recognizing that the bidirectional reflectance is distributed
in a sparse high-dimensional space, we propose to project
the BRDF into two low-dimensional components, i.e. two
hemisphere feature-grids for incoming and outgoing direc-
tions, respectively. Secondly, we distribute learnable neu-
ral reflectance primitives on our highly-tailored spherical
surface grid. These primitives offer informative features
for each hemisphere component and reduce the complexity
of the feature learning network, leading to fast evaluation.
These primitives are centrally stored in a codebook and can
be shared across multiple grids and even across materials,
based on low-cost indices stored in material-specific spher-
ical surface grids. Our NeuBRDF, agnostic to the material,
provides a unified framework for representing a variety of
materials consistently. Comprehensive experimental results
on measured BRDF compression, Monte Carlo simulated
BRDF acceleration, and extension to spatially varying ef-
fects demonstrate the superior quality and generalizability
achieved by the proposed scheme.

1. Introduction
Reflectance model is one of the most critical factors that
affects the rendering photorealism. A common choice for
real-time rendering is hand-crafted analytical BRDF mod-
els [3, 39], while they often face challenges in accurately
reproducing realistic appearances. In terms of methods that
offer high realism, measured BRDF models tend to incur
prohibitive storage and transmission overhead, particularly
for anisotropic and spatially varying materials. On the other
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Figure 1. NeuBRDF achieves real-time framerates (i9 12900k and
RTX 3090) and can cover a wide range of appearances. We show
the time breakdown of evaluating this reflectance model in a 5-
maxdepth path tracer at full resolution (1 SPP, 1920× 1080).

hand, Monte Carlo simulation models rely on tracing a large
number of light paths with multiple bounces, which limits
their applicability in real-time applications.

One appealing approach is to approximate the re-
flectance using an implicit neural function [27], which of-
fers compact storage and holds promise for acceleration
through the recently emerged feature-grid encoding [26,
35]. However, the 4D input of the BRDF poses challenges
in constructing such an acceleration structure. We propose
to address this challenge through a factorization that de-
composes the BRDF into two 3D hemisphere feature-grids,
which are decoded by a tiny MLP. Our system is designed
according to the following principles:
• Efficiency. BRDF evaluation at shading point would oc-

cur millions of times at full HD resolution. Therefore,
operations on spherical feature-grid need to be straight-
forward, and the neural network must remain lightweight.

• Mild memory cost. The feature-grid is material-specific
and often trades memory for fast evaluation. Hence, we
should maximize the memory-quality tradeoff.

• Generalization. We aim to establish a unified framework
capable of accommodating a broad spectrum of materi-
als. We strive for a solution that is agnostic to the mate-
rials, whether they are isotropic or anisotropic, measured
or simulated, spatially varying or not, and whether the
sampling is dense or sparse.
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The first principle motivates us to construct an informa-
tive feature-grid that reduces the complexity of the feature
learning network to a much smaller scale. However, this
endeavor encounters challenges in sphere pixelation. Thus,
we delve into commonly used sphere discretization meth-
ods, extensively discussed and experimented within this pa-
per. The selected HEALPix [10] sphere pixelation is subse-
quently customized for constructing our reflectance feature-
grid. The second principle presents challenges for the meth-
ods that directly store separate features at each grid [26, 34].
To maximize the memory utilization, we propose utilizing
neural reflectance primitives. These primitives are centrally
stored in a codebook and can be shared across multiple grids
and even across materials. Consequently, the sphere grid
only needs to store low-cost indices pointing to primitives
and a material could be approximated by decoding a com-
bination of these primitives. This design strikes a good bal-
ance between representation capability and memory com-
pactness. All the aforementioned components in our sys-
tem are devised in accordance with the third principle. In
summary, NeuBRDF enjoys the following good properties:
• NeuBRDF effectively represents measured or offline sim-

ulated materials and can be evaluated in real-time.
• NeuBRDF offers a unified framework for representing a

rich diversity of materials consistently.
• Memory-quality tradeoffs can be easily attained.

