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Figure 1. Illustration of causations of video anomaly. The clip started at Frame D refers to a traffic accident, which was caused by the
event indicated with Frame B 7 seconds before. The clip in Frame F shows the effect of such an anomaly. A model needs to understand
such a long-range relation in the video to yield correct text-based explanations.

Abstract

Video anomaly understanding (VAU) aims to automat-
ically comprehend unusual occurrences in videos, thereby
enabling various applications such as traffic surveillance
and industrial manufacturing. While existing VAU bench-
marks primarily concentrate on anomaly detection and lo-
calization, our focus is on more practicality, prompting us
to raise the following crucial questions: “what anomaly oc-
curred?”, “why did it happen?”, and “how severe is this
abnormal event?”. In pursuit of these answers, we present
a comprehensive benchmark for Causation Understanding
of Video Anomaly (CUVA). Specifically, each instance of
the proposed benchmark involves three sets of human an-
notations to indicate the “what”, “why” and “how” of an
anomaly, including 1) anomaly type, start and end times,
and event descriptions, 2) natural language explanations
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for the cause of an anomaly, and 3) free text reflecting
the effect of the abnormality. In addition, we also intro-
duce MMEval, a novel evaluation metric designed to bet-
ter align with human preferences for CUVA, facilitating the
measurement of existing LLMs in comprehending the un-
derlying cause and corresponding effect of video anoma-
lies. Finally, we propose a novel prompt-based method
that can serve as a baseline approach for the challenging
CUVA. We conduct extensive experiments to show the supe-
riority of our evaluation metric and the prompt-based ap-
proach. Our code and dataset are available at https:
//github.com/fesvhtr/CUVA.

1. Introduction
Anomalies represent occurrences or scenarios that deviate
from the norm, defying expectations and straying from rou-
tine conditions [2, 3, 8, 13]. These events are typically char-
acterized by their unique, sudden, or infrequent nature, of-
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ten demanding special attention or intervention [44].
Recently proliferated video anomaly understanding

(VAU) [35, 58] aims at automatically comprehending such
abnormal events in videos, thereby facilitating various ap-
plications such as traffic surveillance, environmental moni-
toring, and industrial manufacturing. In this direction, video
anomaly detection and localization, which refer to identi-
fying abnormal occurrences, and localizing temporally or
spatially locate anomalous events in videos, has attracted
enormous attention [11, 25, 29, 37, 54, 55, 57, 59, 64].

Existing VAU benchmarks [9, 20, 52] and approaches
[10, 15, 16, 19, 38, 49, 63, 67, 71] primarily focus on the
aforementioned anomaly detection and localization tasks,
while the underlying cause and the corresponding effect of
these occurrences, are still largely under-explored. These
cues are crucial for perceiving the abnormality and making
decisions based on human-interpretable explanations. Fig-
ure 1 demonstrates a scene of a traffic accident involving
many vehicles. “The accident occurred because a white car
parked by the roadside, and a dark gray car traveled at high
speed to swerve and rear-end the black car next to it.” Chal-
lenges of comprehending such a cause of the accident in-
clude: 1) capturing key cues in the long video: a model
needs to recognize the white car at the moment indicated by
Frame B, which is 7 seconds before the accident in the clip
indicated by Frame D. It is challenging for a model to cap-
ture such a long-range relation. 2) building a logic chain of
the cause-effect: a model needs to further learn rich interac-
tions among clips in the video, indicated by Frame B, Frame
C, and Frame D, to build a logic chain of causation of the
anomaly, facilitating the generation of the explanations and
results. The above two challenges require the development
of causation understanding methods that specifically take
these characteristics of video anomaly into consideration.

Previous works have demonstrated the great importance
of leveraging large, high-quality, and challenging bench-
marks to develop and evaluate the state-of-the-art deep
learning methods for the VAU task [1, 18, 30, 39, 47, 53].
Along this line, existing benchmarks have shown their
promise [8, 44, 59]. Towards VAU in more practical real-
world scenarios, they have some limitations: 1) Lack of
cause and effect explanations. Existing annotations involve
the periods when anomalies occur, without providing an ex-
planation of the underlying cause and the effect, as well as
the descriptions of targeting anomaly. 2) Lack of proper
evaluation metrics. Some remotely related metrics to mea-
sure the text-based explanation or description of the video
anomaly, such as BLEU [42] and ROUGE [26], can not be
directly applied to measure multimodal VAU tasks, as they
are designed only for text modality. 3) Limited length of
videos. In real-world scenarios, a piece of video may in-
clude more than 1.5 minutes [4]. However, samples in exist-
ing VAU usually have fewer than 30 seconds, which greatly

