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Figure 1. Selected animation results for image-driven mode of our method.

Abstract

Head avatars animated by visual signals have gained

popularity, particularly in cross-driving synthesis where the

driver differs from the animated character, a challenging

but highly practical approach. The recently presented

MegaPortraits model has demonstrated state-of-the-art

results in this domain. We conduct a deep examination and

evaluation of this model, with a particular focus on its latent

space for facial expression descriptors, and uncover several

limitations with its ability to express intense face motions. To

address these limitations, we propose substantial changes in

both training pipeline and model architecture, to introduce

our EMOPortraits model, where we:

Enhance the model’s capability to faithfully support in-

tense, asymmetric face expressions, setting a new state-of-

the-art result in the emotion transfer task, surpassing previ-

ous methods in both metrics and quality.

Incorporate speech-driven mode to our model, achiev-

ing top-tier performance in audio-driven facial animation,

making it possible to drive source identity through diverse

modalities, including visual signal, audio, or a blend of both.

Furthermore, we propose a novel multi-view video dataset

featuring a wide range of intense and asymmetric facial

expressions, filling the gap with absence of such data in

existing datasets.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction

1.1. Representation of facial expression

Advancements in neural head technologies now enable the

creation of realistic avatars from a few or even one image,

with the latter being crucial when only one source image

is available. Cross-driving synthesis, where avatars are ani-

mated with different identities is a key technique for virtual

reality, filmmaking, photo animation, etc. However, accurate

transfer of facial expressions, especially those that are in-

tense and uneven, remains a substantial challenge in avatar

animation, particularly for cross-driving synthesis. While

previous research focused mainly on preserving identity and

transferring moderate facial motions, our work also seeks to

accurately drive high-intensity and asymmetric expressions.

Our research is built on and extends the MegaPortraits [9]

model, notable for state-of-the-art results in cross-driving

synthesis. An additional advantage using this method is that,

unlike many avatar systems that depend on limited [3, 25]

predefined motion descriptors, MegaPortraits, learns expres-

sion representations from scratch, allowing for greater adapt-

ability to a wider range of expressions. We investigate the

latent expression spaces and training methods of MegaPor-

traits to enhance its ability to depict a broad spectrum of

facial expressions. Our comprehensive analysis reveals that,

while the original model shows limited effectiveness in in-

tense motion representing, it has significant potential for

improvement through targeted architectural modifications,

adjustments in the training approach, and the integration of

our novel dataset.

1.2. Integrating speech driving

We integrate speech in our model to be used either as a

complementary or an alternative driver, a crucial aspect for

applications like virtual assistance or mixed reality when a

primary visual signal is absent.

By improving disentanglement of facial expression latent

space, we remove disturbing information from face motion

descriptors and emphasize components that solely control

lip movements. Based on this, we formulated a novel loss

that helps to achieve desirable results. Furthermore, our

method can generate plausible head rotations and blinks,

which appear natural and enhance its applicability across

various tasks. Thus, our final method can drive source iden-

tity through image, audio, or a mix of them.

1.3. FEED: Facial Extreme Emotions Dataset

Public data scarcity is a common obstacle in deep learning,

the topic of human facial expressions and movements is

not an exception. In particular, we note a lack of high qual-

ity video data capturing a wide range of facial expressions,

with existing datasets not going beyond basic facial actions

shown at Fig. 2. To address this, we collect a new dataset that

includes basic expressions and also captures complex move-

ments like blinks, winks, and head and tongue movements,

along with varied extreme expressions which are difficult or

impossible to categorize through basic facial actions. Given

this variety in expressions in our dataset, we believe that

it will be a valuable resource for research in human emo-

tions and facial reconstruction fields. In summary, our main

contributions are as follows:

• We introduce our new EMOPortraits model for one-shot

head avatars synthesis, that is capable of transferring in-

tense facial expression, showing state-of-the-art results in

cross-driving synthesis. We achieve this through careful

latent facial expression space development as well as novel

losses and a minimal amount of domain-specific data (∼
0.1 % of the train set).

