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Abstract

Conventional Unsupervised Domain Adaptation (UDA)
strives to minimize distribution discrepancy between do-
mains, which neglects to harness rich semantics from data
and struggles to handle complex domain shifts. A promising
technique is to leverage the knowledge of large-scale pre-
trained vision-language models for more guided adapta-
tion. Despite some endeavors, current methods often learn
textual prompts to embed domain semantics for source and
target domains separately and perform classification within
each domain, limiting cross-domain knowledge transfer.
Moreover, prompting only the language branch lacks flex-
ibility to adapt both modalities dynamically. To bridge
this gap, we propose Domain-Agnostic Mutual Prompt-
ing (DAMP) to exploit domain-invariant semantics by mu-
tually aligning visual and textual embeddings. Specifi-
cally, the image contextual information is utilized to prompt
the language branch in a domain-agnostic and instance-
conditioned way. Meanwhile, visual prompts are im-
posed based on the domain-agnostic textual prompt to elicit
domain-invariant visual embeddings. These two branches
of prompts are learned mutually with a cross-attention mod-
ule and regularized with a semantic-consistency loss and
an instance-discrimination contrastive loss. Experiments
on three UDA benchmarks demonstrate the superiority of
DAMP over state-of-the-art approaches 1.

1. Introduction

Labeling scarcity is a perennial problem in deep learning,

as collecting abundant labeled data can be expensive, time-

consuming, or even infeasible [31, 58]. Unsupervised Do-

main Adaptation (UDA) serves as a promising approach to

leverage the knowledge from a well-labeled source domain

to benefit the task on an unlabeled target domain, where the

two domains have similar semantics but different data dis-

tributions [7, 16, 45].

1Code is available at: https://github.com/TL-UESTC/DAMP.
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Figure 1. Top: exsiting prompt-based methods (e.g., DAPrompt

[8]) only learn textual prompts to embed semantics for each do-

main and perform classification separately, which limits cross-

domain knowledge transfer and feature alignment. Bottom: our

method learns both textual and visual prompts mutually to make

both modalities of embeddings domain-invariant, thus enabling

better utilization of source knowledge and flexibility alignment.

Conventional UDA methods typically bridge the domain

gap by minimizing the distribution discrepancy, through

either moment matching [16, 21, 25, 26, 33] or adver-

sarial learning [5, 7, 27, 36]. However, roughly aligning

two domains can result in distorted semantic structure and

less class discriminability in learned feature representations

[2, 42]. Besides, prior works use numerical labels for train-

ing and inference, which discard rich semantics behind cat-

egories, leading to sub-optimal adaptation when handling

complex categories and domain shifts.

Recently, large-scale pre-trained Vision-Language Mod-

els (VLMs) have demonstrated impressive successes in var-

ious downstream tasks [10, 13, 35, 54]. By pre-training on

tremendous image-text pairs, these models learn transfer-

able multimodal representations that align images and texts

in a joint embedding space. In particular, the Contrastive

Language-Image Pre-training (CLIP) model [34] encodes
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rich semantic knowledge about visual concepts, presenting

new opportunities to address the domain gap by leveraging

the pre-trained vision and language knowledge. However,

few attempts have been made to leverage VLMs for UDA

since two challenges stand in the way, namely, 1) how to ef-

fectively take advantage of the rich pre-trained knowledge
encoded in VLMs, and 2) how to transfer the source knowl-
edge to the target domain for better adaptation.

Generally, there are two feasible routes for adapting

large-scale pre-trained VLMs. The first is to use the zero-

shot prediction capacity of VLMs to obtain pseudo-labels

and fine-tune the image backbone with other UDA tech-

niques [19]. While the source knowledge can be well-

encoded by fine-tuning, the pseudo-labels largely rely on

manually designed textual descriptions and fine-tuning the

model may ruin the pre-trained knowledge. Another way is

to freeze the pre-trained model and only tune the input data

(e.g., prompt) for model adaptation, which only involves a

small set of learnable parameters and retains the pre-trained
knowledge. For instance, DAPrompt [8] proposes to em-

bed domain semantics into domain-specific textual prompts

for each domain, which are then coupled with a domain-

agnostic context for domain-specific classification in the

joint CLIP space. However, we argue that a large portion of

source knowledge is prone to be encoded in source-specific

prompts, which cannot be transfered to the target domain.

For instance, we conduct an experiment by disabling the

source supervision loss in DAPrompt, and observe marginal

influence on the target performance (see Fig. 1).