simplifies the challenges of VAU in real-world cases.
The above limitations of existing datasets call for a

benchmark of Causation Understanding of Video Anomaly.
Towards that, we present CUVA, a comprehensive bench-
mark that contains high-quality annotations of 1, 000 videos
from the real world, covering 10 major categories, and 42
subcategories of different anomaly types, each involving a
117-second long video and “65.7” tokens across “4.3” sen-
tences on average. Specifically, we manually write free-
text explanations to detail the underlying cause and the cor-
responding effects, the descriptions of these events, and
the relationships among them. Moreover, we come up
with a novel evaluation metric to measure the capability
of a method on the challenging CUVA. We also propose
a novel prompt-based approach based on video large lan-
guage model (VLM) [24, 36, 65]. Experiments show the su-
periority of the metric and the proposed method. The main
contributions of our work can be summarised as follows:
• We develop CUVA, a new benchmark for causation un-

derstanding of video anomaly. To the best of our knowl-
edge, CUVA is the first large-scale benchmark focused on
the causation of video anomalies. Compared with exist-
ing datasets, our dataset is more comprehensive and more
challenging with much higher-quality annotations.

• We present a novel metric to measure the challenging
CUVA in a human-interpretable manner, and introduce a
prompt-based method to capture the key cues of anoma-
lies and build a logic chain of the cause-effect.

• We conduct extensive experiments on the proposed
CUVA. Results show that CUVA enables us to develop
and evaluate various VLM methods for causation under-
standing of video anomalies closer to real-world cases.

2. Related Work
Anomaly Datasets: Existing VAU datasets primarily focus
on anomaly detection and localization, and can be broadly
categorized into weakly-supervised ones [51, 59], and semi-
supervised ones [2, 34, 44, 46]. These datasets emphasize
the time points or time periods of anomalous events based
on frame-level or pixel-level annotations. Our CUVA sig-
nificantly differs from the existing datasets in these aspects,
More detailed comparisons are available in Table 1.
Evaluation Metrics: VAU evaluation metrics [62] include,
reference-based ones such as ROUGE [26] and BLEURT
[48], answer-based ones such as BLEU [42], Rankgen [22]
and QAFactEval [14], and others such as Longformer [6],
UniEval [70] and MoverScore [69]. Recently, various GPT-
based metrics [5, 7, 61] have been developed. The key dif-
ference between our proposed MMEval and the above ones
is: MMEval aims to evaluate the video and text anomaly
understanding based on a large language model, while the
existing one focuses on a single modality.
Methods: Video large language models (VLM) have been
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Logical Reasoning - Effect

Question: Please provide the corresponding 
results of the anomaly.
Answer: A total of five vehicles were involved in 
the accident, ...

Moment Description

Question: Locate the position and give a detailed description of the anomalous 
segment in the video. 
Answer: Duration:[00:10,00:48]. A white pickup truck was rear-ended by a white SUV 
behind it on the road.

ClassificationQuestion: Please categorize the anomaly.
Answer: Traffic Accident - Motor Vehicle Accident

Key Words
Vehicle rear-ended – 1st 
White smoke coming out of damaged vehicle – 3rd 
Car impacted with guardrail to the left – 2nd

Fire trucks arriving – 5th
Loud crashing sound – 4th

Importance Weight by GPT

Importance Curve

Logical Reasoning - Causes

Question: Please explain the details why the 
anomaly occurs.
Answer: The white pickup truck braked to avoid 

the black car vehicle in front of it, …

Figure 2. Overview of the proposed CUVA benchmark. Our CUVA benchmark consists of manual text-based annotation, including
detailed explanations of cause (Why) and effect (Why), anomaly types (What), detailed event descriptions (What), as well as importance
scores that can form a curve of events (How).

widely used for text generation based on videos [23, 36,
50, 68], exploring prompts to unlock the capability of
VLMs. Prompt-based methods can be categorized into
“hard prompt” and “soft prompt” [12, 31, 32, 45]. For the
challenging CUVA task, we proposed a novel method that
leverages both hard prompts and soft ones to tackle two
challenges raised at the beginning, i.e., capturing the key
cues and building a logic chain of anomaly causation.

3. The Proposed CUVA Benchmark
In this section, we first introduce some CUVA sub-tasks.
Then we show how we collect and annotate data. We
also provide a quantitative analysis of the benchmark. The
overview of our CUVA is demonstrated in Figure 2.

