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Figure 1. Selected landscape samples of DemoFusion versus SDXL [24] (all images in the figure are presented at their actual sizes).
SDXL can synthesize images up to a resolution of 10242, while DemoFusion extends SDXL to generate images at 4×, 16×, and even
higher resolutions without any fine-tuning or prohibitive memory demands. All generated images are produced using a single RTX 3090
GPU. Best viewed ZOOMED-IN.

Abstract
High-resolution image generation with Generative Arti-

ficial Intelligence (GenAI) has immense potential but, due
to the enormous capital investment required for training,
it is increasingly centralised to a few large corporations,
and hidden behind paywalls. This paper aims to democra-
tise high-resolution GenAI by advancing the frontier of
high-resolution generation while remaining accessible to a
broad audience. We demonstrate that existing Latent Diffu-
sion Models (LDMs) possess untapped potential for higher-
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resolution image generation. Our novel DemoFusion
framework seamlessly extends open-source GenAI models,
employing Progressive Upscaling, Skip Residual, and Di-
lated Sampling mechanisms to achieve higher-resolution
image generation. The progressive nature of DemoFusion
requires more passes, but the intermediate results can serve
as “previews”, facilitating rapid prompt iteration.

1. Introduction

Generating high-resolution images with Generative Artifi-
cial Intelligence (GenAI) models has demonstrated remark-
able potential [1, 19, 23]. However, these capabilities are in-
creasingly centralised. Training high-resolution image gen-
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eration models requires substantial capital investments in
hardware, data, and energy that are beyond the reach of indi-
vidual enthusiasts and academic institutions. For example,
training Stable Diffusion 1.5, at a resolution of 5122, en-
tails over 20 days of training on 256 A100 GPUs [1]. Com-
panies that make these investments understandably want to
recoup their costs and increasingly hide the resulting mod-
els behind paywalls. This trend toward centralisation and
pay-per-use access is accelerating as GenAI image synthe-
sis advances in quality since the investment required to train
image generators increases rapidly with image resolution.

In this paper we reverse this trend and re-democratise
GenAI image synthesis by introducing DemoFusion, which
pushes the frontier of high-resolution image synthesis from
10242 in SDXL [24], Midjourney [19], DALL-E [23], etc to
40962 or more. DemoFusion requires no additional training
and runs on a single consumer-grade RTX 3090 GPU (hard-
ware for the “working class” in the GenAI era), as shown in
Fig. 1. The only trade-off? A little more patience.

Specifically, we start with the open source SDXL [24]
model, capable of generating images of 10242. DemoFu-
sion is a plug-and-play extension to SDXL that enables 4×,
16×, or more increase in generation resolution (Fig 1) – all
with zero additional training, and only a few simple lines
of code. Off-the-shelf SDXL fails if directly prompted to
produce higher-resolution images (Fig. 2 (a)). However, we
observe that text-to-image LDMs encounter many cropped
photos during their training process. These cropped photos
either exist inherently in the training set or are intention-
ally cropped for data augmentation. Consequently, models
like SDXL occasionally produce outputs that focus on lo-
calised portions of objects [24], as illustrated in Fig. 2 (b).
In other words, existing open-source LDMs already contain
sufficient prior knowledge to generate high-resolution im-
ages, if only we can unlock them by fusing multiple such
high-resolution patches into a complete scene.

However, achieving coherent patch-wise high-resolution
generation is non-trivial. A recent study, MultiDiffusion [2]
showcased the potential of fusing multiple overlapped de-
noising paths to generate panoramic images. Yet, when
directly applying this approach to generate specific high-
resolution object-centric images, results are repetitive and
distorted without global semantic coherence [42], as illus-
trated in Fig. 2 (c). We conjecture the underlying reason
is that overlapped patch denoising merely reduces the seam
issue without a broad perception of the global context re-
quired for semantic coherence. DemoFusion builds upon
the same idea of fusing multiple denoising paths from a
pre-trained SDXL model to achieve high-resolution gener-
ation. It introduces three key mechanisms to achieve global
semantic coherence together with rich local detail (Fig. 2
(d) vs (a, c)): (i) Progressive Upscaling: Starting with
the low-resolution input, DemoFusion iteratively enhances