2. Background and Related Work
Our approach is related to previous works in BRDF fac-
torization, feature-based neural representations, neural re-
flectance models, and sphere pixelation.
BRDF Factorization. Suitable analytic models are not al-
ways available for a desired effect, and directly tabulating
reflectance data is prohibitive due to the high dimensional-
ity. To overcome this limitation, some pioneers have pro-
posed to factorize the BRDF function into lower dimen-
sional factors, such as spherical harmonics [40], Zernike
polynomials [17] and so on. Factors are weighted summed
or multiplied [19, 24] to approximate the high dimensional
BRDF function. Similarly, Bagher et al. [1] define a non-
parametric factor microfacet model using tabulated defini-
tions for three functional components (D, G, and F). A com-
monality among these methods is that they often fall in lin-
ear transformation (or with one non-linearity). In contrast,
our factorization achieved via auto-decoder learning is ca-
pable of modeling complex non-linear functions. In other
words, the relationship between existing factorization and
ours is similar to that of PCA and auto-encoder.
Feature-based Neural Representation. Feature-based ap-
proaches often use differentiable feature primitives to rep-
resent the geometric shape. We extend the idea to repre-
sent the 4D BRDF. In terms of the geometry or Lambertian
effect, feature-based approaches discretize the 3D spatial

space into a multi-resolution regular grid and store local fea-
tures in an octree-based volume [34], a hash table [26], or a
dictionary [35, 36]. Representing BRDFs with such feature-
based strategy can be challenging to harness, as BRDFs
have a higher input dimension (4D) compared to the ge-
ometry. And directly expanding the 3D spatial grid into
higher dimension to capture BRDFs is prohibitive for its
large memory footprint.
Neural Reflectance Models. There are two kinds of
approaches for neural-based reflectance modeling. One
kind of approaches involve employing one neural network
to represent only one material. For example, Sztrajman
et al. [33] utilize various lightweight networks to repre-
sent BRDFs of different materials. To represent spatially-
varying BRDFs (SVBRDFs) or bidirectional texture func-
tions (BTFs), material-specific multi-resolution neural tex-
tures [18] are used. Most recently, Fan et al. [6] approx-
imate BTFs with functions of 2D spatial coordinates and
half-vector coordinates. However, the half-vector poses a
great risk of bidirectional reflectance loss and thus requires
a heavy MLP decoder for correction. The other kind of ap-
proaches involve using a single neural network to represent
a variety of materials. However, they may lead to a de-
cline in the quality of representation [31]. To achieve both
compact representation and high-quality recovery, CNN-
based autoencoder is proposed to be utilized for multiple
BRDFs [13], where the compactness and quality is further
improved using neural processes by [41]. Recently, Fan et
al. [5] propose to perform material layering in the neural
space with the latent code compressed by a neural network.
Sphere Pixelation. The feature-grid relies on a well-
characterized spatial pixelation, such as the octree for the
geometric shape representation [34]. Besides, represent-
ing materials spurs a demand of exploiting a sphere pixe-
lation to accommodate spherical distributed features. We
employ the Hierarchical Equal Area isoLatitude Pixelation
(HEALPix) [10], which was designed for efficient and in-
cremental discretization of full-sky maps in application to
the satellite missions to measure the cosmic microwave
background in astrophysics [30]. It provides a determin-
istic, uniform, and hierarchical sampling method for the
sphere surface. Other sphere pixelation methods, such as
longitude-latitude lattice, Layered Sukharev grid [32], and
Fibonacci lattice [9], are inadequate in terms of efficiency
or effectiveness, and will be discussed in this article.

3. Method
Our goal is to represent bidirectional reflectance distribu-
tion function (BRDF) using a neural framework that maps
bidirections to reflectance values and can be evaluated in
real-time with mild memory cost. The key idea is to build
a neural framework that consists of a low-dimensional tai-
lored feature-grid and a tiny neural network to approximate
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Figure 2. Illustration of the neural BRDF with spherically distributed primitives. (a) Learnable neural reflectance primitives are
centrally stored in a codebook D. (b) Given the incident direction ωi and outgoing ωo, we find the surrounding pixels independently on a
spherical index grid Sg . For all resulting corner indices, we look up the corresponding k-dimensional neural primitive from the codebook.
(c) Interpolating them according to the relative position of ωi and ωo within the respective curvilinear quadrilateral pixels. (d) A tiny MLP
takes the concatenated features and outputs final bidirectional reflectance value.

the high-dimensional bidirectional reflectance distributions.
In this section, we discuss the algorithmic choices that are
key to satisfy the design principles outlined in Sec. 1.