In this work, we aim to learn transferable (domain-

agnostic) prompts to effectively leverage both pre-trained
knowledge and source-knowledge for the target domain us-

ing CLIP. However, directly learning such textual prompts

in UDA can be sub-optimal, as visual embeddings from dif-

ferent domains typically encompass distinct, domain-biased

information that conforms to different distributions within

the CLIP space. This is a key motivation behind domain-

specific prompting in previous methods [8, 38]. Inspired

by the recent success of visual prompting [14], we pro-

pose also adapting the visual embeddings to elicit domain-

invariant representations by prompting the vision backbone,

based on the domain-agnostic textual prompt. Meanwhile,

domain-invariant visual embeddings can still retain individ-

ual characteristics, e.g., object color and size. Such varia-

tions, even within the same category, necessitate instance-

conditioned textual prompts for better alignment, as shown

in Fig. 1. Given the interdependent nature of the two kinds

of prompts, we build a mutual learning framework based on

a cross-attention mechanism inspired by the Transformer

decoder [47]. A semantic-consistency regularization and

an instance-discrimination contrastive loss are further im-

posed to ensure that the learned prompts carry pure domain-

agnostic and instance-conditioned information.

In summary, the key contributions of this work are three-

fold: 1) We propose a novel framework termed DAMP to

learn domain-agnostic prompts for transferring pre-trained

knowledge and source knowledge to the target domain us-

ing CLIP. 2) DAMP mutually aligns textual and visual em-

beddings by prompting both modalities to learn domain-

invariant representations, which are optimized with two

elaborate regularizations. 3) Extensive experiments on three

UDA benchmarks validate that DAMP brings consistent

and notable gains over state-of-the-art approaches.

2. Related Works
Unsupervised Domain Adaptation. To enable effective

knowledge transfer, modern UDA methods typically fall

into two technical routes. The first line of works aim to

reduce the domain shift by aligning the feature distribu-

tions across domains. Common techniques include mini-

mizing statistical distribution distances via moment match-

ing [26, 33, 40] and learning domain-invariant features via

adversarial alignment [7, 36, 37, 57]. More recent meth-

ods focus on disentangling domain-invariant and domain-

specific factors for casual invariance [30, 55] or self-training

with elaborate pseudo labels [24, 29, 49]. The second line

of works resort to more large-scale networks, e.g., Vision

Transformer (ViT) [4], for more transferable features. For

instance, CDTrans [51] leverages the cross-attention mech-

anism in Transformer for cross-domain feature alignment.

TVT [52] introduces the evaluated transferabilities into the

Multi-head Self-Attention module to construct a transfer-

able ViT. SSRT [41] proposes to perturb the target features

to refine the ViT and designs a safe training mechanism.

Despite remarkable progresses, most existing UDA

methods only operate in the vision modality, discarding the

rich semantics behind features and categories, hindering ef-

fective adaptation for complex and large domain gaps.

Vision-Language Models and Prompt Learning. Re-

cent large-scale pre-trained VLMs have shown impressive

performance on various vision-and-language tasks [53, 54].

VLMs like CLIP [34] and ALIGN [13] learn joint rep-

resentations of images and texts by pre-training on large

amounts of image-text pairs. A key capability of VLMs

is the zero-shot prediction, where the pre-trained model can

be applied to downstream tasks by simply conditioning on

a textual prompt like “a photo of a [CLS]”. This avoids

costly fine-tuning and preserves the original knowledge in

VLMs. However, manually designing effective prompts

can be challenging. Prompt learning has thus become a

popular VLMs adaptation technique. CoOp [61] first uses

learnable context tokens to prompt the language encoder of

CLIP for visual classification. Later, CoCoOp [60] learns

instance-conditioned prompts with a two-layer network for

more generalizable textual prompts. MaPLe [17] introduces

multi-modal prompts to fine-tune both modalities. Neverth-
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less, these works do not consider the domain shift problem.

To leverage VLMs and prompt learning for UDA,

DAPrompt [8] introduces a set of domain-specific textual

tokens to encode domain semantics and perform classifi-

cation with target-specific prompts. AD-CLIP [38] learns

both domain- and image-specific tokens with feature statis-

tics in the vision backbone. However, learning prompts

for different domains separately may limit cross-domain

knowledge transfer. Besides, prompting in a single modal-

ity cannot fully adapt the multi-modal knowledge in VLMs.

3. Proposed Method
Let Ds = {xs

i , y
s
i }Ns

i=1 be the source domain with Ns

labeled samples, where xi
s ∼ Ps(X) is the input and

yis ∈ Y is the label. Meanwhile, we have a target domain

Dt = {xt
i}Nt

i=1 with Nt unlabeled samples and xt ∼ Pt(X).
These two domains are assumed to have different distribu-

tions in the data space X , but share the same label (seman-

tic) set Y . The goal of UDA is to learn a model f : X → Y
with Ds and Dt that can perform well on the target domain.

3.1. Domain-Agnostic Prompting with CLIP

Traditional UDA methods typically implement f as a uni-

modal neural network and associate each category with a

numerical label, which overlook the rich semantics that

could inform classification. In this work, we leverage CLIP

[34] to enable semantic-driven classification.