• We integrate a speech-driving mode in our model, that

demonstrates cutting-edge results in speech-driven anima-

tions. It functions effectively alongside visual signals or

independently, also generating realistic head rotations and

eye blinks.

• We present a unique multi-view dataset that spans a broad

spectrum of extreme facial expressions, filling the gap of

absence of such data in existing datasets.

2. Related Work

2.1. Visual­driven head avatars

In recent years, the domain of neural avatars has branched

into two prominent sub-fields: person-specific and person-

agnostic avatars. While person-specific methodologies [10,

11, 30, 38, 39] excel in delivering stunning realism and mo-

tion fidelity for a particular individual, they encounter chal-

lenges representing an arbitrary person. Moreover, these

approach demands multiple frames of training data, distinct

training for each avatar, and can struggle to replicate motions

not encountered during training.

Person-agnostic methods, on the other hand, don’t need

train or fine-tuning for each new person and present an alter-

native approach to talking-head synthesis. Earlier works in

this domain generated avatars in a few-shot technique [3, 33],

while subsequent studies introduced one-shot capabilities

[2, 8, 9, 22, 29, 31, 32, 34]. Many of these works employ

predefined motion representations, such as 3DMM’s blend-

shapes [8, 15, 31, 32]. In contrast, some learned latent emo-

tion representation from scratch [3, 9, 22, 34, 35]. This latter

approach holds potential for better motion representation

as in such settings, expression descriptors become entirely

trainable and free from inheriting the limitations typical for

blendshapes as was shown in [3, 25]. In our work, we adopt

this strategy, remarkably improving upon the methodology

used in MegaPortraits[9].
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FEED dataset internal structure

Method BFEs Head rotations Winks Eyes move Asym. em. Tongue em. Extreme em.

Mode Mild/Strong Axes/random Mild/Strong Random Strong Strong Extreme

# of part. 21/23 21 23 21 23 23 23

Avg. lenght 1:38/1:52 0:58 0:49 0:33 1:41 1:53 3:02

Table 1. The tasks we asked our participants to perform for our

FEED dataset. Here BFEs stands for basic facial expressions, shown

in Fig. 2

Datasets comparison

Dataset #Actors #Views Basic exp. Strong exp. Extrime & Assym. exp. Tongue exp. Resolution

SAVESS 4 1 6 : : : 1280 × 1024

RAVGESS 24 1 6 : : : 1920 × 1080

CREMA-D 91 1 6 : : : 1280 × 720

MMI 25 1 6 6 : : 1920 × 1080

MEAD 48 7 6 6 : : 1920 × 1080

Ours (FEED) 23 3 6 6 6 6 3840 x 2160

Table 2. Comparisons with modern, high-quality audio-visual

datasets created in controlled settings.

2.2. Face expression datasets

Early image datasets[1, 19] predominantly offered annotated

face expression data corresponded to up to 8 basic emotions.

However, these datasets are not well-suited for training head

avatars, which necessitate video or multi-view data.

The SAVEE [14] dataset captures facial expressions in

speech, but involves just 4 actors. The MMI [20] dataset,

more expansive in actor participation, offers spontaneous

moderate-intensity expression but is restricted to single-view

sequences. RAVDESS [18] distinguishes itself by capturing

two motion intensities, but its limited recordings challenge

broad applicability. CREMA-D [4] encompasses three ex-

pression intensities, and though MEAD [28] provides de-

tailed multi-view data across three intensities, it’s limited

to the standard eight expression groups. Our novel FEED

dataset aims to address the scientific community’s demand

for high-quality multi-view facial expression videos outside

the standard categories: Joy, Fear, Sadness, Disgust, Anger

Contempt and Surprise.

2.3. Speech­driven head avatars

While numerous studies introduce speech-driven avatars

[12, 21, 24, 31, 36, 39, 40], few excel in producing high-

quality talking heads with authentic rotations, blinks, and

the capability to use both visual and audio inputs. For in-

stance, Wav2Lip [21] aims at re-dubbing videos with accu-

rate lip motions, but often falls short in realism with using

single images. Diffused heads [24] struggles to generate

long sequences and doesnt provide access to pose control.