3.1. Algorithm Overview
Evaluating the NeuBRDF consists of a query of spherical
index grid Sg by directions ωi and ωo, lookup of the code-
book D, and inference of a tiny MLP; see Fig. 2.
Fast Evaluation. To enable effective and efficient BRDF
evaluation at rendering, we leverage the implicit field based
on the feature-grid. In contrast to the global methods (e.g.
NeRF [25]) that consist entirely of an MLP, the feature-grid
allows the use of a much smaller network. However, it is
prohibitive to expand the commonly used 3D spatial grid
(e.g. Instant-NGP [26]) in scene representation directly into
higher dimensions to capture BRDFs, since a 3D one al-
ready incurs a large memory footprint.

We consider that the bidirectional reflectance is dis-
tributed in a very sparse high-dimensional space, and there-
fore propose to factorize the BRDF into low-dimensional
components. Concretely, we project the 4D BRDF onto two
compact 3D hemispherical surface feature-grids along the
outgoing ωo and incident ωi directions. These two factors
are used to compute the final reflectance via a tiny neural
network, leading to efficient evaluation.
Memory Policy. A tradeoff of feature-grid representations
is that they can be quickly evaluated, but typically have a
large memory overhead to cache the bulky features. Al-
though our factorization-based solution offers dimensional-
ity reduction, caching the 3D hemispherical features still in-
curs significant overhead. Furthermore, the learned feature-
grid is instance-specific, which means that the memory cost

grows with the number of materials in the rendering scenes.
To this end, we incorporate the vector quantization (VQ)

compression technique. The features on the hemisphere
surface grid points are replaced with indices of a learn-
able codebook [35]. Notably, we could further maximize
the memory-quality tradeoff by reusing one codebook for
an arbitrary number of materials, where each material has
an exclusive indices grid. We therefore term the prototype
vectors in the codebook the neural reflectance primitives.
The primitives, indices, and tiny MLP network are trained
jointly in an end-to-end manner, following [35].

(c) Fibonacci Sphere(b) Sukharev Sphere(a) Long-Lat Map (d) HEALPix

Figure 3. Comparison among different sphere pixelations.

3.2. Spherical Feature-Grid
Neural implicit fields in previous works are mainly used
to represent low-dimensional signals, such as images and
SDFs, thus typically a 3D grid is sufficient for the vari-
ants that base on feature-grid. Even for the applications of
representing 5D radiance fields, the feature-grids are still
built in 3D space, i.e. only the geometry and Lambertian
effect are involved, where the non-Lambertian effect is rep-
resented via additional spherical harmonics [8] or the sub-
sequent MLP [26]. In our case, the 4D BRDF is projected
along the outgoing ωo and incident ωi directions, resulting
in two factors that are used to compute reflectance value.
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Each factor is represented by features distributed on a
hemisphere surface H, where the features are located in
some discretized grid. Although there are several spheri-
cal discretization methods, whether they meet the needs of
real-time BRDF remains to be discussed. Here we explore
one structure that is appropriate for BRDF.

3.2.1 Principles and Choices
Discretizing the sphere surface is much more complicated
than that of a cube volume used in geometry representation,
in terms of uniform pixelation and fast pixel indexing, both
of which are naturally achieved by the cube volume with
regular discretization but pose challenges to the sphere sur-
face. To achieve the post pruning for sparse measurements,
the property of hierarchy is required. That is, unsupervised
pixels should be replaced with their parent (macro) pixel,
resulting in a multi-resolution sparse grid at runtime, which
is important for isotropic reflectance and sparse measure-
ments. Together, the sphere discretization should meet the
following main requirements:
• Uniform Pixelation. The sphere pixelation should be ag-

nostic to materials and sampling strategies.
• Fast Indexing. Real-time rendering requires fast index-

ing of sphere pixels in arbitrary direction.
• Hierarchy. For sparse measurements, a post grid pruning

is necessary. The intrinsic hierarchy is required to support
multi-resolution sparse grids.

