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Abstract

Generative 3D part assembly involves understanding part
relationships and predicting their 6-DoF poses for assem-
bling a realistic 3D shape. Prior work often focus on the
geometry of individual parts, neglecting part-whole hier-
archies of objects. Leveraging two key observations: 1)
super-part poses provide strong hints about part poses, and
2) predicting super-part poses is easier due to fewer super-
parts, we propose a part-whole-hierarchy message passing
network for efficient 3D part assembly. We first introduce
super-parts by grouping geometrically similar parts without
any semantic labels. Then we employ a part-whole hierar-
chical encoder, wherein a super-part encoder predicts latent
super-part poses based on input parts. Subsequently, we
transform the point cloud using the latent poses, feeding it
to the part encoder for aggregating super-part information
and reasoning about part relationships to predict all part
poses. In training, only ground-truth part poses are required.
During inference, the predicted latent poses of super-parts
enhance interpretability. Experimental results on the PartNet
dataset show that our method achieves state-of-the-art per-
formance in part and connectivity accuracy and enables an
interpretable hierarchical part assembly. Code is available
at https://github.com/pkudba/3DHPA.

1. Introduction

Generative 3D Part Assembly [7, 15, 16, 25, 32] is an emerg-
ing research area that aims to generate complex 3D shapes
via assembling simple 3D parts without relying on prior
semantic knowledge. Different from traditional 3D shape
generation, it focuses on generating diverse, plausible con-
figurations of given parts. It facilitates the generation of
complex objects and scenes with compositionality, flexibil-
ity, and efficiency. With the rapid evolution of 3D printing
technology and the increasing demand for diverse 3D shapes,
generative 3D part assembly finds applications in various sce-
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narios, attracting attention from experts in computer vision,
graphics, robotics, and machine learning.

However, achieving generative 3D part assembly presents
a significant challenge due to the vast number of potential
part arrangements and orientations, coupled with the intricate
dependencies among the parts. Adding to the complexity,
part geometry exhibits notable variation even within the same
object category, making it exceedingly difficult to generalize
learned assembly patterns across different objects.

Previous approaches primarily focus on designing archi-
tectures capable of learning powerful representations for
individual 3D parts. The hope is that these learned repre-
sentations could facilitate accurate part assembly, either in a
one-shot manner or sequentially [14, 21, 33, 34]. However,
these methods often ignore the inherent part-whole hierar-
chies in 3D shapes in representation learning. For instance,
as illustrated in Figure 1, a chair consists of super-parts
such as seats, backs, and legs, with each super-part further
divisible into parts like seat surfaces and seat frames. Under-
standing the pose of a super-part provides insights into the
poses of constituent parts within the same super-part, as they
often share similar orientations or exhibit symmetry (e.g.,
left-right symmetry in chair legs and arms). Moreover, pre-
dicting super-part poses is typically easier due to the fewer
number of super-parts compared to parts. Incorporating
these hierarchies into the modeling would make the learning
process and potentially improve the overall performance.

In this paper, we introduce a part-whole-hierarchy mes-
sage passing network for 3D shape assembly, predicting
6 degrees of freedom (6-DoF) poses for super-parts and
parts in a hierarchical manner. We establish the correspon-
dence between parts and super-parts (i.e., subsets of parts)
by grouping parts based on their geometric similarities, fol-
lowing the approach from [33, 34]. Importantly, we treat
super-part poses as latent variables to be learned, thereby
eliminating the requirement of ground-truth super-part poses
in our work. Our model comprises two sequential modules:
the super-part encoder and the part encoder.

The first super-part encoder takes the 3D point clouds of
all parts as input and employs the attention-based message
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Figure 1. Left: an illustration of the part-whole-hierarchy for 3D shapes; Right: the part assembly process via the proposed part-whole-
hierarchy message passing network.

passing to predict super-parts poses. The representation of
each super-part is aggregated from representations of parts
within it. These super-part poses provide initial estimation
for the poses of individual parts.

Subsequently, the whole point clouds are transformed
based on the predicted super-part poses and fed to the part
encoder. This module, using a cross-attention mechanism,
extracts features from the transformed point cloud, transfer-
ring super-part level information to the part level. It then
leverages the attention-based message passing again to cap-
ture relationships among individual parts.