Figure 2. Examples of 4× (20482) generation based on
SDXL [24]. (a) Directly prompting SDXL to generate a 4× im-
age. (b) SDXL [24] inferences on non-overlapping patches at the
original resolution. It fails, but reveals that the SDXL possesses
prior knowledge of localized patches at higher resolutions. (c)
MultiDiffusion [2] fuses multiple overlapping denoising paths to
generate higher-resolution images without edge effects, but lacks
the global context for semantic coherence. (d) Our proposed De-
moFusion achieves global semantic coherence in high-resolution
generation.

images through an “upsample-diffuse-denoise” loop, using
the noise-inversed lower-resolution image as a better ini-
tialisation for generating the higher-resolution image. (ii)
Skip Residual: Within the same iteration, we additionally
utilise the intermediate noise-inversed representations as
skip residuals, maintaining global consistency between high
and low-resolution images. (iii) Dilated Sampling: We ex-
tend MultiDiffusion to increase global semantic coherence
by using dilated sampling of denoising paths. These three
techniques to modify inference are simple to implement on
a pre-trained SDXL and provide a dramatic boost in high-
resolution image generation quality and coherence. Fig. 3
illustrates the framework.

The caveat is that generating high-resolution images
does require more runtime (users need to exercise more
patience). This is partially due to the progressive upscal-
ing requiring more passes; however, primarily because the
time required grows exponentially with resolution (as per
any patch-wise LDM [2]), and thus, the highest resolution
pass dominates the cost. Nevertheless, the memory cost
is low enough for consumer-grade GPUs, and progressive
generation allows the users to preview low-resolution re-
sults rapidly, facilitating rapid iteration on the prompt until
satisfaction with the general layout and style, prior to wait-
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ing for a full high-resolution generation.

2. Related Work
With the progress of several years, diffusion model
(DM) [33] has recently reached its own “tipping point” –
with the emergence of works like DDPM [34], DDIM [34],
ADM [5], DM has shown great potential in image genera-
tion due to its outstanding generation quality and diversity.
Subsequently, using a pre-trained autoencoder, the latent
diffusion model (LDM) [29] applies a diffusion model in
the latent space, achieving efficient training and inference.
This enabled the emergence of high-performance genera-
tive models trained on billions of data, such as the Stable
Diffusion series. LDM’s excellent generalisation capabil-
ity has led to subsequent research on controllable gener-
ation [21, 22, 30, 41] and editable generation [3, 9, 20];
it has also been widely applied in numerous downstream
generative tasks, such as text-to-video [8, 11, 37], text-to-
3D [18, 25, 38], text-to-avatar [6, 17, 36], and text-to-human
sketch [14, 26, 27], etc.

Despite achieving numerous successes, current LDMs
like Stable Diffusion 1.5 and Stable Diffusion XL are still
confined to generating images at resolutions of 5122 and
10242, respectively [24]. Escalating resolution significantly
increases training expenses and computational load, mak-
ing such models impractical for most researchers and users.
An intuitive solution to generate high-resolution images in-
volves using LDMs for initial image generation, followed
by enhancement through a super-resolution (SR) model.
Cascaded Diffusion Models [12] cascades several diffusion-
based SR models behind a diffusion model, but its appli-
cation remains capped at 2562 resolution images. We at-
tempted to enhance state-of-the-art LDMs with SR mod-
els [35, 40], but found that images generated at lower res-
olutions were deficient in detail. Upscaling these images
with SR failed to yield the high-resolution detail desired.
Another attempt is to retrain/fine-tune open-source DMs
to achieve satisfactory results [13, 42], but fine-tuning still
brings a non-negligible cost.

Recently, MultiDiffusion [2] fuses multiple overlapped
denoising paths of LDMs, achieving seamless panorama
generation in a training-free manner. Subsequently, SyncD-
iffusion [16] further constrains the consistency between de-
noising paths using a gradient descent approach. How-
ever, these methods are limited to generating scene images
through repetition; when applied to generating specific ob-
jects, they lead to local repetition and structural distortion.
Valuing the training-free characteristic of such methods, we
proposed DemoFusion based on MultiDiffusion in this pa-
per towards democratising high-resolution generation.