There are several choices for sphere discretization, such as
longitude-latitude lattice, Layered Sukharev grid [32], Fi-
bonacci lattice [9], and Hierarchical Equal Area isoLatitude
Pixelation (HEALPix) [10]. Figure 3 illustrates the compar-
ison of these choices. The simplest longitude-latitude lattice
is suitable for indexing which is directly achieved by round-
ing up and down, but it arranges too many grid points on the
polar cap. The Sukharev grid also fails to achieve uniform
pixelation. Although the Fibonacci lattice can evenly dis-
tribute points on a sphere surface, it cannot locate the pixel
for a given direction analytically and requires an expensive
nearest neighbor search, which prevents it from being used
in real-time rendering. In contrast, HEALPix satisfies all
the aforementioned requirements; summarized in Tab. 1.
We therefore employ HEALPix as the underlying sphere
grid of our neural BRDF framework.

3.2.2 HEALPix-Based Data Structure
HEALPix tessellates a sphere surface into equal area curvi-
linear quadrilaterals. The base resolution comprises 12 pix-
els in three rings around the poles and equator. The resolu-
tion of the grid is determined by only one hyperparameter
Nside, which defines the number of divisions along the side
of a base-resolution pixel. As a result, a HEALPix map has
12N2

side pixels and 12N2
side+2 grid points, where the pixels

have the same area.

Pixelation Uniform Indexing Hierarchy Iso-Lat
Long-Lat No < 0.5ms No Yes
Sukharev No ∼ 5ms No No
Fibonacci Yes ∼ 5ms No No
HEALPix Yes < 0.5ms Yes Yes

Table 1. Comparison of pixelation methods. Indexing: time con-
sumption of obtaining the corresponding pixel p given bidirection
ωi and ωo for a 1920 × 1080 frame. Iso-Latitude: an essential
factor for consistent modeling of the Fresnel term of reflectance at
various azimuth angles.

Unlike prior work that used HEALPix for cosmological
applications [30], we arrange features to points at grid cor-
ner instead of the pixel center; Figure 4 shows the com-
parison. This design reduces the computation cost of pixel
indexing for four nearest neighboring features. Although
arranging features at the grid center has a modest indexing
cost for nine nearest neighbors, the number of memory ac-
cesses doubles due to the excessive number of features.

Huawei Confidential3

Direction 𝝎𝝎

Grid Corner

Direction 
𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂

ang2pix(   )

Hemisphere Grid

Equator

Grid Center

Figure 4. Illustration of our hemisphere grid in Cartesian coor-
dinate. Arranging features at grid corner ease the query of nearest
neighboring features. A hemisphere in our design includes pixels
covering the equator.

Consider a hemisphere covering equator line (i.e. a
ring adjacent to the equator line in another hemisphere is
included). The number of the hemisphere grid points is
n = 6N2

side + 6Nside + 1 1. We denote a hemispherical
feature-grid as Hg ∈ Rn×k with feature dimension k.

Given a query direction ω = (θ, ϕ), where θ ∈ [0, π] is
the colatitude in radians measured from the north pole and
ϕ is the longitude in radians measured eastward. (i) We first
find the curvilinear quadrilateral p to which the direction ω
belongs, through the fast analytic indexing ang2pix. We
refer the readers to the reference [10] for more details about
HEALPix. (ii) Then we extract the features zt

p ∈ Hg at four
corners of the quadrilateral pixel p, where t ∈ {1, 2, 3, 4}
is the local indices. Meanwhile, we fetch the correspond-
ing spherical coordinates ωt

p to compute the interpolation
weights wt

p during training, where the weights are assigned
with 1/4 at runtime for efficiency:

wt
p =

{
wt

p/
∑4

j=1 w
j
p, where wt

p = 1/dtp, Training,
1/4, Runtime,

where dtp is the great-circle distance between the spherical
coordinates of ωt

p and ω. The query for a hemispherical

1A ring in equatorial belt comprises 4Nside points [10]. The hemi-
sphere excluding equator has 6N2

side − 2Nside + 1 points.
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DATABASE TYPE SAMPLES SOURCE
MERL BRDF• Dense Measured
RGL BRDF•◦ Dense Analytic
LayeredBRDF SVBRDF•◦ Dense Simulated
Special Coatings BRDF•◦ 448/576 Measured
UBO2014 BTF◦ 22801 Measured
UBOFAB19 SVBRDF◦ 100 Measured