Following previous works [14, 21, 33, 34], we train and
evaluate our model on the PartNet dataset [18]. Overall,
our model achieves the state-of-the-art performances, out-
performing the strongest competitor [34] by a significant
margin, i.e., with an almost 2% improvement in mean part
accuracy and a 3% improvement in mean connectivity ac-
curacy. Moreover, through visual analysis of the assembly
process for both super-parts and parts, we not only show-
case accurate generation of part poses but also demonstrate
interpretability via the predicted super-part poses. This inter-
pretability feature further improves the utility of our model.

2. Related Work

Assembly3D modeling Numerous prior studies have ap-
proached the challenging 3D part assembly through the joint
estimation of part poses. The influential work by [7] intro-
duces an intelligent scissoring technique to tackle this prob-
lem for part components. Subsequent research by [2, 10, 12]
employs graphical models to capture the semantic and geo-
metric relationships among shape components, enabling ex-
ploration in assembly-based shape modeling. PAGENet [14]
presents a network that is aware of individual parts and gen-
erates semantic parts along with their poses. [31] proposes
to decompose shapes using a library of 3D parts provided by
the user. However, these studies either assumed prior knowl-

edge of part semantics or relied on existing shape databases.
In a more practical setting, the authors in [3, 21, 33, 34]
focus on the pose estimation of individual parts without re-
lying on shape databases or known semantic information.
Specifically, DGL [33] employs a dynamic part graph to
iteratively refine the poses of individual parts. A progressive
strategy using the recurrent graph learning framework has
been investigated in [21]. Additionally, the authors in [3, 34]
utilizes the Transformer [28] to model the structural relation-
ships and performs the simultaneous assembly of all parts.
We follow this line of work and propose novel improvement
to generate structurally-coherent part assemblies.

Structural Shape Generation In recent years, deep gen-
erative models, such as generative adversarial networks
(GANs) [9] and variational autoencoders (VAEs) [5], have
garnered significant attention for shape generation tasks. No-
tably, the work by [8] introduces a two-level variational
autoencoder that simultaneously learns the overall shape
structure and detailed part geometries. Both GRASS [13]
and StructureNet [17] employ techniques to compress the
shape structure into a latent space while considering the rela-
tionships between different parts. Additionally, [19] uses a
part-tree decomposition to conditionally generate 3D shapes,
and [11] adopts a procedural programmatic representation to
establish connections between part cuboids. Inspired by the
Seq2Seq networks in machine translation, [29] introduces a
sequential encoding and decoding approach for the regres-
sion of shape parameters. While many of these approaches
focus on directly generating new part shapes given random
latent codes, our main focus revolves around the rigid trans-
formation of existing parts to facilitate their assembly.

3. Part-Whole-Hierarchy Message Passing
This section provides a detailed explanation of our proposed
part-whole-hierarchy message passing network. We begin by
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Figure 2. The overall architecture of our model consists of two modules: super-part encoder and part encoder. We first obtain super-parts
via grouping parts based on their geometric similarities in an unsupervised fashion. The super-part encoder takes point cloud as input and
predicts latent super-part poses (no ground truth is needed). The point cloud is then transformed based on super-part poses and fed to the
part encoder. We incorporate both cross-level and within-level attention in the part encoder to predict part poses.

presenting how we construct super-parts in an unsupervised
manner. Then we introduce our super-part encoder that
predicts the latent poses of super-parts. Subsequently, we
describe how our part encoder leverages the latent poses and
the part-whole hierarchy to predict part poses. The overall
model is illustrated in Figure 2. Finally, we introduce the
loss functions and the training process for diverse generation.

3.1. Super-Part Construction

We denote the input point clouds as P = {Pi|i = 1 . . . N},
where Pi ∈ Rd×3 corresponds to the point cloud of the i-th
given part of the 3D shape. The values of N and d represent
the number of parts and the number of points per part respec-
tively. Note that their values may differ from object to object.
For notation convenience, we assume objects are padded to
the maximum number of parts, and each part is padded to the
maximum number of points per part. The goal of our task
is to predict a set of 6-DoF part poses {(ti, ri)}Ni=1, where
ti ∈ R3 and ri ∈ R4 represent the translation and rigid rota-
tion for each part, respectively. The complete part assembly
for a 3D shape is S = ∪N

i=1Ti (Pi), and Ti represents a
transformation in SE(3) that consists of a 3D rotation in the
rotation group SO(3) and a 3D translation in the translation
group, induced by (ti, ri).