Note that a recent concurrent work, SCALE-
CRAFTER [7], with the same motivation, proposed a
tuning-free framework for high-resolution image genera-

tion. It ingeniously adapts the diffusion model for higher
resolutions by dilating its convolution kernels at specific
layers. Despite a smart move, our experiments indicate
that SCALECRAFTER somewhat degrades the model’s
performance and does not bring about the local details
expected at higher resolutions. In contrast, DemoFusion
has demonstrated better results.

3. Methodology
3.1. Preliminaries

Latent Diffusion Model: Given an image x, an LDM first
encodes it to the latent space via the encoder of the pre-
trained autoencoder, i.e., z = E(x), z ∈ Rc×h×w.

Following this, the two core components of the diffusion
model, the diffusion and the denoising process, take place
in the latent space. The diffusion process comprises a se-
quence of T steps with Gaussian noise incrementally intro-
ducing into the latent distribution at each step t ∈ [0, T ].
With a prescribed variance schedule β1, · · · , βT , the diffu-
sion process can be formulated as

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI). (1)

In contrast, the denoising process aims to recover the
cleaner version zt−1 from zt by estimating the noise, which
can be expressed as

pθ(zt−i|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)), (2)

where µθ and Σθ are determined through estimation proce-
dures and θ denotes the parameters of the denoise model.
MultiDiffusion: MultiDiffusion [2] extends LDMs such as
SDXL to produce high-resolution panoramas by overlapped
patch-based denoising.

In simple terms, MultiDiffusion defines a latent space
Rc×H×W with H > h and W > w. For arbitrary
denoising step t with zt ∈ Rc×H×W , MultiDiffusion
first applies a shifted crop sampling Slocal(·) to obtain
a series of local latent representations, i.e., Zlocal

t =
[z0,t, · · · , zn,t, · · · , zN,t] = Slocal(zt), zn,t ∈ Rc×h×w,
where N = ( (H−h)

dh
+ 1)× ( (W−w)

dw
+ 1), dh and dw is the

vertical and horizontal stride, respectively.
After that, the conventional denoising process is inde-

pendently applied to these local latent representations via
pθ(zn,t−1|zn,t). And then Zlocal

t−1 is reconstructed to the
original size with the overlapped parts averaged as zt−1 =
Rlocal(Z

local
t−1 ), where Rlocal denotes the reconstruction

process. Eventually, a higher-resolution panoramic image
can be obtained by directly decoding z0 into image x̂.

MultiDiffusion provides effective panorama generation,
thanks to smoothing the edge effects between generated
patches. However, as discussed by [42], and illustrated in
Fig. 2, it struggles with generating coherent semantic con-
tent for specific objects. The fundamental reason for this
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Figure 3. The proposed DemoFusion framework. (a) Starting with conventional resolution generation, DemoFusion engages an
“upsample-diffuse-denoise” loop, taking the low-resolution generated results as the initialization for the higher resolution through noise
inversion. Within the “upsample-diffuse-denoise” loop, a noise-inverted representation from the corresponding time-step in the preceding
diffusion process serves as skip-residual as global guidance. (b) To improve the local denoising paths of MultiDiffusion, we introduce
dilated sampling to establish global denoising paths, promoting more globally coherent content generation.

is that each patch/diffusion path is constrained only by the
text condition and lacks awareness of the global context of
the other patches.

We introduce three modifications to the inference pro-
cedure of SDXL that enable a patch-wise high-resolution
image generation strategy to achieve both global semantic
coherence and rich local details. These are: Progressive
Upscaling (see Sec. 3.2), Skip Residual (see Sec. 3.3) and
Dilated Sampling (see Sec. 3.4). The overall flow of Demo-
Fusion is summarised in Appendix A.

3.2. Progressive Upscaling

Progressively generating images from low to high resolu-
tion is a well-established concept [15]. By initially synthe-
sizing a semantically coherent overall structure at low res-
olution, and subsequently increasing resolution to add de-
tailed local features, models can produce coherent yet rich
images. In this paper, we present a novel progressive up-
scaling generation process tailored for LDMs (Fig 3 (a)).