3.1. Task Definition

What anomaly occurred: This task includes two ob-
jectives: anomaly classification and anomaly description.
Anomaly Classification includes all the anomaly classes
present in the video, which are taken from our database of
predefined anomaly classes, as shown in Figure 4 (a). Each
video has multiple anomaly classes at different levels, and
this task will challenge the model’s ability to detect anomaly
classes at multiple levels of granularity. Anomaly Moment
Description includes the timestamp in which the anomaly
occurs and a detailed description of the anomalous event.
Why this anomaly happened: This task aims to describe
the causal relationships within the video. Anomaly reason-
ing describes the reasons for the occurrence of anomalies in
the video. This task requires the model to infer the cause
of the anomaly based on the video content and describe it
in natural language, which challenges the model’s ability of
video comprehension and reasoning. Anomaly results pri-
marily describe the impacts caused by anomalous events in

the video. It mainly tests the model’s ability to handle de-
tails of anomalous events in the video.
How severe this anomaly: This task aims to reflect the
changing trends in the severity of anomalies within the
video. Thus, we propose a novel annotation approach called
the importance curve. Details of our importance curve’s
pipeline can be found in Figure 3. This approach has three
advantages: 1) It provides an intuitive representation of the
temporal variation in anomaly severity within the video. 2)
It offers a more intuitive depiction of the inherent causal
relationships among anomalous events in the video. 3)
Such an approach enables us to unify various Video Tem-
poral Grounding labels and tasks (e.g. Moment Retrieval,
Highlight Detection, Video Summarization) under the same
framework.*

3.2. Dataset Collection

We crawled data from prominent video platforms such as
Bilibili and YouTube†. And we discarded videos that en-
compass sensitive themes such as pornography and politics.
Throughout the data collection process, we thoroughly an-
alyze the quantity and quality of videos in each category,
which in turn lead to the selection of the final 11 categories
of anomalous videos. These videos are then categorized
into 11 main categories, such as “robbery”, “traffic acci-
dent” and “fire”. Each major category is further divided into
subcategories. For example, we divided the “fire” category
into the “commercial building fire”, “forest fire”, “factory
fire” and “residential fire” subcategories. In this way, we
obtain 42 subcategories in total.

*More details are available in Section 2 of Appendix A.
†We have obtained permission from Bilibili www.bilibili.com

and YouTube www.youtube.com to use their video data for non-
commercial purposes.
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Dataset Domain Video # Anomaly Types QA

# Total Frames Total Length A.C.L Audio Localization Description Reasoning Outcome

UCF-Crimes [51] Crime 13,741,393 128.0h 242.5s No 13 Frame NA NA NA
XD-Violence [59] Volence 114,096 21.07h 164.3s Yes 6 Frame NA NA NA
ShanghaiTech [34] Pedestrian 317,398 - - No 13 Bounding-box NA NA NA
UCSD Ped1 [56] Pedestrian 14,000 0.1h 6.6s No 5 Bounding-box NA NA NA
UCSD Ped2 [56] Pedestrian 4,560 0.1h 6.6s No 5 Bounding-box NA NA NA
CUHK Avenue [33] Pedestrian 30,652 0.5h 1.4s No 5 Bounding-box NA NA NA
TAD [64] Traffic 721,280 1.2h 36.8s Irrelevant 4 Bounding-box NA NA NA
Street Scene [44] Traffic 203,257 380.6s 3.7s No 17 Bounding-box NA NA NA
CamNuvem [11] Robbery 6,151,788 57h 192.2s No 1 Frame NA NA NA
Subway Entrance [3] Pedestrian 86,535 1.5h - No 5 Frame NA NA NA
Subway Exit [3] Pedestrian 38,940 1.5h - No 3 Frame NA NA NA
UCF–Crime Extension [41] Crime 734,400 7.5h 112.5s No 1 Frame NA NA NA
BOSS [54] Multiple 48,624 0.5h 660.0 s No 11 Frame NA NA NA
UMN [37] behaviors 3,855 0.1h 29.1s No 1 Frame NA NA NA
UBnormal [2] Multiple 236,902 2.2h 14.6s No 22 Pixel-level NA NA NA
CUVA (Ours) Multiple 3,345,097 32.5h 117.0s Yes 42 Time Duration Free-text Free-text Free-text

Table 1. Comparisons between the proposed CUVA and existing VAU datasets. Our CUVA is the first large-scale benchmark for
causation understanding of video anomaly. It encompasses samples from 42 domains, such as vandalism, traffic accidents, fire incidents,
and pedestrian incidents, etc. CUVA sub-tasks primarily focus on the evaluation of causation understanding of video anomaly, and these
tasks answer the “What”, “Why” and “How” of an anomaly. All textual descriptions or explanations are annotated in free-text format.
Here A.C.L. typically stands for “Average Clip Length.”