Table 2. Materials used in our experiments. TYPE: BRDF, BTF
and SVBRDF are included. SAMPLES: Sparse measurements
are involved to assess the generalization ability of NeuBRDF.
SOURCE: Both the reflectance measured from real-world, simu-
lated by Monte Carlo methods, and evaluated over analytic models
are considered. (• isotropic, ◦ anisotropic.)

feature-grid Hg by ω can be expressed as:

ψ(ω;Hg) =
4∑

t=1

wt
pz

t
p, where p = ang2pix(ω;Hg).

(iii) Recall that this process takes place independently for
incident ωi and outgoing ωo and therefore two hemispher-
ical feature-grids are required for representing these two
factors. In practice, we merge the two hemispheres into a
sphere that comprises three duplicate rings, the equator and
its two nearest adjacent rings. The number of the sphere
grid points is 2n, i.e. 12N2

side + 12Nside + 2. We denote a
spherical feature-grid as Sg ∈ R2n×k. Eventually, querying
a spherical grid Sg by ωi and ωo is:

ω̂o = (π − ωo.θ,ωo.ϕ),

ψ(ωi,ωo;Sg) = [ψ(ωi;S+
g ), ψ(ω̂o;S−

g )], (1)
where [·, ·] denotes concatenation. The S+

g and S−
g de-

note the north and south hemispherical feature-grid, both of
which include the equator ring and a nearest adjacent ring
to the equator in another hemisphere.

3.2.3 Decoder

In order to lift the partial low-dimensional factors to the
original 4D space, we employ a multilayer perceptron
(MLP) as a non-linear decoder, where the input to MLP
is the result of spherical feature-grid query ψ(ωi,ωo;Sg).
Then, the BRDF f(ωi,ωo) of our method is described as:

f(ωi,ωo) ≈ m(ψ(ωi,ωo;Sg); Φ), (2)
where m(·; Φ) is the MLP with parameters Φ (including
weights and biases). Interestingly, the architecture designed
from the perspective of factorizing the 4D BRDF resembles
that from the parametric encoding [20, 26, 29, 34]. The ad-
ditional trainable parameters (beyond weights and biases)
allow the use of a tiny MLP without sacrificing represen-
tation quality and yield immediate benefits: (1) NeuBRDF
can be trained to convergence much faster than the method
that consists entirely of MLPs; (2) It provides feasibility for
applying neural BRDF to real-time rendering applications.

3.3. Neural Reflectance Primitives
Although our factorization solution can effectively realize
dimensionality reduction, a spherical feature-grid Sg with
our default setting still requires about 0.8 million param-
eters (Nside = 64, k = 16). Following [35], we further
compress the storage by incorporating vector-quantization
into our framework. Concretely, the Sg ∈ R2n×k is com-
pressed into an integer vector Sg ∈ Z2n with the range
[0, 2b − 1]. The integers are used as indices into a code-
book matrix D ∈ R2b×k, where b is the bitwidth to store
such an integer. We thus now name Sg the spherical index
grid. The BRDF f(ωi,ωo) is then computed as:

f(ωi,ωo) ≈ m(ψ(ωi,ωo;D[Sg]); Φ), (3)
where [·] is the indexing operation and D[Sg] denotes
lookup. (The training of these indices is detailed in supp-
mat.) For fp16 storage, this gives us a compression ratio of
16 · 2n · k/(2n · b + 16 · k · 2b), which can be orders of
magnitude when b is small and n is large.

Notably, we provide an option to maximize the quality-
cost tradeoff for deploying NeuBRDF into memory con-
strained devices. Consider that both the aforementioned
codebook and spherical index grid are material-specific.