MakeItTalk [40] animates facial landmarks in a speaker-

specific manner, yet struggles with head pose controls due

to its non-reliance on 3D. PC-AVS [39] offers a solution, but

demands a driving video for pose modulation. Newly devel-

oped models such as SadTalker [36] and StyleHEAT [31]

have shown promising outcomes in generating high-quality

talking heads. We conducted a quantitative evaluation of our

audio-driven mode compared to the aforementioned models.

Figure 2. Illustration of the problem in publicly available face

expression data and selected examples from our FEED dataset.

3. FEED dataset

As previously mentioned, the current publicly available

datasets with human face expression videos fall short in

capturing a broad range of facial manipulations (see illus-

tration at Fig. 2). In our view, this gap could stem from the

complexity of designing clear tasks for participants, coupled

with the reality that not everyone is ready for performing

extreme expressions on camera. To bridge this gap, our pio-

neering FEED dataset is designed to meet the scientific com-

munity’s need for high-quality, multi-view emotion videos

that extend beyond standard emotions. It contains various

expressions, including strong asymmetric ones, tongue and

cheeks movements, winks, head rotations, eye movements

and more nuanced gestures. ;

Our dataset consists of 520 multi-view videos of 23 sub-

jects, captured with 3 cameras. As extreme face motions

are complex and their perception can be heavily influenced

by subtle differences, we use a high resolution of 4k for all

video, capturing the whole face up to the level of individ-

ual hair strands and wrinkles, as shown in Fig. 2. For more

examples, please refer to the supplementary materials. Our

participants were asked to perform 7 tasks (see Tab. 1) to

cover as many facial and head movements as possible.

In our comparison with other expression datasets detailed

in Tab. 2, the MEAD dataset [28] emerges as the closest to

ours regarding viewpoints and maximal expression intensity.

However, despite MEAD’s larger number of actors and view-

points, it offers significantly less variety of facial expressions

and have lower resolution than our dataset.
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4. Expression enhancement

We found that the MegaPortraits [9] model fails to transfer

intense expressions correctly, as shown in Fig. 9. Using our

FEED dataset of strong and uneven facial expression to fine-

tune a pre-trained MegaPortraits model didn’t enhance final

results as shown at Tab. 4. Training from scratch on FEED

leads to fast overfitting due to the small number of identities

presented in the dataset compared to VoxCeleb2 [7] used in

[9] (23 vs ∼5000). Our method effectively injects this small

dataset into training, yielding desirable results. We list our

key findings here, for all details, see supplementary materials.

Our model’s scheme, displayed in Fig. 4, shares similarities

with [9], leading us to occasionally refer to certain elements

of our scheme in the context of [9]’s pipeline.

4.1. Latent expression space

We begin by exploring MegaPortraits’ latent expression de-

scriptors’ space (zs/d in Fig. 4), which is crucial for expres-

sion transfer, through PCA analysis. Inspired by [16], which

demonstrated that the area under the cumulative explained

variance curve of singular values (denoted here as AUCz )

can serve as an effective metric for dimensionality collapse

in some latent spaces, we applied this measure to our study.

This metric allows us to forecast model performance:

greater collapse suggests reduced entropy in the latent space,

which correlates with lower representational quality. High

quality of the expression space, produced by Emotion (as

shown in Fig. 4), is crucial to capture and differentiate be-

tween the nuances of strong facial expressions. Our ablation

study confirms (see Tab. 4) that there is a notable correla-

tion between how broad and isotropic model’s latent space is

(expressed by AUCz) and its final performance. Visual com-

parison is available in supplementary materials. As shown in

Fig. 3, our model’s latent space outperforms MegaPortraits

in expression representation ability. This is supported by

both visual (Fig. 9) and quantitative analysis (Tab. 3).

Figure 3. Comparison of latent spaces. Left plot shows that our

model’s latent space is wider and exhibits more even variance

distribution. Also, as shown on the right plot, a greater number

of principal components are involved in capturing variance across

various thresholds. This implies a more robust representational

capacity of expression space compared to [9]. The VoxCeleb2 test

set was used for both plots.