3.3. Annotation Pipeline

Our dataset construction pipeline involves three stages: pre-
processing, manual annotation, and importance curve pro-
cessing. The whole process takes about 150 hours with over
20 annotators.‡
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Figure 3. Pipeline of generating an importance curve. Anno-
tators need to consider previous tasks (e.g., Logical Description,
Moment Description) and video content to create 3 to 6 short sen-
tences Ti describing all events in the video. We rank these sen-
tences’ anomaly severity by ChatGPT [40] and obtain anomaly
scores s. Simultaneously, we sample frames ft from the video
and use CLIP [43] to measure the similarity between sentences
and frames. The resulting similarity scores are multiplied by the
anomaly scores for each sentence to get valuet for each frame.

3.3.1 Pre-processing

First, we crawl videos from Bilibili and YouTube. Then, we
manually cut the collected videos to ensure the quality of

‡More details of our dataset are available in Section 3 of Appendix A.

video content and exclude non-ethical content and sensitive
information through manual screening.§ Throughout the
dataset collection and annotation process, we strictly follow
the ethical requirement of the website.¶ Finally, 1, 000
anomaly video clips are obtained.

3.3.2 Manual Annotation

We annotate the videos in English according to the designed
annotation document, and the annotation is divided into two
rounds. We employ a mechanism similar to kappa [60]
to screen and train annotators, ensuring the consistency of
their annotation content. In the first round, We ask annota-
tors to annotate all videos according to the task definition.
In the second round, we ask these annotators to review and
supplement the annotation results of the first round.

3.3.3 Post-processing of Importance Curve

Due to the limited capabilities of the CLIP model and sam-
pling intervals, the initial curve may fail to accurately re-
flect the time periods of anomalies, which significantly im-
pacts the effectiveness of downstream tasks. Thus, we in-
corporate the following three tasks to optimize the impor-
tance curve, such as Video Captioning [24], Video Entail-
ment [66], and Video Grounding [27] respectively. Based
on these tasks, we employ a voting mechanism to precisely
identify the time segments in the video corresponding to the
given key sentences.||

§Detailed screening criteria can be found in Section 4 of Appendix A.
¶More details about ethical consideration are presented in Section 5 of

Appendix A.
||Details can be found in Section 6 of Appendix A.
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Figure 4. Statistics of our CUVA dataset. Figure (a) shows all anomaly types in CUVA. Figure (b) and (c) show the number of videos in
each anomaly type. Figure (d) shows the distribution of video length. Figure (e) shows the temporal distribution of anomalous segments.

3.4. Dataset Statistics

Our CUVA dataset contains 1, 000 video clips and 6, 000
question-answer pairs, the total length of these videos is
32.46 hours, and the average frames of videos is 3, 345. The
frames are extracted from the original videos at a rate of 60
FPS. The videos encompass a wide range of domains. Then,
we categorize anomaly events into 11 scenarios, resulting
in a total of 42 types of anomalies, as illustrated in Figure
4 (a). The distribution of video categories is illustrated in
Figure 4 (b) and 4 (c). The distribution of video lengths can
be found in Figure 4 (d), along with the percentage of video
time proportions shown in Figure 4 (e).

4. The Proposed Method: Anomaly Guardian

In this section, we introduce a novel prompt-based method
named Anomaly Guardian (A-Guardian), which is designed
to address the two challenges presented by our dataset. By
leveraging the exceptional logical reasoning capabilities of
VLM, we select it as the foundation of our method to build
a logic chain of the cause-effect. To effectively capture cru-
cial cues within lengthy videos, we present a novel prompt
mechanism aimed at guiding VLMs to concentrate on piv-
otal clues in the video pertinent to the provided questions.