Consider a pre-trained latent diffusion model with pa-
rameters θ, operating on the latent space Rc×h×w to pro-
duce images with a resolution magnified by a factor of K.
The scaling factor for the side length should be S =

√
K.

And the target latent space is Rc×H×W where H = Sh and
W = Sw. Instead of directly synthesizing zt ∈ Rc×H×W ,
we break the generation process into S distinct phases,
each consisting of an “upsample-diffuse-denoise” loop, ex-
cept for the first phase which follows an “initialise-denoise”
scheme. Specifically, given diffusion and denoising pro-
cess as q(zT |z0) =

∏T
t=1 q(zt|zt−1) and pθ(z0|zT ) =∏1

t=T pθ(zt−1|zt). Then, we can formulate the proposed
progressive upscaling generation process as

pθ(z
S
0 |z1T ) = pθ(z

1
0|z1T )

S∏
s=2

(q(z′
s
T |z′

s
0)pθ(z

s
0|z′

s
T )),

(3)
where z′

s
0 is obtained through explicit upsampling as z′s0 =

inter(zs−1
0 ) and inter(·) is an arbitrary interpolation al-

gorithm (e.g., bicubic). In essence, we first run a regular
LDM such as SDXL as pθ(z10|z1T ). We then iteratively for
each scale s: (i) upscale the low-resolution image zs−1

0 to
z′

s
0, (ii) reintroduce noise via the diffusion process to ob-

tain z′
s
T , and (iii) denoise to obtain zs0. By repeating this

process, we can compensate for the artificial interpolation-
based upsampling and gradually fill in more and more local
details.

3.3. Skip Residual

The “diffuse-denoise” process has parallels in some im-
age editing works – people attempt to find the initial noise
of an image using specialized noise inversion techniques,
ensuring that the unedited parts remain consistent with the
original image during the denoising editing process [9, 20].
However, these inversion techniques are less practical to
DemoFusion’s denoising process. Therefore, we instead
simply use a conventional diffusion process by adding ran-
dom Gaussian noise.

However, directly diffusing zs0 to z′
s
T as initialization

would result in most information loss. In contrast, dif-
fusing to an intermediate t and then starting denoise from
z′

s
t might be better. However, it is challenging to deter-

mine the optimal intersection time-step t of the “upsample-
diffuse-denoise” loop – the larger the t, the more infor-
mation is lost, which weakens the global perception; the
smaller the t, the stronger the noise introduced by upsam-
pling (refer to Appendix C). It is a difficult trade-off and
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could be example-specific. Therefore, we introduce the skip
residual as a general solution, which can be informally con-
sidered as a weighted fusion of multiple “upsample-diffuse-
denoise” loops with a series of different intersection time-
steps t (Fig. 3 (a)).

For each generation phase s, we have already obtained
a series of noise-inversed versions of z′

s
0 as z′

s
t with t ∈

[1, T ]. During the denoising process, we introduce the cor-
responding noise-inversed versions as skip residuals. In
other words, we modify pθ(zt−1|zt) to pθ(zt−1|ẑt) with

ẑst = c1 × z′
s
t + (1− c1)× zst , (4)

where c1 = ((1 + cos
(
T−t
T × π

)
)/2)α1 is a scaled cosine

decay factor with a scaling factor α1. This essentially uti-
lizes the results from the previous phase to guide the gen-
erated image’s global structure during the initial steps of
the denoising process. Meanwhile, we gradually reduce the
impact of the noise residual, allowing the local denoising
paths to optimize the finer details more effectively in the
later steps.

3.4. Dilated Sampling

Beyond the explicit integration of global information as a
residual, we introduce dilated sampling to give each denois-
ing path more global context. The technique of dilating con-
volutional kernels to expand their receptive field is conven-
tional in various dense prediction tasks [39]. The concurrent
tuning-free method, SCALECRAFTER [7], similarly uses
dilated convolutional kernels for adapting trained latent dif-
fusion models to higher-resolution image generation. How-
ever, our approach diverges here: rather than dilating the
convolutional kernel, we directly dilate the sampling within
the latent representation. After that, the global denoising
paths, derived through dilated sampling, are processed anal-
ogously to local denoising paths in MultiDiffusion.