Figure 4. Method Overview. We use Eapp to extract volume features

Vs and a global descriptor es from the source image. Then Emotion

or Eaudio generates motion representations from source and driver,

including head rotations Rs/d, translations ts/d, and expression

descriptors zs/d. Using them, we predict warpings ws→ and w→d.

First warping and G3D transform Vs into a canonical volume V
C
s

by removing the source motions. Second warping and G2D imposes

the driver’s motions and renders the final image.

Both metrics shown in Fig. 3 were vital in our model’s de-

velopment since they highly correlate with the final model’s

ability to transfer intense expressions. This was particularly

useful for finding adjustments described in Sec. 4.2 and

Sec. 4.3, as early visual results during training are not very

telling, but changes in the latent space are noticeable after a

few epochs. We also found that in MegaPortraits, just a few

principal components significantly affect variance, with only

18 components making up 99% (Fig. 3), suggesting their

512 z’s dimension is oversized. For our model, we found

a 128-dimensional z is optimal, offering solid performance

and reducing overfitting in imbalanced data, as our ablation

study reveals. We calculate the Explained Variance (EVi)

for the ith component and (AUCz) using equations shown

in Eq. (1), which involves standardizing the vector set Z for

PCA and sorting the eigenvalues λ in descending order.

Zstd =
Z − Z

σ(Z)
, λ = sorteddesc

(

eig

(

1

n− 1
Z

¦

stdZstd

))

,

EVi =
λi

∑p
j=1 λj

, AUCz =
1

d

∑d
i=1

∑i
k=1 λk

∑d
j=1 λj

,

(1)

4.2. Canonical volume

Despite being designed to exclude face expression details,

we found that canonical volume (VC in Fig. 4) in MegaPor-

traits actually retains significant expression information from

the source image, contributing to poor translation of intense

expressions, as shown in our experiment detailed in Fig. 5.

In this experiment, using portraits with varied expressions,

we assessed the expression translation accuracy and how

expression intensity affects the VCs. Our findings suggest

that the canonical volumes in MegaPortraits are not truly

neutral. As confirmed by our ablation study (Tab. 4), creating

an expression-free VC is essential for precise translation of

intense motions. We believe that a more neutral canonical

volume improves tractability and effectiveness in expression

translation tasks.
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Figure 5. Canonical volumes (VC ) in MegaPortraits [9] are not

expression-neutral. To show it we use three portraits: A (regular

expression), B (intense expression), D (regular expression, new

identity). Case 1 visualizes poor results in transferring B’s intense

expression to A using a self-driving mode, contrasting with the

effective reconstruction of B when used as both driver and source

in case 3. This discrepancy, indicative of expression leakage into the

canonical volume, is further quantified by a 43% relative difference

in VCs between B and C, contrary to expectations of their similarity

for same identity. In cross-driving generation case 2, using B as

the driver and D as the source yielded poor results. However, in

case 4, after using additive operations on source canonical volumes,

the output expression is much closer to driver than in case 2. This

manipulation again confirms the significant retention of expression

information in canonical volumes.

To overcome this issue, we propose to match canoni-

cal volumes from the different images of the same person

(VC
sn ,VC

dn ) during training as following:

Ln
CV = LMAE

(

VC
sn ,VC

dn

)

, (2)

This loss ensures VC remains stable and expression-

independent, crucial for translating intense expressions, as

shown in our ablation study (Tab. 4).

4.3. Source­driver mismatch loss

In addition to maintaining expression-free VC , it’s vital to

remove all identity information from the expression vector z.