4.1. Design of Hard Prompts

We use ChatGPT [40] to assist in confirming and supple-
menting user prompts first, enabling the VLM to better un-
derstand the user’s intent. Specifically, we first utilize an
instruction prompt containing an example to correct mis-
leading guidance and standardize the output format. Due to
the presence of numerous events in long videos, we employ
a multi-turn dialog mechanism to assist VLM in identifying
events relevant to anomaly occurrences in the video. After
multiple rounds, VLM can focus on segments more relevant
to the anomaly, providing more accurate answers.**

4.2. Design of Soft Prompts

We leverage a selector in MIST [17] to better capture spatio-
temporal features relevant to the given questions processed
by ChatGPT [40]. We first divide the video into N segments
of uniform length, with each segment comprising T frames.
To better capture interactions among different granularities
of visual concepts, we divide each frame into M patches.
Furthermore, we leverage [CLS] token to represent each
segment and frame. Specifically, We first use the CLIP
[43] with frozen parameters to extract patch-level features
denoted as P = {p1, p2, ..., pm}, where pm ∈ RT×M×D

**Details of the hard prompts are available in Section 1 of Appendix B.
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Figure 5. Architecture of the proposed prompt-based method A-Guardian.

and D is the dimension of each patch-level feature. Then,
we perform pooling operations on patch features’ spatial di-
mensions to obtain frame features.

fkt = Pooling(pkt,1, pkt,2, . . . , pkt,M ) (1)

where pkt,m indicates the m-th patch at the t-th frame of
the k-th segment. Then, the segment features are obtained
by pooling frame features along the temporal dimension,
where fkt ∈ RT×D:

sk = Pooling(fk1, fk2, . . . , fkT ) (2)

Similarly, the question feature is obtained by pooling the
word features, where wz ∈ RZ×D and q ∈ RD

q = Pooling(w1, ..., wz) (3)

After that, we select the patch features of the top k segments
using cross-modal temporal attention and top-k selection
from MIST [17], as expressed by the following formula-
tion. The term ”selector” corresponds to a top-k selection
function utilized to pick the video segment features from
the Topk segments considering the question.

Xt = selector
Topk

(
softmax

(
q · sT√

dk

)
,S

)
(4)

4.3. Answer Prediction

Finally, we follow a previous work [21] to concatenate the
hard prompts and soft prompts and feed them into the VLM
for inference. During the training phase, we employ GPT
to generate candidate answers and data augmentation. We
only finetune the selector by optimizing the softmax cross-
entropy loss, aligning the predicted similarity scores with
the ground truth.††

5. Experiment
5.1. The Proposed MMEval Metric

Given that our dataset extensively employs free-text de-
scriptions to delineate both anomalous events with their

††Details can be found in Section 2 of Appendix B.

Description
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Anomaly Videos

CUVA

VLMs

MMEval

Scoring

Ground Truth

Original Video

Task Prompts

Importance Curve

Answers

Rationale

Ranking

Figure 6. Overview of our MMEval metric.

causal relationships, and recognizing CUVA is a multi-
modal dataset (integrating video, text, and appended com-
ments), which necessitates a shift from solely relying on
Natural Language Generation (NLG) metrics to a broader
consideration that encompasses the rich multimodal input
information. Thus, we introduce a novel evaluation metric
namely mmEval as depicted in Figure 6. In order to as-
sess the model’s performance from a multimodal perspec-
tive and infuse human-like reasoning abilities into the eval-
uation metric, we choose Video-ChatGPT [36] as our foun-
dation model. We utilize natural language prompts to guide
mmEval in specifying the task types to be evaluated and de-
sign three natural language prompts, each corresponding to
one of the three free-text descriptions in the dataset. To en-
hance the robustness of the model, we utilize curve labels to
help VLM focus more on segments of anomalies within the
video. Specifically, by setting thresholds to extract periods
of important events in the curve, we perform dense sam-
pling on that segment of the video, helping the VLM focus
more on the crucial parts of the video. Our MMEval met-
ric can be used for scoring, ranking, and providing rationale
explanations.

5.2. Implementation Details

We follow Video-ChatGPT [36] to adopt CLIP-L/14 vi-
sual encoder to extract both spatial and temporal video fea-

18798



Method Metric Description Causes Effect

mPLUG-owl [65]

BLEU 0.55 0.65 0.47
ROUGE 12.58 13.54 8.83
BLEURT 40.66 43.28 37.95

MoverScore 51.97 52.71 50.06
UniEval 67.46 62.29 59.07

MMEval (Ours) 73.42 17.15 44.31

Video-LLaMA [68]

BLEU 0.60 0.53 0.35
ROUGE 13.15 12.36 8.02
BLEURT 40.55 43.02 39.68

MoverScore 51.32 51.25 49.48
UniEval 52.28 47.29 43.03

MMEval (Ours) 65.65 16.24 32.84

PandaGPT [50]