CLIP learns aligned visual and textual representations by

pre-training an image encoder fv and a text encoder fs on

a large dataset of image-text pairs. Specifically, fv can be

a ResNet [9] or ViT [4] backbone that extracts a visual em-

bedding from an image. On the other hand, fs uses a Trans-

former [47] to encode the paired textual description into a

compact embedding. The two encoders are trained jointly

with a contrastive loss. The aligned joint space then al-

lows zero-shot classification for arbitrary input x 2 by com-

paring the visual embedding fv(x) to textual embeddings

{fs(tk)}Kk=1 correspond to K classes in the joint space:

P (y = k | x) = exp (cos (fv(x), fs (tk)) /τ)∑K
k=1 exp (cos (fv(x), ft (tk)) /τ)

,

(1)

where τ = 0.01 is the temperature coefficient learned by

CLIP, cos(·, ·) denotes the cosine similarity, and tk is the

textual prompt of the k-th class, e.g., “a photo of a [CLS]”.

However, manually designed prompts can be naive and

sub-optimal. A more effective way is to make {tk}Kk=1

learnable as in CoOp [61]. In UDA, covariate shift [31]

is a widely adopted assumption, which indicates that the

marginal distributions differ (i.e., Ps(X) �= Pt(X)) but the

conditional distribution P (Y |X) remains unchanged be-

tween domains. This motivates using a shared set of textual

2We use bold font x to denote either a source or a target sample.

prompts to model the invariant P (Y |X). In this work, we

use a domain- and class-shared input prompt template:

tk := [p1][p2] . . . [pN ][CLSk], (2)

where p1:N ∈ R
N×D are learnable contexts with length N

and dimension D, and [CLSk] is the k-th class name.

3.2. Mutual Prompt Learning with Cross-Attention

Directly learning domain-agnostic prompts as in Eq. (2)

can be challenging in UDA. First, fv is pre-trained with-

out domain adaptation objectives, yielding domain-biased

visual embeddings that conform to different distributions

across domains [8]. Second, the instance diversity leads

to large intra-class variation, making it difficult to align all

samples to a class-level textual prompt. To address these

issues, we propose to impose visual prompts on fv to elicit

more domain-agnostic visual representations. Meanwhile,

we also adjust the textual prompt on fs according to each

image contextual information for better image-text paired

alignment, like in the original CLIP pre-training.

Language-Guided Visual Prompting. As {tk}Ki=1 en-

code domain-agnostic class semantics, we can exploit these

semantics to guide the generation of visual prompts that

elicit domain-invariant visual characteristics. To achieve

this, we use the cross-attention [47] mechanism to pass in-

formation between the two branches, which has shown great

success in modeling multimodal interactions [11, 44].

Given a textual prompt tk, the class name [CLSk] is first

tokenized and embedded into rk ∈ R
Lk×D, where Lk is the

name length. The text encoder fs then extract embeddings

via J Transformer encoder layers {Encj}Jj=1:

T k
j = Encj([p1:N , rk]) j = 1.

T k
j = Encj(Tj−1) j = 2, 3, . . . , J.

(3)

Here [·, ·] stands for concatenation, T k
j ∈ R

(N+Lk)×D is the

extracted embeddings in layer j. CLIP only uses the embed-

ding at the last position of layer J as the textual embedding,

denoted as sk. However, we argue that embeddings at other

positions also encode rich contextual information due to

shared parameters among them. Therefore, we use the first

N embeddings of T k
J , denoted as s̃ = T k

J [1 : N ] ∈ R
N×D,

to guide the generation of visual prompts, which generally

encode domain- and class-agnostic semantics.

For visual prompting, there are two widely used forms

in the community, i.e., the pixel-level prompts [1, 6] and

token-level prompts [14, 56]. These two kinds of pre-model
prompting poses challenges to prompt different vision back-

bones in a unified manner. In this work, we adopt the post-
model prompting [35] strategy to prompt fv in the embed-

ding space. Specifically, we first obtain the visual embed-

ding v = fv(x) ∈ R
D for an input x, and aggregate in-

formation from text contexts s̃ via a cross-attention-based
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Figure 2. Overview of the proposed DAMP framework. Parameters of fs and fv are frozen and only p1:N and G are tunable during training.
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only depict the prompting process for source weakly augmentated samples. All other samples follow the same process. Ls
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module G with L Transformer decoder layers {Decl}Ll=1:

[W v
0 ,W

s̃] = InProj([v, s̃]),

W v
l = Decl(W

v
l−1,W

s̃) l = 1, 2, . . . , L,

v∗ = OutProj(W v
L).

(4)

Here InProj and OutProj are two projection operations,

and each token is projected independently. We then obtain

the final embedding v′ via a residual connection: v′ = v +
γvv

∗, where γv controls the weight. This produces visual

embeddings v′ guided by the domain-agnostic texts.