While contrastive losses address this in [9], our experiments

indicate they are insufficient to prevent overfitting in our

imbalanced data scenario, where emotionally intense images

represent only 0.1% of our training set but are sampled 25%

of the time. We introduce a novel self-supervised loss which

mitigates identity information in latent expression vectors:

Lsdm(zs, zd) = w ∗max(0, cos(zs, zd)− margin),

w;margin =

{

1; 0.5 if zs, zd are from VC2

10; 0.25 if zs, zd are from FEED

(3)

Here, zs, zd are emotion vectors from source and driver

images, w,margin adjust the loss’s intensity and strictness

respectively. We increase w for FEED due to its higher sam-

pling rate and decrease margin for more assured expression

variance in s, d. Refer to Fig. 6 for a visual summary of all

self-supervised losses enhancing our latent emotion space.

Figure 6. The visualisation of our self-supervised losses. Lcos is a

contrastive loss, similar to one used in [9] but uses different pairs

as described in Sec. 5.1. Our novel Lsdm is designed to prevent

overfitting in an imbalanced dataset.

5. Incorporating speech-driving mode

5.1. Latent space disentanglement

During our latent space analysis described in Sec. 4, we

found that combining expression from one driver with the

head pose from another resulted in poor performance for

MegaPortraits model, as illustrated in Fig. 7 (bottom row).

Indeed, the base model lacks a mechanism to intentionally

prevent head pose leakage. Disentangled expression latent

space, besides expanding the model’s use cases, plays the

crucial role for the speech-driving mode. When the latent

vector z is entangled with head pose data, predicting it from

speech becomes challenging because speech lacks head rota-

tion information, unlike images. Moreover, we would like

to have a full control over head rotations during speech

mode. We were able to make our latent space disentangled

by changing the way we sample images for Lcos Eq. (5).

The MegaPortraits model uses Lcos - a modified Large

Margin Cosine Loss [26] to mitigate the transfer of appear-

ance features to expression descriptor (latent vector z on

Fig. 4), which is crucial for cross-driving mode. Without this,

differences in appearance between the source and driver, like

hairstyle or skin tone, leak from driver to output image.

For computing this loss, the authors utilize a supplemen-

tary source-driving pair (xs∗ and xd∗ ) from a different video

with another identity, ensuring a distinct appearance from

the current xs, xd pair. The base model is then employed to

produce cross-reenacted image (x̂s∗→d = Gbase(xs∗ ,xd)).
Concurrently, they determine a separate motion descriptor,

zd∗ = Emotion(xd∗). Descriptors z∗→d from the respective

forward passes are also used for positive and negative pairs.
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Figure 7. The illustration of disentanglement problem. Images in

the right row indicate the expression descriptor z entangled with

head pose for MegaPortraits, whereas we avoid it using changes

proposed in Sec. 5.1.

Our innovation here is a new sampling strategy: for each

xs, xd pair, we sample one more random additional pair

xsm and xdm apart from xs∗ and xd∗ . We then apply the

model to produce the following cross-reenacted moved im-

age using source identity from xs∗ , desired head pose from

xsm and emotions from xd, represented as: x̂s∗m→d =
Gbase(xs∗m ,xd). This creates a positive pair with the same

desired emotion but varying head poses.

Motion descriptors are organized into positive pairs P
for alignment, and negative pairs N for non-alignment:

P =
{

(zs→d, zd), (zs∗→d, zd), (zs∗m→d, zd)
}

, and N =
{

(zs→d, zd∗), (zs∗→d, zd∗), (zs∗m→d, zd∗)
}

(see Fig. 6).

These pairs are used to calculate the following cosine dis-

tance:

d(zi, zj) = s ·
(

ïzi, zjð −m
)

, (4)

where both s and m are hyperparameters. This distance

is then used to calculate a large margin cosine loss (Cos-

Face) [27]:

Lcos = −
∑

(zk,zl)∈P

log
exp

{

d(zk, zl)
}

exp
{

d(zk, zl)
}

+
∑

(zi,zj)∈N

exp
{

d(zi, zj)
} (5)

This loss prevents the head pose from leaking into the

embeddings as shown in Fig. 7 (upper row)

By doing this, we achieved the capability to interpret zi
as a latent vector encapsulating the emotional content from

an image xi. This advancement opened the door for an in-

triguing possibility during inference: the prediction of this

vector could potentially be derived from an audio signal

instead of a facial image using the motion encoder Emotion,

effectively transforming the model into a speech-driven sys-

tem. The critical challenge here is aligning the audio input

with the pretrained latent space. We addressed this by intro-

ducing an additional audio encoder, Eaud, and employing

Emotion as a teacher model for this new encoder. A crucial

factor in achieving remarkable accuracy in lip synchroniza-

tion was our ability to isolate specific components within the

expression latent space, that are solely responsible for mouth

movements. We describe it in the next subsection Sec. 5.2.