MERL
Cluster

Here, our aim is to learn a set of
neural reflectance primitives that
are shared across multiple mate-
rials with similar characteristics.
Specifically, we first employ a con-
volutional auto-encoder with bot-
tleneck architecture, of which the
objective is to reconstruct the raw reflectance data. The in-
formation bottleneck prompts the clustering of similar ma-
terials. Thus, a clustering algorithm such as K-Means is
then applied to the learned bottleneck codes. For a cluster
with t materials, we instantiate an MLP, a codebook storing
the primitives, and t spherical index grids Sg , i.e. only the
low-cost integer indices are exclusive. Still, both of these
modules are trained jointly.

3.4. Bidirectional Texture Function
A bidirectional texture function (BTF) is a function that
takes an extra 2D location coordinate u ∈ R2 as input, in
addition to the incident and outgoing directions. To repre-
sent the spatially-varying effects, we propose using the neu-
ral texture [37] as a plug-in for our NeuBRDF. Specifically,
we define the neural texture as T ∈ Rh×w×c, where c is
the texture channel. The neural texture lookup φ(u; T ) is
achieved by grid sampling, where u is the UV coordinate
at the shading point. The resulting texture feature, together
with the reflectance primitives from codebook, are fed to
the MLP m(·,Φ), which predicts the BTF value:
f(ωi,ωo,u) ≈ m([ψ(ωi,ωo;D[Sg]), φ(u; T )]; Φ). (4)

Note that a mipmap neural texture [18] is also applicable
with our NeuBRDF.
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Figure 5. Quality comparison in fitting reflectance models to MERL [23] measurements. The analytical microfacet reflectance models,
including GGX [39] and Low et al. [21], struggle in representing the highly frequency changes (SILICON-NITRADE) and often lead to
color shift (CHROME-STEEL). Compared with the previous factorization-based methods, NPF [1] and Dupuy et al. [4], where the NPF
demonstrates fair visual effect, our method shows better qualitative results. We show the SSIM value in top-left corner and SSIM per-pixel
value in bottom-right (the redder the color, the smaller the SSIM), following NBRDF [33] for fair comparison.

4. Experiments

We implement the NeuBRDF training in PyTorch [28], and
deploy the runtime version in Falcor [16] for real-time test-
ing (Fig. 1) and in Mitsuba [14] for fair comparison with
some methods implemented in this framework. We use the
following model configuration unless otherwise specified:
Nside = 64, k = 16, b = 9 and the MLP has 2 hidden
layers with 64 neurons. More implementation details are
shown in suppmat.

Datasets. To demonstrate the versatility of NeuBRDF, we
extensively experiment on various materials. The dataset
used in our experiments are listed in Tab. 2, including
isotropic BRDFs, anisotropic BRDFs, and spatially vary-
ing BRDFs, where the data sources are chosen deliber-
ately to span measured, analytic, and simulated material.
We also select some very sparse measurement (such as the
Special Coating [7]) to demonstrate the generalizability of
NeuBRDF and the effectiveness of sphere grid pruning.

Baselines. We compare our method to several strong BRDF
baselines: (i) the usual parametrized microfacet model
GGX [39] and the state-of-the-art one proposed by Low et
al. [21]; (ii) the recent non-parametric methods relied on

factorization [1, 4]; (iii) neural approaches for BRDF [33],
Layered BRDF [5], and BTF [6]. Furthermore, to demon-
strate the application of accelerating physically-based sim-
ulation, we employ layered material simulator [12] and vol-
ume rendering using microflake phase function to generate
realistic and complex appearances.

Methods MAE ↓ RMSE ↓ SSIM ↑
GGX [39] 0.0189 0.0206 0.969
Low et al. [21] 0.0080 0.0088 0.986
Dupuy et al. [4] 0.0174 0.0190 0.976
NPF [1] 0.0056 0.0062 0.990
NBRDF [33] 0.0028 0.0033 0.995

Ours 0.0017 0.0031 0.996

Table 3. Average image-based losses of representation methods
from Fig. 5 over all MERL materials.