A super-part is a subset of parts that is ideally semanti-
cally meaningful. However, since we do not have ground-
truth super-parts, we need to construct them in an unsu-
pervised manner. In particular, we compute axis-aligned

bounding boxes for each part and evaluate the similarity
between these 3D boxes. Parts are grouped into the same
super-part if the difference between their respective enclos-
ing boxes is below a specified threshold. Following previous
works [33, 34], we set the threshold to 0.2. Although the
super-parts obtained through this method may lack seman-
tic meaning, they provide a coarse abstraction grounded in
geometry similarities without any supervised labels. Then
we group the input point cloud parts P = {Pi}Ni=1 into a
set of M super-parts P ′ = {P′

i}
M
i=1 based on the part-whole

hierarchy of a given object. Here P′
i represents the i-th

super-part. To maintain consistent notation, we again pad
the number of parts per super-part to the maximum M . Note
that padding is used here for clarity and understanding. In
practice, our model can handle sets of parts with varying
sizes without padding.

3.2. Super-Part Relation Reasoning

To reason about the relationships among super-parts, we
utilize the super-part encoder. The computational process is
illustrated in the top half of Figure 2.

Given a set of point clouds of a super-part P′
i, we first

compute the set-level permutation-invariant representation
F′

i via a shared PointNet [22]. We use the same architecture
and hyperparameters as in previous works [33, 34] for a fair
comparison. This feature representation captures the global
characteristics of each super-part while being invariant to
the order of the parts within the set. Based on the features
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F′
i extracted for each super-part from the PointNet, we use a

two-layer multi-head attention (MHA) module to learn the
relationships between super-parts. Specifically, following
[28], we calculate an attention matrix A′, where A′

i,j repre-
sents the attention weight of the i-th super-part to the j-th
super-part. Then we multiply each super-part feature F′

j

by A′
i,j and sum them up to obtain the attention-weighted

feature G′
i. In our model, we set the embedding dimension

to 256 and the number of heads for the MHA module to 8.
For super-part pose prediction, we feed the attention-

weighted feature G′
i into a prediction head containing 4

fully-connected layers to obtain the pose {(t′i, r′i)}
M
i=1. We

apply tanh operation to the translation vector, which re-
stricts the range of the part center offset as (−1, 1). Ad-
ditionally, for simplicity, we predict the quaternion vector
r′i = (r′i0, r

′
i1, r

′
i2, r

′
i3) instead of the rotation matrix. We

then use the Rodrigues formula [23] to obtain the rotation
matrix R′

i corresponding to r′i one by one as follows:

R′
i =

1− 2r′i2
2 − 2r′i3

2
, 2r′i1r

′
i2 − 2r′i0r

′
i3, 2r

′
i1r

′
i3 + 2r′i0r

′
i2

2r′i1r
′
i2 + 2r′i0r

′
i3, 1− 2r′i1

2 − 2r′i3
2
, 2r′i2r

′
i3 − 2r′i0r

′
i1

2r′i1r
′
i3 − 2r′i0r

′
i2, 2r

′
i2r

′
i3 + 2r′i0r

′
i1, 1− 2r′i1

2 − 2r′i2
2
.


The transformed point cloud of the super-part is expressed as
Ti (P

′
i) = R′

iP
′
i + t′i. To ensure that it is a unit quaternion,

we normalize the rigid rotation vector such that ∥r′i∥ = 1.
Since we do not have ground-truth super-part poses, the

supervision for this module solely comes from the back-
propagation signal from the subsequent module. As a result,
the super-part poses are considered as latent variables.

3.3. Part Relation Reasoning

As previously mentioned, the poses of super-parts offer valu-
able clues about the poses of their corresponding parts. To
leverage this information, we design a part encoder to incor-
porate the latent super-part poses to predict the part poses.

Transformation via Latent Super-Part Poses Firstly,
we apply the latent super-part poses to transform all point
cloud parts, resulting in transformed parts denoted as P̂ =
{P̂i}Ni=1. These transformed parts are then fed into the part
encoder for further processing. Similarly to the super-part
encoder, we employ another PointNet to extract part-level
feature denoted as F̂i. In order to better utilize the part-
whole hierarchy of objects, we design two ways to integrate
the super-part level information to the part level, i.e., cross-
level and within-level attention modules.