Vision-Guided Language Prompting. To accommo-

date various visual backbones, CLIP uses a modified ver-

sion of ResNet to implement fv by replacing the last

Global Average Pooling (GAP) layer with an attention

pooling layer. Specifically, it first transforms an image

x ∈ R
H×W×3 into a feature map z ∈ R

Ĥ×Ŵ×C , where

H(Ĥ),W (Ŵ ) and C are the height, width and the channel

number. The original ResNet uses z = GAP(z) ∈ R
C as

the final visual embedding. In CLIP, z and z are further

handled by a Multi-Head Self-Attention (MHSA) layer:

v, ṽ = MHSA([z, z]), (5)

where v ∈ R
1×D and ṽ ∈ R

ĤŴ×D are the embeddings

at the class token and other spatial positions, respectively,

which are consistent with the ones in ViT. Generally, CLIP

only uses v as the visual embedding and discards ṽ. How-

ever, ṽ can also preserve useful semantical and spatial infor-

mation that can be used as contextual information [35]. In

this work, we leverage ṽ to adjust the textual embeddings

{sk}Kk=1 via the same post-model prompting strategy and

G. Specifically, for the k-th class,

[W s
0 ,W

ṽ] = InProj([sk, ṽ]),

W s
l = Decl(W

s
l−1,W

ṽ) l = 1, 2, . . . , L,

s∗k = OutProj(W s
L).

(6)

The final semantic embedding s′k is then obtained by: s′k =
sk+γss

∗
k, where γs is weight coefficient for the text modal-

ity. Note that each s′k is updated based on a specific x, mak-

ing it instance-dependent, enabling better image-text align-

ment. These two branches of prompting are guided from

each other to ensure mutual synergy. As a result, we use

P̂ (y = k | x) = exp (cos(v′, s′k)/τ)∑K
k=1 exp (cos(v

′, s′k)/τ)
(7)

in our method for classification in the CLIP space.

3.3. Auxiliary Regularizations

While the mutual prompting framework aims to gen-

erate domain-invariant visual embeddings and instance-

conditioned textual embeddings, directly optimizing with

the source classification loss cannot guarantee achieving

this goal. Hence, we design two auxiliary regularizations.

Instance-Discrimination Contrastive Loss. During the

mutual prompting, the updated textual embeddings may still

encode some domain-specific semantics from the image

context, making {s′k}Kk=1 domain-biased and less capable

for the target domain. To address this problem, we design

an instance-discrimination contrastive loss to prevent tex-

tual prompts from learning domain-related cues from visual

contexts. Our motivation is that images from the same do-

main typically share the same domain-information. There-

fore, maximizing the difference in {s′k}Kk=1 among them

help remove the domain-specific information.

Specifically, given a batch of source or target samples B,

denote {s′a,k}Kk=1 and v′
a the textual and visual embeddings

after mutual prompting for xa ∼ B, each xa forms a posi-

tive pair for v′
a and {s′a,k}Kk=1 and forms negative pairs for
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{s′a,k}Kk=1 and v′
b from another xb within the same batch:

sim(xa,xb) =
1

K

K∑
k=1

cos(s′a,k,v
′
b)/τ,

Lidc = − log
exp (sim(xa,xa))

sim(xa,xa) +
∑

b �=a sim(xa,xb)
.

(8)

This contrastive loss forces {s′k}Kk=1 to not encode domain-

specific cues while retaining pure instance-specific infor-

mation. Imagine that if {s′k}Kk=1 contained domain-related

information, they would be more similar for different im-

ages from the same domain, thus the domain-specific infor-

mation can be further removed by optimizing Lidc. Mean-

while, this contrastive loss can be optimized in an unsuper-

vised way, thus providing regularizations for both domains.

Semantic-Consistency Regularization. In addition

to removing domain-specific information in {s′k}Kk=1, we

also want to ensure the prompted visual embedding v′

is domain-invariant. Inspired by FixMatch [39], we aim

to exploit domain-agnostic visual characteristics with a

semantic-consistency regularization. Concretely, we lever-

age RandAugment [3] to obtain a strongly-augmentated

version of x, denoted as A(x), and enforce it to be cor-

rectly classified. For labeled source samples {xs
i , y

s
i }Ns

i=1,

we can directly optimize with ground-truth labels via:

Ls
sc = −

Ns∑
i=1

log P̂ (y = ysi | A(xs
i )). (9)

Meanwhile, we also obtain pseudo-labels {ŷti}Nt
i=1 for target

data {xt
i}Nt

i=1 and only involves confident ones for training:

Lt
sc = −

Nt∑
i=1

I{P̂ (y = ŷti | S(xt
i)) ≥ T} log P̂ (y = ŷti | A(xt

i)),

(10)

where T is the threshold for filtering confident samples.