As depicted in Fig. 3 (b), we applied shifted dilated
sampling to obtain a series of global latent representation,
i.e., Zglobal

t = [z0,t, · · · , zm,t, · · · , zM,t] = Sglobal(zt),
zm,t ∈ Rc×h×w. To sample from the whole latent repre-
sentation, the dilation factor is set to be s and M = s2.
Similarly, we apply the general denosing process on these
global latent representations as pθ(zm,t−1|zm,t). Then, the
reconstructed global representations are fused with the re-
constructed local representations to form the final latent rep-
resentation:

zt−1 = c2×Rglobal(Z
global
t−1 )+ (1− c2)×Rlocal(Z

local
t−1 ),

(5)
where c2 = ((1 + cos

(
T−t
T × π

)
)/2)α2 is a scaled cosine

decay factor with a scaling factor α2, also chosen based on
the characteristic of the diffusion model where earlier steps
mainly reconstruct the overall structure, while later steps
focus on refining the details.

It is noteworthy that directly using dilated sampling can
lead to grainy images. This is because, unlike the lo-
cal denoising paths, which have overlaps, the global de-
noising paths operate independently of each other. To
address this issue, we employ a straightforward yet intu-
itive approach – applying a Gaussian filter G(·) to the la-
tent representation before performing dilated sampling as
Zglobal
t = Sglobal(G(zt)). The kernel size of the Gaus-

sian filter is set to be 4s − 3, making it sufficient at every
phase. Moreover, the standard deviation of the Gaussian fil-
ter will decrease from σ1 to σ2 as c3 × (σ1 − σ2) + σ2,
where c3 = ((1 + cos

(
T−t
T × π

)
)/2)α3 is also a scaled

cosine decay factor with a scaling factor α3, ensuring that
the effect of the filter gradually diminishes as the directions
of global denoising paths become consistent, preventing the
final image from becoming blurry.

4. Experiments
Here, we report qualitative and quantitative experiments
and ablation studies. For more details and results, please
refer to Appendix: implementation details in Appendix B,
more discussions in Appendix C, more visualisations in Ap-
pendix D, more applications in Appendix E, and all prompts
we use in Appendix F.

4.1. Comparison

We compared DemoFusion with the following methods (i)
SDXL [24], which is designed to generate images of 10242.
In the quantitative experiments, we also report the results of
inferencing it at higher resolutions. (ii) MultiDiffusion [2],
our baseline method based on overlapped local patch de-
noising. (iii) SDXL+BSRGAN. Using a super-resolution
model is an intuitive solution to directly upscale SDXL re-
sults. Here, we choose BSRGAN [40], a representative SR
method, for comparison. (iv) SCALECRAFTER [7], a
concurrent training-free high-resolution generation method
built on SDXL, which upscales by dilating convolutional
kernels at specific layers.
Qualitative Results: As shown in Fig. 4, each model is
asked to generate images at 4× and 16× resolutions (com-
pared to SDXL). We chose three prompts about realistic
content rather than showcasing DemoFusion’s prowess in
artistic creation, as such content is more objective and facil-
itates a fair comparison.

Firstly, as previously mentioned, MultiDiffusion tends
to generate repetitive content lacking semantic coherence.
For SDXL+BSRGAN, we observe that the SR model ef-
fectively eliminates the blurriness and jagged edges of
up-sampling, resulting in sharp and pleasing outcomes.
However, the goal of the SR model is to produce im-
ages consistent with the input, which limits its perfor-
mance in high-resolution generation – needing more detail
for true high-resolution visuals beyond simple smoothing.
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Figure 4. Qualitative comparison with other baselines. Local details have already been zoomed in, but it’s still recommended to ZOOM
IN for a closer look.