Cross-Level Attention Part representations F̂i from the
PointNet encoder does not leverage the part-whole hierarchy.
To better fuse the information from the super-parts, we pro-
pose a cross-level attention module. Specifically, we treat
the part representation F̂i as query and super-part representa-
tions F′

i as keys and values. We then employ a MHA module

to perform an attention-weighted aggregation of super-part
representations F′

i to obtain the updated part representations
Fi. By doing so, the information from part-whole hierar-
chy is explicitly integrated into part representations. Here
we specify the embedding dimension as 256 and the MHA
module is set to utilize 8 heads.

Within-Level Attention To model the part relationships,
we leverage another within-level attention module, which
is depicted in the bottom half of Figure 2. We first con-
catenate the representation from the previous module Fi

with an additional instance encoding vector that is unique
for each part following [34]. This allows us to distinguish
geometrically-equivalent parts. Then we perform message
passing among parts using another MHA module where the
attention computation is aware of the part-whole hierarchy.
Specifically, we concatenate the latent super-part poses to
the part-level feature before computing the attention scores
at each layer. Consequently, in each message passing layer,
a part receives pose hints from its parent super-part and
updates its representation. The resulting part feature is de-
noted as Gi =

∑N
j=1 Ai,jFi, where Ai,j represents the

attention weight of the i-th part to the j-th part. This de-
sign enables the part-to-part message passing to effectively
leverage the part-whole hierarchy information. We set the
number of heads for the MHA module to 8, the dimension
of the part-level feature to 256, and concatenate it with the
40-dimensional instance encoding vector.

Prediction Head Finally, we feed the attention-weighted
part-level feature Gi to a part pose prediction head, which
consists of four fully-connected layers. The channel sizes of
the first three fully-connected layers are set to 256, 256 and
1024, respectively, followed by ReLU activation functions.
We use a linear projection layer to predict the part pose
(ti, ri), encompassing a 4-dimensional rigid rotation and 3-
dimensional translation. This prediction head outputs the
part poses {(ti, ri)}Ni=1, where ti represents the translation
vector and ri represents the rigid rotation vector for each
part. We adopt the same design as in the super-part encoder
to restrict the translation vectors to the range of (−1, 1) and
normalize the rigid rotation vector ri to have a unit norm.

3.4. Training Objective for Diverse Generation

Considering the same set of input point cloud parts, geo-
metrically equivalent parts (such as legs of a chair) can be
interchanged and decorated parts may have multiple place-
ment options, resulting in multiple possible shapes. For
example, a semi-cylindrical part can be placed on top of a
chair backrest as a headrest, or placed under the backrest as a
lumbar pillow. To account for such diversified structural vari-
ations and configurations, we introduce random noise into
the system following [21, 33, 34] and employ the Min-of-N
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(MoN) loss [6] to simultaneously consider assembly accu-
racy and assembly diversity. By considering the minimum of
a set of N possible assemblies, we can encourage the model
to generate diverse and valid shape configurations while
maintaining overall accuracy in the assembly process. This
helps address the challenge of capturing multiple plausible
solutions that arise from the interchangeable and decoratable
nature of the parts.

Let F (P, δj) denote our network outputs and F∗ (P)
denote the ground-truth point clouds, then the MoN loss is:

LMoN = min
δj∼N (0,1)

L (F (P, δj) ,F∗ (P)) (1)

where δj is a random noise vector drawn from standard
Normal distribution in an IID fashion. Following [34], we
sample 5 random vectors δj during training. The loss func-
tion L consists of the following components for both local
part and global shape losses.

Firstly, we supervise the translation via an l2 loss between
our prediction ti and the ground-truth translation vector t∗i
for each part:

Lt =

N∑
i=1

∥ti − t∗i ∥22 (2)

Then we compute the Chamfer distance [6] between the
predicted and the ground-truth rigid rotation for each part:

Lr =

N∑
i=1

dc (ri (Pi) , r
∗
i (Pi)) (3)

The Chamfer distance dc (X ,Y) is a metric commonly used
in point cloud comparison, which measures the dissimilarity
between two point sets X and Y by calculating the aver-
age distance between each point in one set and its nearest
neighbor in the other set as follows:

dc (X ,Y) =
∑
x∈X

min
y∈Y

∥x− y∥22 +
∑
y∈Y

min
x∈X

∥x− y∥22 (4)

In this case, we use the Chamfer distance to assess the dis-
crepancy between the predicted rotation of each part and its
corresponding ground-truth rotation.