However, the unconfident target sampels are still not

well-exploited. To make the updated target domain embed-

dings fit the learned semantic structure, we leverage the in-

formation maximization [12, 22] technique to regularize the

unlabeled target data via an entropy-based loss:

Lim =
1

Nt

Nt∑
i=1

K∑
k=1

pcti log p
c
ti −

K∑
k=1

p̂kt log p̂
k
t , (11)

where pkti = P̂ (y = k | xt
i) and p̂kt = 1

Nt

∑Nt

j=1 p
k
tj . Opti-

mizing Lim makes predictions globally diverse and locally

confident, thus avoiding category collapse and ambiguity.

3.4. Overall Training Objective

We train our DAMP with the supervised loss and above reg-

ularizations in an end-to-end manner. For the source do-

main, the supervised loss can be expressed by:

Ls
sup = −

Ns∑
i=1

log P̂ (y = ysi | W(xs
i )), (12)

where W(·) is a weak augmentation operation. Besides, we

also supervise target samples with confident pseudo-labels:

Lt
sup = −

Nt∑
i=1

I{P̂ (y = ŷti | W(xt
i)) ≥ T} log P̂ (y = ŷti | W(xt

i)).

(13)

The final training objective Lall is formulated by

Lall = Lsup + Lsc + λcLidc + λiLim, (14)

where λc and λi are trade-off weights, Lsc = Ls
sc + Lt

sc

and Lsup = Ls
sup + Lt

sup. We give equal weights to Lsup

and Lsc for treating different augmentations equally. An

overview of our method can be found in Fig. 2.

4. Experiments
In this section, we mainly verify the effectiveness of our

method on UDA tasks. More evaluation on multi-source

UDA [33] and domain generalization (DG) [20] tasks and

more analytical experiments can be found in Appendix.

4.1. Experimental Setup

Datasets. We evaluate our method on three widely used

UDA datasets. Office-Home [48] consists of images from

4 different domains: Art (Ar), Clipart (Cl), Product (Pr)

and Real-World (Rw). There are 65 object categories and

around 15,500 images in total. VisDA-17 [32] contains syn-

thetic images to real images across 12 categories. The syn-

thetic source domain has 152,397 images generated from

3D models. The real target domain has 55,388 real im-

ages. Mini-DomainNet is a subset of the most challenging

dataset DomainNet [33]. We use a subset with 4 domains,

i.e., Clipart (Cl), Painting (Pn), Real (Rl) and Sketch (Sk),

across 126 categories following previous works [38, 59].

Training Configuration. We evaluate DAMP with both

ResNet-50 [9] and ViT-B/16 [4] as the visual encoder fv .

The text encoder fs is a pretrained CLIP text encoder with

depth J = 12. During training, we freeze these encoders

and tune the input textual prompts p1:N and the prompt-

ing module G. The learnable token length N is set to 32

and we use L = 2 Transformer decoder layers in the mu-

tual prompting module G. For training, we use the Adam

optimizer [18] with an initial learning rate of 3e-3 for all

datasets, and adjust it with a cosine annealing scheduler

[28]. Our model is trained for 30 epochs in total (for Mini-

DomainNet, we train 500 iterations per epoch). The batch

size is set to 32 for each domain. We set the confidence
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Table 1. Classification accuracies (%) on Office-Home dataset for UDA. The best and second best results within each backbone are

highlighted in bold and underline, respectively. † CDTrans uses DeiT-B [43] as the backbone. Methods within each backbone are grouped

into three categories, i.e., fine-tuning, zero-shot and prompt learning (from top to bottom), respectively.

Method fv Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

ResNet-50 [9] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

SRDC [42] 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3

ToAlign [50] 57.9 76.9 80.8 66.7 75.6 77.0 67.8 57.0 82.5 75.1 60.0 84.9 72.0

+ FixMatch + EIDCo [58] 63.8 80.8 82.6 71.5 80.1 80.9 72.1 61.3 84.5 78.6 65.8 87.1 75.8

PADCLIP [19] 57.5 84.0 83.8 77.8 85.5 84.7 76.3 59.2 85.4 78.1 60.2 86.7 76.6

CLIP [34] 51.6 81.9 82.6 71.9 81.9 82.6 71.9 51.6 82.6 71.9 51.6 81.9 72.0

DAPrompt [8] 54.1 84.3 84.8 74.4 83.7 85.0 74.5 54.6 84.8 75.2 54.7 83.8 74.5

AD-CLIP [38]

R
es

N
et

-5
0

55.4 85.2 85.6 76.1 85.8 86.2 76.7 56.1 85.4 76.8 56.1 85.5 75.9

DAMP (Ours) 59.7 88.5 86.8 76.6 88.9 87.0 76.3 59.6 87.1 77.0 61.0 89.9 78.2

ViT-B [4] 54.7 83.0 87.2 77.3 83.4 85.5 74.4 50.9 87.2 79.6 53.8 88.8 75.5

CDTrans † [51] 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5

TVT-B [52] 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6

SSRT-B [41] 75.2 89.0 91.1 85.1 88.3 90.0 85.0 74.2 91.3 85.7 78.6 91.8 85.4

+ FixMatch + EIDCo [58] 76.9 90.3 91.3 86.5 90.5 90.0 86.3 75.5 91.7 88.1 77.1 92.3 86.4