4.1. Quality Validation
It’s a standard practice to evaluate BRDF models or tune pa-
rameters of analytical models on measured reflectance data.
The fitting results on MERL measurements are demon-
strated in Fig. 5. Our method achieves the most faithful
rendering among both diffuse, glossy, and specular materi-
als. The quantitative results on the whole MERL measure-
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Figure 6. Accelerating physically based simulation. We demonstrate the comparison with the recent state-of-the-art neural approach,
including NLBRDF [5] and Neural Biplane [6]. (a) Simulation from Layered BRDF [12]. Our method requires a quarter of the time
consumption compared to the simulation. (b) Simulation from volume rendering. The fabric is rendered from micro-CT volumetric
data, using the microflake phase function. Our method requires almost one percent of the time compared to the simulation. Additionally,
our method demonstrates superior results and performances compared with SOTA neural approaches in both scenes. We implement our
method in Mitsuba (an offline renderer) [14] for fair comparison.

ment are shown in Tab. 3. We report the mean absolute
error (MAE), root mean squared error (RMSE), and struc-
tural similarity index measure (SSIM) on the rendered im-
age, following NBRDF [33]. Results on anisotropic mate-
rials, sparse measurements, and multiple instances sharing
one codebook are shown in suppmat.

4.2. Extension Applications
Accelerating Physically Based Simulation. Reflectance
models designed for photorealistic rendering are often lay-
ered [11, 12, 15]. By constructing various interface layers
and internal media, these physical methods can cover a wide
range of appearances. Evaluating such models is typically
achieved through light transport between layers, simulated
by Monte Carlo methods. Since our method is agnostic to
the internal light-layer interactions, it can be directly used
for accelerating these physical-based methods.

In many complex scenes, these layered BRDF methods
often use albedo texture, normal map, or spatially vary-
ing scattering/absorption coefficient in internal layers. As
a compatible solution, we still use the plug-and-play neural
texture T . The neural texture can be considered as a blend
of multiple internal textures. With the expense of building
the reflectance data (hours) and training (< 1 hour), our
method can drastically reduce the rendering cost; see Fig. 6

for an illustration. Our approach performs surprisingly well
in such a complicated scene. We use the default base frame-
work together with a 800×400×8 neural texture to capture
the spatially varying effects. These results demonstrate that
our approach generalizes well to complex materials and can
produce highly realistic results in a much smaller computa-
tion resource compared with either the physical simulations
or the neural network approaches.

BTF Compression. Tabulating an isotropic BRDF con-
sumes tens of megabytes memory and becomes prohibitive
for spatially varying material, impeding the network trans-
fer and runtime loading. Our framework can be easily ex-
tended for the compression purpose; the BTF compression
results are illustrated in Fig. 7. The convincing results of
NeuBRDF with a naive neural texture plugin suggest the
feasibility of decoupling spatially varying effect and bidi-
rectional ωi,o , which is also proven in neural biplane [6].
Similarly, neural texture compression (NTC) [38] is pro-
posed to compress the texture using implicit neural func-
tions. However, they only operate on the image space and
rely on an extra reflectance model to consume the decoded
image textures. Instead, we consider the reflectance model
itself. Likewise, the highly specific neural texture proposed
in NTC is also compatible with our framework.
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Figure 7. BTF compression on UBO2014. A BTF contains
400×400×22801 RGB measurements, which occupancy ∼ 500
MB storage (compressed). Simply with a 128×128×4 neural tex-
ture (∼ 131KB), NeuBRDF (∼ 95KB) can capture these spatially
varying effects, resulting in a compression ratio of thousands of
times. NeuBRDF and neural texture T use fp16 by default. (The
scene in the right column is from [22].)

32 64 128
0.00

0.01

0.02

0.03

M
SE

MLP Channels

16 32 64 128

Grid Nside: Nside

6 7 8 9
0.00

0.01

0.02

0.03

M
SE

Bitwidths: b

4 8 16 32

Feature Dims: k

1 2 4 8 16

Multi-Instances

HEALPix Long-Lat Fibonacci Sukharev

Sphere Pixelation

MERL    
RGL     
UBO     

Figure 8. Ablation studies on different model configurations.
MSE is computed on the raw data. Multiple material instances
are selected from a same cluster. Sphere pixelations have similar
number of grid points for fair comparison.