Similarly, the full shape S, i.e., the set of point clouds
belonging to all parts, is supervised via the Chamfer distance
from the ground-truth shape S∗:

Ls = dc (S,S∗) (5)

In summary, the overall loss function is defined as:

L = λtLt + λrLr + λsLs (6)

where λt, λr and λs represent the weights assigned to the
three loss terms. Based on the cross validation, we empiri-
cally set λt = 1, λr = 10, and λs = 1 in our experiments.
By minimizing this loss function, we aim to improve the
alignment of the predicted poses with the ground-truth poses,
thereby enhancing the overall accuracy of the assembly.

4. Experiments

In this section, we demonstrate the effectiveness of the pro-
posed model by comparing our results with state-of-the-art
methods. We also provide visual analysis of the assembly
process for super-parts and parts, which helps to illustrate
the hierarchical assembly process from parts to the whole.

4.1. Dataset

Following [4, 14, 21, 24, 27, 29, 33, 34], we use the PartNet
[18] dataset for both training and evaluation. This dataset
consists of 26,671 shapes across 24 different 3D object cate-
gories. To effectively validate and compare different meth-
ods, we select the three largest categories, i.e., chairs, tables
and lamps, following [4, 14, 21, 33, 34]. In total, we have
6,323 chairs, 8,218 tables, 2,207 lamps in the finest-grained
level, and we adopt the official train/validation/test splits
(70%/10%/20%) to conduct the experiments. For each part
point cloud, 1000 points are sampled from the original part
meshes using Farthest Point Sampling (FPS) [20]. All parts
are transformed into its canonical space using PCA.

4.2. Evaluation Metrics

We generate a variety of shapes by adding different Gaus-
sian noises to a given set of input parts, and find the closest
shape to the ground-truth using minimum matching distance
(MMD) [1]. To measure part assembly quality, we follow
[21, 33, 34] to use shape Chamfer distance (SCD), part accu-
racy (PA) and connectivity accuracy (CA). Shape Chamfer
distance is defined in Equation (4) and Equation (5). Mean-
while, to compare the diversity of assembled parts, we pro-
pose two quantitative evaluation metrics including quality-
diversity score (QDS) and the weighted quality-diversity
score (WQDS) following [4]. We also visualize the gener-
ation results to qualitatively evaluate the diversity. More
details of these metrics are provided in the appendix.

Mean Part/Connectivity Accuracy (mPA/mCA). PA and
CA depend on the Chamfer distance threshold τp and τc for
judging whether the assembly is accurate. In order to provide
a more comprehensive evaluation of the performance of the
model, we average the results under multiple thresholds
to get mean part accuracy (mPA) and mean connectivity
accuracy (mCA), formally,

mPA =
1

Tp

∑
τp∈Tp

PA (τp) , mCA =
1

Tc

∑
τc∈Tc

CA (τc) ,

where Tp and Tc are set to {0.01, 0.02, 0.03, 0.04, 0.05}.

QDS. Diversity score (DS) [19, 26] evaluates the diversity
of the results as DS = 1

N2

∑N
i,j=1(dc(P

∗
i ,P

∗
j )), where P∗

i
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SCD(10−2) ↓ PA(%) ↑ CA(%) ↑ QDS(10−5) ↑ WQDS(10−5) ↑
Methods Chair Table Lamp Chair Table Lamp Chair Table Lamp Chair Table Lamp Chair Table Lamp

B-Global [14, 24] 1.46 1.12 0.79 15.70 15.37 22.61 9.90 33.84 18.60 0.15 0.20 0.76 1.25 1.40 0.58
B-LSTM [29] 1.31 1.25 0.77 21.77 28.64 20.78 6.80 22.56 14.05 0.04 0.27 0.63 1.07 1.43 1.54