Figure 8. In the upper row, the first principal component from a

random subset of expression vectors Z affects not just the mouth

but also blinks and gaze, making it difficult to interpret and isolate

mouth movement components, needed for training Eaud. However,

as shown in the bottom row, using Zm from Sec. 5.2, the first prin-

cipal component, v1, focused on mouth movements, is effectively

isolated, z0 - latent vector, corresponded to the central image.

5.2. Mouth movements

To train the audio encoder Eaud for predicting z from speech,

we chose to use the motion encoder Emotion as a teacher

model. However, direct matching vectors zaud
i from Eaud and

pseudo-ground truth zi from Emotion gives poor results (see

Tab. 6). We believe that the reason behind this is that speech-

derived z
aud
i , while able to capture lip movements, struggles

with other facial motions, especially in the upper face. Thus,

we focused on isolating mouth movement components in the

expression latent space using PCA analysis.

Employing PCA on a broad array of expression vectors

Z , generated from images with varied facial emotions, yields

principal components with their explained variances (EVi).

Altering these components, particularly those with high EVi,

significantly changes facial expressions in an image. How-

ever, they typically affect a combination of facial features-

Fig. 8 (upper row), not isolated areas like the mouth or eyes.

To focus on mouth movements, we created a unique set

of Zm from just one video of a person performing mouth

manipulations and manually edited it to minimize upper face

movements. This involved using a still upper face from the

first frame in all subsequent frames, ensuring that the princi-

pal components mainly represented mouth movements. Ap-

plying PCA of Zm reveals that most principal components

are responsible for solely mouth movements. For illustration

of the first component, see Fig. 8 (bottom row). Based on

distilled components, we introduce mouth PCA mouth loss:

LPCA(vi, vj , n) =
1

n

n
∑

k=1

∣

∣PCvi
(k)− PCvj

(k)
∣

∣ (6)

Where n is the number of principal components to be

considered, PCzi
(k) and PCzj

(k) are the k-th principal com-

ponents of vectors zi and zj respectively. Implementing this

loss has demonstrably enhanced the quality and accuracy of

our results, as our ablation study confirms (see Tab. 6).
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6. Experiments

In this section, we describe experiments we set for com-

parison for both our image-driven and speech-driven mode.

Please see implementation details such as all used losses,

component’s sizes and architecture details, training proce-

dure, data preprocess in supplementary materials.

6.1. Image­driven comparison

Methods. We evaluated our image-driven model alongside

various one-shot models. For this comparison, we included

models like NOFA [32] and StyleHEAT [31], which use

3DMM expression blendshapes without disentanglement

training, and models with trainable latent face motion rep-

resentations like FOMM [22], UVA [23], MetaPortrait [35]

and MegaPortraits [9]. It’s noteworthy that NOFA and UVA

require per-source optimization, unlike the others, including

our model.

Evaluation metrics and data. For our evaluation, we use

100 random, non-child, single-person images from the FFHQ

dataset as sources. From the MEAD dataset, we chose 100

images covering all high-intensity emotions except neutral,

and another 100 from the FEED dataset’s extreme emotion

task, featuring 5 identities not seen during training of our

model. Each source image was paired with 20 driving images

from these sets, totaling 2000 pairs.