4.3. Ablation Studies
Model Configuration. We investigate the impact of
MLP channels, feature-grid resolution (Nside), codebook
bitwidth, and codebook feature dimension; shown in Fig. 8
(left two columns). In order to fully validate the model at
different configurations, we report the MSE on the raw re-
flectance data rather than the rendered image that not yields
full coverage of the bidirection space.
Quantization. The primitive indexing is exactly the same
as vector quantization in the perspective of quantization. To
this end, we conduct ablation study on (i) the model without
codebook, where the sphere grid allocates bulky features in-
stead of lightweight integer indices, and (ii) the model with
low-bit quantization. The MSE results on MERL raw data
and the required parameters are shown in Tab. 4. Our choice

consumes less memory and performs better than low-bit
quantization. Additionally, the use of codebook can alle-
viate the overfitting drawback of feature-grid and allows
sharing primitives across instances. We implement low-
bit quantization by simulating quantization along the line
of neural image compression [2, 38].

MSE ↓ Memory Cost ↓ Ratio ↓
w/o Quantization 0.0160 1.60MB 1
w Low-bit 0.0189 0.40MB 0.25
w CodeBook (ours) 0.0167 0.07MB 0.045

Table 4. Quantization studies. The codebook is also a quantiza-
tion technique, for which we compare it with low-bit (4b) quan-
tization. Memory costs are computed in fp16 except the low-bit
quantization, and the MLP is not taken into account.

Sphere Pixelation. The design of sphere pixelation is criti-
cal to the success of NeuBRDF. We demonstrate represent-
ing quality in Fig. 8 (bottom right), where the grid reso-
lutions are managed as close as possible for each pixela-
tion. Both of the other pixelations are manually tailored
for BRDF representation, which are similar with that of
HEALPix described in Sec. 3.2.2. Regardless of the ex-
clusive merit of hierarchy of HEALPix, the model with
HEALPix achieves best representation results. Although
the Fibonacci pixelation is comparable in terms of MSE,
the indexing time of Fibonacci is about 5ms in contrast to
the 0.5ms of HEALPix. We anticipate that the HEALPix,
with our adaptation for BRDFs, can serve as a fundamental
data structure in material representation.
Runtime Time Breakdown. We implement our NeuBRDF
in Falcor [16] for real-time testing. Figure 1 shows the eval-
uation time breakdown. Evaluating our reflectance models
takes about 4.5ms in a 5-maxdepth path tracer at full reso-
lution (1 SPP, 1920× 1080), which is agnostic to materials.

5. Conclusions
In this article, we propose a neural reflectance model that
is a choice for achieving realistic appearance in real-time
rendering applications. The proposed method is also a uni-
fied framework that can represent a variety of materials,
which can be used for measured data compression, fitting
sparse measurements, physical-based methods acceleration
and so on. The key components to the effectiveness consist
of the delicately designed sphere data structure and neural
reflectance primitives. In the future, we will exploit more
material application based on such architecture, i.e. spher-
ically distributed primitives with a tiny-MLP decoder, such
as material editing and material acquisition.
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Pons. Color representation and interpretation of special ef-
fect coatings. JOSA A, 31(2):436–447, 2014. 6

[8] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5501–5510, 2022. 3
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[12] Yu Guo, Miloš Hašan, and Shuang Zhao. Position-free
monte carlo simulation for arbitrary layered bsdfs. ACM
Transactions on Graphics (ToG), 37(6):1–14, 2018. 6, 7

[13] Bingyang Hu, Jie Guo, Yanjun Chen, Mengtian Li, and Yan-
wen Guo. Deepbrdf: A deep representation for manipulating
measured brdf. In Computer Graphics Forum, pages 157–
166. Wiley Online Library, 2020. 2

[14] Wenzel Jakob. Mitsuba renderer, 2010. https://mitsuba-
renderer.org. 6, 7

[15] Wenzel Jakob, Eugene D”Eon, Otto Jakob, and Steve
Marschner. A comprehensive framework for rendering lay-

ered materials. ACM Transactions on Graphics, 33(4):1–14,
2014. 7

[16] Simon Kallweit, Petrik Clarberg, Craig Kolb, Tom’aš Davi-
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