B-Complement [27] 2.41 2.98 1.50 8.78 2.32 12.67 9.19 15.57 26.56 0.09 0.06 2.81 1.28 1.75 2.08
DGL [33] 0.91 0.50 0.93 39.00 49.51 33.33 23.87 39.96 41.70 1.69 3.05 1.84 1.35 2.97 1.73
Score [4] 0.71 0.42 1.11 44.51 52.78 34.32 30.32 40.59 49.07 3.36 9.17 6.83 1.70 3.81 2.82
RGL [21] 0.87 0.48 0.72 49.06 54.16 37.56 32.26 42.15 57.34 3.55 7.63 6.82 2.12 4.07 2.96
IET [34] 0.54 0.35 1.03 62.80 61.67 38.68 48.45 56.18 62.62 4.15 9.09 6.98 2.74 4.56 3.29

Ours 0.51 0.28 0.70 64.13 64.83 38.80 49.28 58.45 64.16 5.62 9.58 7.12 3.06 4.81 3.90

Table 1. Comparison between our approach and other methods under the Chamfer distance threshold 0.01.

mPA ↑ mCA ↑
Methods Chair Table Lamp Chair Table Lamp

DGL [33] 45.84 57.86 48.32 29.17 43.88 51.75
IET [34] 74.92 73.20 52.80 62.37 68.49 75.94

Ours 76.79 76.19 53.31 65.32 70.26 78.15

Table 2. Comparison between our approach and other methods
under multiple Chamfer distance thresholds from 0.01 to 0.05.

and P∗
j represent any two assembled shapes. Based on DS,

we propose the quality-diversity score (QDS) as below,

QDS =
1

N2

N∑
i,j=1

dc(P
∗
i ,P

∗
j )1(CA(P∗

i > τq))1(CA(P∗
j > τq)).

QDS imposes constraints to remove pairs that are of low
assembly quality, thus assessing not only diversity but also
the quality of generated shapes. Following [4], we adopt
SCD as the distance metric. The value of τq is set to 0.5 in
both QDS and WQDS.

WQDS. Based on QDS, we further propose the weighted
quality-diversity score (WQDS) as below,

WQDS =
1

N2

N∑
i,j=1

dc(P
∗
i ,P

∗
j )CA(Pi)CA(Pj)

1(CA(P∗
i > τq))1(CA(P∗

j > τq)).

WQDS weights the QDS of a pair by their connectivity
accuracy, thus favoring assembled shapes that demonstrate a
high-quality connection between each pair of parts.

4.3. Comparisons with State-of-the-Art

We compare our method with the state-of-the-art methods
on PartNet [18] dataset. Following previous works, we first
present the quantitative results under a certain Chamfer dis-
tance threshold of 0.01 in Table 1. As we can see, our method
consistently outperforms all competitors. We also show the
visualization of assembly results in Figure 3. It is clear that
our method is better than others in terms of both the coher-
ence of the assembled structure and the connectivity between

parts, e.g., the positioning of crossbeams between chair legs,
and the connection between table legs and the tabletop.

To eliminate the sensitivity of performances with respect
to threshold values and provide a more comprehensive eval-
uation, we compare the mPA and mCA of our method with
two competitive baselines in Table 2. For the Chair cate-
gory, our method demonstrates a significant improvement
over IET [34], with a 1.87% increase in mPA and a 2.95%
increase in mCA, while the improvement in the Lamp cate-
gory is relatively minor. This may be attributed to the limited
variation in the geometry of lamp parts, making it difficult to
clearly differentiate between various levels of the part-whole
hierarchy. In addition, Figure 5 illustrates the performance
of various methods on the Chair and Table categories using
five different Chamfer distance thresholds ranging from 0.01
to 0.05. As the Chamfer distance threshold increases, the
advantage of our method becomes more pronounced, which
shows the superiority of our approach. We also evaluate the
diversity of generative part assembly. As shown in Table 1,
our method outperforms all competing methods in both QDS
and WQDS. In Figure 4, we use the model to generate multi-
ple assembly shapes for the same set of parts (with different
noises) to show the variation of generated shapes.

4.4. Human Study

Since many inaccurate results are still valid visually, we also
conduct a human study to evaluate the quality of generated
assemblies. Specifically, we perform an A/B test with a
group of students, utilizing the identical evaluation system
as in [30, 35]. Participants were presented with pairs of
randomly chosen assemblies of the same object from two
different methods. In total, 28 participants labeled 93 assem-
bly pairs. We compare the proposed method with three main
baselines and present the outcomes in Table 5. In over 95%
of the cases, our method is favored over other three com-
peting methods, unequivocally demonstrating the superior
visual quality of our method’s output.