For assessing reenactment quality, we employ various

metrics including the Frechet Inception Distance (FID) [13]

to measure the distributional discrepancy between synthetic

and real images. Cosine similarity (CSIM) from a face recog-

nition network [5] quantifies the identity preservation in

generated images. Additionally, we conducted user studies

to determine preferences regarding motion (UMTN) and ap-

pearance (UAPP) preservation, presenting participants with

triplets—either a driving or source image and two method

outputs—and asking them to choose the one with better mo-

tion or appearance preservation. Our user study includes 34

participants and around 300 unique questions. Both metrics

numerically reflect preference percentages. As our visual re-

sults Fig. 9, and quantitative metrics Tab. 3 show, our method

demonstrates exceptional ability in translating strong and

extreme expressions, notably surpassing other image-driven

avatar techniques in user preference for facial expression

translation (UMTN) and FID scores.

6.2. Speech­driven comparison

Methods. To assess our model’s speech-driven capabilities,

we compared it with StyleHEAT [31], which also operates

using both image and audio inputs, and audio-exclusive mod-

els including SadTalker [36], MakeItTalk [40], and PC-AVS

[39].

Evaluation metrics and data. We employ the evaluation

procedure described in [12]. We measure video realism us-

ing Frechet Inception Distance (FID) [13]. We also extract

Driver: MEAD FEED

Method FID↓ CSIM↑ UMTN↑ UAPP↑ FID↓ CSIM↑ UMTN↑ UAPP↑

MetaPortrait [35] 77.5 0.64 * * 78.8 0.66 * *

NOFA [32] 69.2 0.65 * * 69.8 0.66 3.8 8.8

FOMM [22] 84.4 0.56 2.4 0.3 85.9 0.55 1.8 0.5

UVA [17] 78.7 0.68 0.9 6.4 79.5 0.68 0.6 9.4

StyleHEAT [31] 71.9 0.63 3.7 3.3 72.4 0.61 2.6 3.8

MegaPortraits [9] 61.1 0.73 22.7 46.6 62.8 0.73 16.7 42.8

Our (EMOPortraits) 59.6 0.74 70.3 43.4 60.2 0.70 74.6 34.7

Table 3. Our method notably outperforms others in the FID score

and strongly leads in the user preference metric for face expres-

sion translation (UMTN). It excels in reliably translating strong

and extreme expressions from the driving image, distinguishing it

as the most capable among the compared methods. Additionally,

our approach maintains the source image’s shape and appearance

(measured by CSIM and UAPP metrics) on par with MegaPortraits

[9] when using strong and regular expressions from the MEAD

dataset as the driving signal. However, we observe a minor devia-

tion in identity preservation metrics for extreme emotions (using

the FEED dataset). This difference may arise because our method

attempts to transfer asymmetric facial expressions, while Mega-

Portraits might modify the source image less, or not at all, with a

challenging driver (as depicted in Fig. 5, case 1), thereby achieving

better identity preservation. UVA was excluded from the MEAD-

driven user study due to the authors were able to provide only part

of the test data. Also, MetaPortrait was excluded from both user

studies because of late data provision by authors, offering only the

basic model results, without their super-resolution module outputs.

Method FID³ CSIM↑ UMTN³ UAPP³ AUCz³
MegaPortraits fine-tuned 62.3 0.63 8.5 12.4 0.89

Ours w/o Ln
CV 61.4 0.67 9.2 17.9 0.88

Ours w/o Lsdm 61.8 0.59 11.3 6.7 0.85

Ours dim(z) = 512 63.4 0.44 25.6 1.1 0.77

Ours 59.6 0.74 45.4 61.9 0.80

Table 4. Our ablation study examines key aspects of the image-

driven mode. After fine-tuning MegaPortraits on the FEED dataset,

we observed a decline in identity preservation due to overfitting on

FEED identities, without any improvement in emotion translation.