Checking the zoomed-in results of 40962 – compared to
SDXL+BSRGAN, DemoFusion generates much richer de-
tails in the fur of the teddy bear, gives much richer details

to Hermoine’s eyes, and adds much more detail to the forest
vegetation. This comparison confirms that high-resolution
generation cannot be substituted by simple image super-
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Method
2048× 2048 2048× 4096 4096× 4096

FID ↓ IS ↑ FIDcrop ↓ IScrop ↑ CLIP ↑ Time FID ↓ IS ↑ FIDcrop ↓ IScrop ↑ CLIP ↑ Time FID ↓ IS ↑ FIDcrop ↓ IScrop ↑ CLIP ↑ Time

SDXL Direct Inference [24] 79.66 13.47 73.91 17.38 28.12 1 min 97.08 14.12 96.41 18.01 27.29 3 min 105.65 14.01 98.59 19.47 25.64 8 min

MultiDiffusion [2] 75.93 14.56 70.93 17.85 28.97 3 min 89.38 14.17 82.78 18.87 28.66 6 min 97.98 13.84 79.45 19.73 28.62 15 min

SDXL + BSRGAN [40] 66.41 16.22 67.42 21.11 29.61 1 min 68.70 16.29 75.03 21.76 29.01 1 min 66.44 16.21 77.20 22.42 29.63 1 min

SCALECRAFTER [7] 69.91 15.72 68.36 19.44 29.51 1 min 80.16 15.29 83.08 19.56 28.87 6 min 87.50 15.20 84.36 20.32 29.04 19 min

DemoFusion (Ours) 65.73 16.41 64.81 21.40 29.68 3 min 73.15 16.37 71.35 23.55 29.05 11 min 74.11 16.11 70.34 24.28 29.57 25 min

Table 1. Quantitative comparison results. The best results are marked in bold, and the second best results are marked by underline.

Figure 5. Ablation studies on the three components of DemoFusion: Progressive Upscaling (PU), Skip Residual (SR), and Dilated
Upsampling (DS). All images are generated at 30722 (9× resolutions). Best viewed ZOOMED-IN.

resolution. As for SCALECRAFTER, while it partially ad-
dresses the issue of MultiDiffusion’s repetitive content, it
still needs improvement in semantic coherence. E.g., the
teddy bear has multiple arms, eyes, or mouths. Addition-
ally, directly dilating the convolutional kernels has some-
what affected the performance of the LDM, resulting in an
overall image quality degradation, and local details exhibit
many repetitive patterns (e.g., the trunks of the trees). In
summary, the proposed DemoFusion achieves both rich lo-
cal detail and strong global semantic coherence by mod-
ifying MultiDiffusion style patch-wise denoising paths to
maximise the global context available for each path.

Quantitative Results: For quantitative comparison, we
adopt 3 widely-used metrics: FID (Fréchet Inception Dis-
tance) [10], IS (Inception Score) [31], and CLIP Score [28].
Considering that FID and IS require resizing images to
2992, which is not very suitable for high-resolution im-
age assessment, inspired by [4], we additionally crop lo-
cal patches of 1× resolution and then resize them to cal-
culate these metrics, termed FIDcrop and IScrop. The CLIP
Score assesses the entire image’s semantics; thus, we do not
consider evaluating local patches here. We evaluate on the
LAION-5B dataset [32] with 1K randomly sampled cap-
tions. Note that the results of FID and IS are related to
the number of samples; therefore, the scores of FIDcrop and
IScrop might be better than FID and IS due to more samples.
The inference time is evaluated on an RTX 3090 GPU.

As shown in Tab. 1, DemoFusion achieved the best over-
all performance – securing first or second place across all
metrics. As the resolution increases, DemoFusion may

score slightly lower than SDXL+BSRGAN on FID and
IS because BSRGAN is designed to adhere strictly to
low-resolution inputs, and these metrics also downsample
images to low resolution for evaluation. However, De-
moFusion significantly outperforms SDXL+BSRGAN on
FIDcrop and IScrop, indicating that DemoFusion can pro-
vide high-resolution local details. Besides, we observed
that MultiDiffusion surpassed SCALECRAFTER on crop-
based metrics due to these metrics’ lack of an assessment
of the overall structure of the image. Herefore, we keep
the general FID and IS metrics. Regarding efficiency, since
DemoFusion is based on MultiDiffusion and operates pro-
gressively, it requires a longer inference time. We discuss
this point further in Sec. 5.