4.5. Ablation Study

We now investigate the importance of different loss compo-
nents and verify the effectiveness of the proposed super-part
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Figure 3. The qualitative comparisons between our method and two most competitive baselines on PartNet [18]. We highlight some areas
where the assembly quality of ours is clearly better.
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Figure 4. Diverse results on the unseen PartNet[18] test dataset
generated by our network to demonstrate the structural variation in
part assembly, providing different artistic results while maintaining
reasonable object structures.

encoder on the Chair category.

Super-Part Encoder. Since the super-part encoder is at the
core of our part-whole hierarchy message passing network,
we conduct an experiment where we remove this module
(denoted as w/o Super-Part Enc.). To mitigate the impact
of the number of model parameters, we also create another
baseline by increasing the number of parameters of the w/o

Settings SCD↓ PA↑ CA↑
w/o Super-Part Enc.
+ Augmented Param. 0.0038 60.70 53.46

w/o Super-Part Enc. 0.0036 61.04 55.39

Full Setting 0.0028 64.83 58.45

Table 3. Ablation studies on part-whole hierarchy on the Table
category under a certain Chamfer distance threshold 0.01.

Lt Lr Ls SCD↓ PA↑ CA↑
✓ ✓ 0.0075 35.36 32.73

✓ ✓ 0.0039 60.02 54.21

✓ ✓ 0.0033 62.74 56.98

✓ ✓ ✓ 0.0028 64.83 58.45

Table 4. Ablation studies on loss components on the Table category
under a certain Chamfer distance threshold 0.01.

Super-Part Enc. setting (denoted as w/o Super-Part Enc.
+ Augmented Param.). This involves increasing the number
of parameters in the part encoder and the multi-head atten-
tion module, ensuring that the overall number of parameters
is on the same order of magnitude as the full model setting.
As shown in Table 3, the super-part encoder contributes sig-
nificantly to the final performance. We also observe that
augmenting the model parameters without incorporating the
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Figure 5. Performance on the Chair, Table and Lamp categories under multiple Chamfer distance thresholds.

Method Percent Prefer Ours

Ours vs IET[34] 95.2%

Ours vs RGL [21] 97.6%

Ours vs DGL [33] 99.5%

Table 5. Human study results on PartNet[18].

Ground truth

Part assembly
Super-part 
assembly

Initial inputs Assembled shapeTransformed parts

Super-part 
assembly Part assembly

Super-part 
assembly Part assembly

Figure 6. Visualization of our predicted hierarchical assembly
process from parts to the whole.

super-part encoders actually leads to a performance drop.
This finding further highlights the effectiveness of the pro-
posed part-whole hierarchy network for part assembly.

Loss Functions. We now evaluate the importance of in-
dividual loss terms in Equation (6). As shown in Table
4, removing the part translation loss Lt leads to a signifi-
cant performance degradation. Similarly, the remaining loss
terms, including the rigid rotation loss Lr and the shape
assembly loss Ls, demonstrate their significance in facilitat-
ing precise part rotations and ensuring the overall coherence
of the assembled parts, respectively. This shows that each
loss term does play an indispensable role in achieving high-
quality assemblies.

4.6. Hierarchical Part Assembly Analysis

We further provide a visual analysis of the assembly process
for super-parts and parts in Figure 6. It is obvious that during

the super-part assembly phase, important components such
as chair seats and chair backs are often assembled correctly
first. This aligns with our intuition that super-part assembly
is relative easier and provides strong hints for predicting
poses of parts like chair legs and arms, thus showing further
evidence for the effectiveness of the part-whole-hierarchy
message passing network.

5. Conclusion
In this paper, we propose the part-whole-hierarchy message
passing network to address the challenging generative 3D
part assembly task. We first group the point cloud of individ-
ual parts to form super-parts in an unsupervised way. Taking
the point cloud as input, our super-part encoder predicts la-
tent poses of super-parts which are used to transform the
point cloud. We then feed the transformed point cloud to
the part encoder. Relying on the cross-level and within-level
attention based message passing, the part encoder takes the
transformed point cloud as input and leverages the informa-
tion from super-parts and predicts poses of parts. Experi-
ments on the PartNet dataset demonstrate that our method
achieves state-of-the-art performances as well as provides in-
terpretable assembly process. In the future, we are interested
in combining 3D part generation with our 3D part assembly
model to generate 3D shapes from scratch.
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