The lack of Ln
CV primarily impacts the ability to translate extreme

expression, as indicated by UMTN. Additionally, not using Lsdm

or setting dim(z) = 512 results in identity leakage, particularly

evident in the latter scenario. For this ablation, we use the part of

our driven by MEAD dataset and described in Sec. 6.1

facial landmarks from outputs of all methods, frontalized,

and normalized to position the mouth edges at (-1, 0) and

(1, 0). We compute mean absolute error (MAE) for both

predicted mouth landmark positions (MP ) and velocities

(MV ), along with errors in facial geometry (FP ) and veloc-

ity (FV ). For our evaluation, we use 100 randomly selected

video sequences from the HDTF dataset [37], each up to 30

seconds. As the results show in Tab. 5, our speech-driven

model performs on par with leading methods, excelling in

realism and facial dynamics. SyncNet [6] is used to assess

lip sync quality, providing offset (temporal misalignment

between the audio and video) and confidence (certainty of

audio-visual alignment) scores.
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Source Driver FOMM [22] UVA [17] StyleHEAT [31] MetaPortrait [35] NOFA [32] MegaPortraits [9] Ours

Figure 9. A qualitative comparison of head avatar systems in cross-reenactment scenario.

Method FID³ FP ³ FV ³ MP ³ MV ³ Sync. offset ³ Sync. conf. ↑
StyleHEAT [31] 62.4 1.34 0.41 2.98 1.67 0.41 7.22

PC-AVS [39] 71.5 2.78 0.51 2.56 1.04 3.79 8.42

SadTalker [36] 55.6 0.91 0.35 2.12 1.17 0.27 7.58

MakeIrTalk [40] 63.3 2.15 0.38 3.11 1.59 2.98 5.17

Ours (EMOPortraits) 28.5 0.82 0.33 2.53 1.38 0.07 5.77

Table 5. Our model matches other leading speech-driven models, ex-

celling in realism (FID), facial geometry and velocity, but is slightly

less accurate in mouth landmark positions and velocities. We also

score best in audio-video sync offset, but lower in confidence. We

believe that while SyncNet metrics are still helpful, they may not

fully represent true synchronization quality, as generated videos

can sometimes score higher than ground truth without necessarily

being better synchronized. In our experimentation, ground truth

videos scored an offset of 1.13 (which is worse than our method,

SadTalker, and StyleHEAT) and a confidence score of 8.35 (less

than PC-AVS). For qualitative analysis, please refer to our supple-

mentary materials.

Method FID³ MP ³ MV ³ FP ³ FV ³
Ours w/o disentanglement 44.7 0.98 0.45 5.78 2.55

Ours w/o LPCA 29.3 0.84 0.35 3.13 1.88

Ours with MAE(zi, ẑ
speech
i ) 28.2 0.84 0.34 2.61 1.45

Ours 28.5 0.82 0.33 2.53 1.38

Table 6. Ablation study of our speech-driven mode, where in the

first line, we show that it notably underperforms without head pose

- face expression disentanglement of the latent space (see Sec. 5.1).

Removing LPCA leads to a significant reduction in generating re-

alistic mouth movements. Replacing LPCA with MAE(zi, ẑ
speech
i )

causes a noticeable, decline in mouth movement generation. This

suggests that identifying mouth-related PCA components was ben-

eficial in enhancing the outcome.

6.3. Ablation study

We conducted an extensive ablation study to evaluate the

contributions of individual components within our method.

For our main model, we present the evaluation of the impor-

tance of the proposed source-driver unmatch loss, canonical

volume loss, and change of dim(z) from 512 in original

model to 128 Tab. 4. For our speech-driven mode, we show

how vital the disentanglement of the latent space for speech-

drive ability, how LPCA is better than naive matching of

PCA components from random Z and how it helps match

speech and latent expression space Tab. 6. For more ablation

analysis, plots and visual comparison, please refer to our

supplementary.

7. Conclusion

In this paper, we introduce EmoPortraits, a novel method

for creating neural avatars with superior performance in

image-driven, cross-identity emotion translation. Our speech-

driven mode makes it possible to drive the facial animation

through multiple conditions (video, audio, head motion). We

collected FEED dataset which, we believe, will be a valuable

asset for researchers in diverse human-centered studies.

However, our method has some limitations. It doesn’t

generate the avatar’s body or shoulders, limiting some use

cases. We currently integrate our output with a source im-

age body. Additionally, the model sometimes struggles with

accurate expression translation and underperforms with ex-

tensive head rotation. These challenges are crucial for future

enhancements and remain central to our ongoing research

efforts.
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