4.2. Ablation Study

The proposed DemoFusion consists of three components:
(i) progressive upscaling, (ii) skip residual, and (iii) dilated
sampling. To visually demonstrate the effectiveness of these
three components, we conducted experiments on all possi-
ble combinations, as shown in Fig. 5. All images are gen-
erated at 30722 (9× resolutions). When all three compo-
nents are removed, we generate at the original resolution
first and then achieve higher resolutions via an “upsample-
diffuse-denoise” loop. The results obtained under this set-
ting are similar to naively generating via MultiDiffusion,
with much repetitive content. However, this issue is grad-
ually mitigated by incorporating the three proposed tech-
niques, resulting in high-resolution images consistent with
their original resolution counterparts.
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Figure 6. Results of DemoFusion on other LDMs, i.e., Stable
Diffusion 1.5 (default resolution of 5122) and Stable Diffusion 2.1
(default resolution of 7682). All images are generated at 9× reso-
lutions. Best viewed ZOOMED-IN.

Figure 7. Failure cases of DemoFusion. (a) Irrational content
appears locally in images with a sharp focus. (b) Small objects are
repetitively present against a sparse background. All images are
generated at 9× resolutions. Best viewed ZOOMED-IN.

Specifically, we found that continuously introducing in-
formation from the low resolution via skip residual dramat-
ically helps maintain the overall structure to obtain accept-
able results. On this basis, dilated sampling can further in-
troduce denoising paths with global perception during the
denoising process, guiding local denoising paths towards
the global optimal direction. However, these mutually in-
dependent global denoising paths introduce two drawbacks
(even though we have introduced Gaussian filtering to al-
leviate this): (i) bringing grainy textures when generat-
ing from Gaussian noises and (ii) amplifying the artificial
noises introduced during the upscaling process. The for-
mer can be alleviated by introducing skip residuals, while
the latter can be addressed by progressive upscaling, which
prevents the strong artificial noises brought by direct large-
scale upscaling. Overall, the three proposed techniques are
complementary and indispensable. It is fascinating to see
how well they work together.

5. Limitations and Opportunities
DemoFusion exhibits limitations in the following aspects:

(i) The nature of MultiDiffusion-style inference requires
high computational load due to the overlapped denoising
paths, and the progressive upscaling also prolongs inference

times. (ii) As a tuning-free framework, DemoFusion’s per-
formance is directly correlated with the underlying LDM.
In Fig. 6, we show the results based on other LDMs (Stable
Diffusion 1.5 and Stable Diffusion 2.1), where DemoFu-
sion is still effective, but the results are less astonishing than
those on SDXL. (iii) DemoFusion entirely depends on the
LDMs’ prior knowledge of cropped images, and therefore,
local irrational content may appear when generating sharp
close-up images, as depicted in Fig. 7 (a). (iv) Although we
have significantly mitigated the issue of repetitive content,
the possibility of small repetitive content in background re-
gions remains (see Fig. 7 (b)).

Behind these limitations, opportunities exist: (i) Demo-
Fusion functions by fusing multiple denoising paths of the
original size. This allows it to implement each denoising
step in mini-batches, preventing the expected exponential
increase in memory requirements. (ii) Although progres-
sive upscaling requires more passes, users can acquire low-
resolution intermediate results as “previews” within several
seconds, facilitating rapid prompt iteration. (iii) The priors
of current LDMs regarding image crops are solely derived
from the general training scheme, which has already re-
sulted in impressive performance. Training a bespoke LDM
for a DemoFusion-like framework may be a promising di-
rection to explore.

6. Conclusion
In this paper, we introduce DemoFusion, a tuning-free
framework that integrates plug-and-play with open-source
GenAI models to achieve higher-resolution image genera-
tion. DemoFusion is built upon MultiDiffusion and intro-
duces Progressive Upscaling, Skip Residual, and Dilated
Sampling techniques to enable generation with both global
semantic coherence and rich local details. DemoFusion per-
suasively demonstrates the possibility of LDMs generating
images at higher resolutions than those used for training
and the untapped potential of existing open-source GenAI
models. By advancing the frontier of high-resolution image
generation without additional training or prohibitive mem-
ory requirements for inference, we hope that DemoFusion
can help democratize high-resolution image generation.
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