PADCLIP [19] 76.4 90.6 90.8 86.7 92.3 92.0 86.0 74.5 91.5 86.9 79.1 93.1 86.7

CLIP [34] 67.8 89.0 89.8 82.9 89.0 89.8 82.9 67.8 89.8 82.9 67.8 89.0 82.4

DAPrompt [8]

V
iT

-B
/1

6

70.7 91.0 90.9 85.2 91.0 91.0 85.1 70.7 90.9 85.3 70.4 91.4 84.4

AD-CLIP [38] 70.9 92.5 92.1 85.4 92.4 92.5 86.7 74.3 93.0 86.9 72.6 93.8 86.1

DAMP (Ours) 75.7 94.2 92.0 86.3 94.2 91.9 86.2 76.3 92.4 86.1 75.6 94.0 87.1

Table 2. Per-class accuracies (%) on VisDA-17 dataset for UDA. Marks and symbols share the same meaning in Table 1.

Method fv plane bicycle bus car horse knife mcycl person plant sktbrd train truck Avg

RN-101 [9] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
CGDM [5] 93.4 82.7 73.2 68.4 92.9 94.5 88.7 82.1 93.4 82.5 86.8 49.2 82.3
CAN [16] 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
PADCLIP [19] 96.7 88.8 87.0 82.8 97.1 93.0 91.3 83.0 95.5 91.8 91.5 63.0 88.5

CLIP [34] 98.2 83.9 90.5 73.5 97.2 84.0 95.3 65.7 79.4 89.9 91.8 63.3 84.4

DAPrompt [8] 97.8 83.1 88.8 77.9 97.4 91.5 94.2 79.7 88.6 89.3 92.5 62.0 86.9
AD-CLIP [38]

R
es

N
et

-1
0

1

98.1 83.6 91.2 76.6 98.1 93.4 96.0 81.4 86.4 91.5 92.1 64.2 87.7
DAMP (Ours) 97.3 91.6 89.1 76.4 97.5 94.0 92.3 84.5 91.2 88.1 91.2 67.0 88.4

ViT-B [4] 99.1 60.7 70.6 82.7 96.5 73.1 97.1 19.7 64.5 94.7 97.2 15.4 72.6
CDTrans † [51] 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
TVT-B [52] 92.9 85.6 77.5 60.5 93.6 98.2 89.4 76.4 93.6 92.0 91.7 55.7 83.9
SSRT-B [41] 98.9 87.6 89.1 84.8 98.3 98.7 96.3 81.1 94.9 97.9 94.5 43.1 88.8
PADCLIP [19] 98.1 93.8 87.1 85.5 98.0 96.0 94.4 86.0 94.9 93.3 93.5 70.2 90.9

CLIP [34] 99.1 91.7 93.8 76.7 98.4 91.7 95.3 82.7 86.5 96.0 94.6 60.5 88.9

DAPrompt [8] 99.2 92.5 93.3 75.4 98.6 92.8 95.2 82.5 89.3 96.5 95.1 63.5 89.5
AD-CLIP [38]

V
iT

-B
/1

6

99.6 92.8 94.0 78.6 98.8 95.4 96.8 83.9 91.5 95.8 95.5 65.7 90.7
DAMP (Ours) 98.7 92.8 91.7 80.1 98.9 96.9 94.9 83.2 93.9 94.9 94.8 70.2 90.9

threshold T = 0.6 for Office-Home and 0.5 for VisDA-

17 and Mini-DomainNet. For hyperparameters, we use

λc = λi = 1.0. Due to the modality gap in CLIP [15, 23],

the visual and textual embeddings need different updating

magnitudes, making manually searching γv and γs chal-

lenging. Therefore, we make them learnable parameters.

More implementation details about network architectures

and pseudo-labels can be found in Appendix.

4.2. Comparasion with State-of-the-Arts

We report the results on Office-Home in Table 1. Our

DAMP outperforms all competitors on most tasks, espe-

cially the challenging ones like Ar→Cl and Cl→Ar. Be-

sides, DAMP brings substantial gains over strong base-

lines, improving the average accuracy over PADCLIP by

1.6% with ResNet-50 and 0.4% with ViT-B. Compared

to prompt-based methods like DAPrompt and AD-CLIP,

DAMP also shows superiority by mutually aligning both

modalities. For example, it surpasses DAPrompt by 3.7%

with ResNet-50 and 3.1% with ViT-B. The improvements

are more significant with ResNet-50. This indicates DAMP

can better exploit ViT’s intrinsic transferability while effec-

tively prompting ResNet for inspiring improvements.

For VisDA-17 (Table 2), DAMP demonstrates compet-

itive performance compared to other methods. It achieves

88.4% average accuracy with ResNet-101. Although it is

slightly worse than the best competitor PADCLIP (88.5%),

we show in Sec. 4.3 that our method involves much less

learnable parameters. When using ViT-B, DAMP obtains

the highest average accuracy (90.9%), comparable to PAD-

CLIP. The results validate the consistently strong perfor-

mance of DAMP across different vision backbones.

As shown in Table 3, DAMP sets new state-of-the-art

on Mini-DomainNet. It brings significant improvements
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Table 3. Classification accuracies (%) on Mini-DomainNet dataset for UDA. Marks and symbols share the same meaning in Table 1.

Method fv Cl→Pn Cl→Rl Cl→Sk Pn→Cl Pn→Rl Pn→Sk Rl→Cl Rl→Pn Rl→Sk Sk→Cl Sk→Pn Sk→Rl Avg

ResNet-50 [9] 52.1 63.0 49.4 55.9 73.0 51.1 56.8 61.0 50.0 54.0 48.9 60.3 56.3

CLIP [34] 67.9 84.8 62.9 69.1 84.8 62.9 69.2 67.9 62.9 69.1 67.9 84.8 71.2

DAPrompt [8] 72.4 87.6 65.9 72.7 87.6 65.6 73.2 72.4 66.2 73.8 72.9 87.8 74.8
AD-CLIP [38] R

es
N

et
-5

0
71.7 88.1 66.0 73.2 86.9 65.2 73.6 73.0 68.4 72.3 74.2 89.3 75.2

DAMP (Ours) 76.7 88.5 71.7 74.2 88.7 70.8 74.4 75.7 70.5 74.9 76.1 88.2 77.5

ViT-B [4] 63.3 79.0 56.4 62.6 83.3 55.4 62.0 70.3 53.5 63.0 63.6 75.8 65.7

CLIP [34] 80.3 90.5 77.8 82.7 90.5 77.8 82.7 80.3 77.8 82.7 80.3 90.5 82.8

DAPrompt [8] 83.3 92.4 81.1 86.4 92.1 81.0 86.7 83.3 80.8 86.8 83.5 91.9 85.8
AD-CLIP [38] V

iT
-B

/1
6

84.3 93.7 82.4 87.5 93.5 82.4 87.3 84.5 81.6 87.9 84.8 93.0 86.9

DAMP (Ours) 86.4 93.3 83.5 87.2 93.4 84.1 87.2 86.5 82.5 87.3 86.6 93.4 87.6

(a) Visual embeddings (b) Textual embeddings

Figure 3. Visualization of (a) visual embeddings and (b) textual

embeddings using t-SNE [46] on task Ar → Pr (Office-Home).

Light and dark colors represent embeddings before and after our

mutual prompting, respectively. Red and blue points are source

and target samples, respectively. Orange stars denote the class-

level domain-agnostic textual embeddings {sk}Kk=1.

over baseline methods like standard CLIP and other prompt

learning methods like DAPrompt and AD-CLIP. For exam-

ple, with ResNet-50, DAMP improves over CLIP by 6.3%,

DAPrompt by 2.7%, and AD-CLIP by 2.3%. Similar gains

are observed when using ViT backbone. In addition, it

achieves especially large gains on challenging tasks like

Cl→Pn, Cl→Sk and Sk→Pn. The consistent and substan-

tial improvements of DAMP over strong baselines highlight

the benefits of mutually aligning textual and visual prompts

in a domain-agnostic and instance-conditioned manner.

4.3. Analytical Experiments

Visualization of Embeddings. Fig. 3 visualizes the visual

and textual embeddings learned by DAMP. In Fig. 3a, we

see that before visual prompting, the source and target do-

mains form distinct distributions, indicating a large domain

gap. After prompting, the visual features become better

aligned across domains and form more clear clusters, sug-

gesting a reduced domain gap and a discriminative semantic

structure. Fig. 3b shows that instance-conditioned textual

prompting increases within-class semantic diversity. This

enables better pairing of text and images in both domains.

Through mutual alignment of visual and textual embed-

dings, the two prompts make representations more domain-

invariant to facilitate cross-domain knowledge transfer.

Model Capacity Analysis. Fig. 4 compares different

UDA methods regarding the number of tunable parame-

Figure 4. Comparasion between different UDA methods regard-

ing tunable parameters and accuracies on VisDA-17 (ResNet-101).

DAMP only use 11.9% parameters compared with PADCLIP.

Table 4. Comparasion between different prompting strategies on

Office-Home (ViT-B/16). MP denotes mutual prompting.

Prompting Strategy Office-Home

w/o MP (CoOp) 85.0
Independent prompting 85.4
MP w/ simple synergy 85.9
MP w/ cross-attention 86.1

ters versus accuracy. Traditional methods like DANN and

CDAN fine-tune the full model, requiring extensive param-

eters yet achieving relatively low accuracy. PADCLIP [19]

fine-tunes the CLIP visual backbone, introducing many pa-

rameters. In contrast, our DAMP only tunes the textual

prompts p1:N and the prompting module G, which just adds

a few parameters over DAPrompt yet achieves comparable

accuracy (88.4%) to PADCLIP.

Analysis of the Mutual Prompting Strategy. To ex-

plore the effectiveness of the cross-attention-based mutual

prompting, we compare it to other prompting strategies

in Table 4. For fair comparison, all regularizations are

removed and only Lsup is optimized. Specifically, we

evaluate an independent prompting strategy by replacing

the cross-attention with self-attention in G, which results

in separate prompting modules for each modality with-

out any interaction. It shows that without mutual synergy,

the improvement is limited over the baseline CoOp. We

also examine a simple synergy strategy inspired by MaPLe

[17], where we use a linear projection layer to obtain the

prompted textual embedding s∗k from the image context
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(a) N (ResNet-101) (b) γv and γt (ResNet-50) (c) T (ResNet-50) (d) λc and λi (ResNet-50)

Figure 5. Hyperparameter analysis. (a) Performance under different learnable token length N on VisDA-17 dataset. (b) Values of learnable

hyperparameters γv and γt during training on task Cl → Sk (Mini-DomainNet). (c) The influence of different choices of T on Office-Home

dataset. (d) parameter sensitivities of λc and λi on task Cl → Ar (Office-Home).

Table 5. Ablation study on Office-Home (ResNet-50) and VisDA-

17 (ResNet-101). ITP and VP refer to instance-level textual

prompting and visual prompting, respectively.

Method
Prompting Loss Mean Accuracy

ITP VP Lsc Lidc Lim Office-Home VisDA-17

Baseline (CoOp) � � � � � 75.3 86.1

Uni-modal Prompting
� � � � � 75.7 86.5

� � � � � 75.8 87.1

Mutual Prompting

� � � � � 76.1 87.2

� � � � � 76.9 87.8

� � � � � 77.3 88.0

� � � � � 78.2 88.4

embedding ṽ (and vice versa for the visual embedding).

However, this uni-directional projection does not fully cap-

ture the complex interaction between the modalities in the

prompting process. In contrast, our cross-attention module

allows bi-directional interaction, which enables more effec-

tive fusion of information from both modalities, resulting in

better domain-agnostic and instance-specific prompts.

Hyperparameter Analysis. As shown in Fig. 5a, the

performance on VisDA-17 improves as N increases from

4 to 32, and then remains relatively stable with larger N .

This indicates that a moderate length is enough for encod-

ing rich semantic information. However, further increasing

N does not bring substantial gains. Fig. 5b plots the values

of the learnable weight coefficients γv and γs during train-

ing. We can see that γv converges to a relatively small value

around 0.1, while γs converges to a larger value around 0.5.

This aligns with the intuition that a smaller perturbation is

needed on the visual embeddings compared to the textual

embeddings, due to the inherent modality gap between vi-

sion and language in CLIP. The learnable nature of γv and

γs provides the flexibility to adapt the updating magnitudes

for both modalities. Fig. 5c shows that the performance is

relatively stable across different choices of T from 0.5 to

1.0. Setting T too small (0.1) deteriorates the performance.

This indicates that the confidence threshold is not too sen-

sitive, while using very unconfident pseudo-labels can hurt

the performance. A moderate threshold between 0.5 and 1.0

works reliably. Fig. 5d studies λc and λi on task Cl→Ar,

which shows DAMP is relatively robust to different choices

of λc, and a little sensitive to the variation of λc. Overally,

trivially setting both of them to 1.0 offers a good trade-off.

Ablation Study. We conduct an ablation study on

Office-Home and VisDA-17 datasets in Table 5. We first

evaluate a baseline model that directly optimizes the su-

pervised loss Lsup on source and confident target samples

to fine-tune p1:N without further prompting (analogous to

CoOp), which gives the lowest performance. Adding either

instance-level textual prompting (ITP) or visual prompting

(VP) brings gains over the baseline, showing the benefits of

adapting either modality with prompting. Further prompt-

ing both modalities together with the mutual prompting

framework leads to additional performance boosts, which

mainly benefits from the flexibility to adapt both language

and vision branches to the target domain. Finally, regular-

izations Lsc, Lidc and Lim all contribute to the superior

performance in a collaborative manner. The step-wise im-

provements support the rationality of our design.

5. Conclusion

We propose DAMP, a novel framework to address UDA us-

ing VLMs. DAMP mutually aligns the visual and textual

modalities via prompting to elicit domain-agnostic embed-

dings. The prompts are optimized together through cross-

attention and regularized with elaborate losses. Extensive

experiments validate that DAMP brings substantial and con-

sistent improvements over strong baselines on three bench-

marks. DAMP provides an effective approach to harness

both source and pre-trained VLMs knowledge for UDA.
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