BLEU 0.66 0.51 0.30
ROUGE 13.33 14.09 8.79
BLEURT 38.23 43.95 39.95

MoverScore 51.73 51.54 49.62
UniEval 57.05 54.88 50.84

MMEval (Ours) 74.19 22.47 69.45

Otter [23]

BLEU 1.07 1.09 1.11
ROUGE 15.19 15.87 11.40
BLEURT 29.92 32.52 28.94

MoverScore 53.54 54.25 51.91
UniEval 45.14 49.05 47.51

MMEval (Ours) 76.30 3.53 39.21

Video-ChatGPT [36]

BLEU 0.30 0.29 0.41
ROUGE 9.75 9.08 8.23
BLEURT 46.83 49.52 37.24

MoverScore 50.73 50.70 49.83
UniEval 70.82 70.77 54.35

MMEval (Ours) 78.55 44.57 46.08

Video-ChatGPT [36]
+ A-Guardian (Ours)

BLEU 0.55 0.51 0.38
ROUGE 14.35 9.08 8.23
BLEURT 47.10 48.13 48.28

MoverScore 52.25 52.28 49.95
UniEval 68.18 63.41 51.87

MMEval (Ours) 79.65 58.92 50.64

Table 2. Main results on the proposed CUVA benchmark. We
test the Description, Cause, and Effect tasks on our CUVA bench-
mark using multiple VLMs and Video-ChatGPT equipped with the
proposed A-Guardian. We conduct evaluations using both tradi-
tional metrics and our MMEval metric. The scores of all metrics
range from 0 to 100.

Methods Detection Classification Timestamp
mPLUG-Owl [65] 89.4% 11.5% 9.0%
Video-LLaMA [68] 25.0% 13.1% 0.7%
PandaGPT [50] 100.0% 32.6% N/A
Otter [23] 64.3% 41.3% N/A
Video-ChatGPT [36] 60.0% 21.3% 3.2%

Table 3. Secondary results on the proposed CUVA benchmark.
We use the accuracy metrics to evaluate the Detection and Clas-
sification tasks. We also use IOU to evaluate the Moment task,
N/A to indicate the model lacks the ability to answer the question.

tures. In our approach, we utilize the Vicuna-v1.1 model,
comprised of 7B parameters, and initialize it with weights
from LLaVA [28]. All experiments were conducted on four
NVIDIA A40 GPUs, and each task took around 8 hours.

5.3. Consistency evaluation of MMEval

Our MMEval metric can better align with hu-
man’s preference on causation understanding of video
anomaly. To validate the consistency of our evaluation met-

Metrics Answer Pool Ranking

Description Cause Effect
Human Evaluation 87.3% 77.3% 87.3%
BLEU [42] 67.8% 60.4% 63.2%
ROUGE [26] 54.4% 55.5% 52.1%
BLEURT [48] 80.4% 73.2% 76.7%
MoverScore [69] 67.8% 60.4% 63.2%
UniEval [70] 78.2% 70.1% 74.3%
MMEval (Ours) 82.3% 80.2% 89.1%

Table 4. Human consistency evaluation

ric with human judgment, we conducted a human consis-
tency experiment. Using the ranking of answers from first-
round annotations, second-round annotations, and GPT-
generated answers as the ground truth (1. Second round
2. First round 3. ChatGPT). we employ various evaluation
metrics and human beings who view the videos to rank these
answers based on the corresponding questions, as shown in
Table 4.

5.4. Quantitative evaluation of A-Guardian

Our A-Guardian model achieves state-of-the-art perfor-
mance in both the description and cause tasks. We con-
ducted experiments on all tasks involved in our dataset, and
the results are summarized in Table 2. For free-text tasks
(e.g. Cause, Effect, Description), we evaluated the perfor-
mance of various VLMs and our model under different eval-
uation metrics. Our model also outperforms the majority of
models in the effect task. For the other tasks (e.g. Detection,
Classification, Timestamp), we set a uniform prompt and
use string matching to extract answers relevant to the ques-
tions from the inference results of VLMs. Table 3 shows
the results of these tasks.

Model MMEval (%)

Description Cause Effect

Ours 79.65 58.92 50.64
- Soft Prompt 78.92 54.22 49.11
- Hard Prompt 78.55 44.57 46.08

Table 5. Ablation Experiment

5.5. Ablation Study

Both hard and soft prompts significantly improve the
VLM’s understanding of the video’s causation. This
section investigates the influence of soft prompts and hard
prompts on our method. As shown in Table 5, the design
of hard prompts achieves a greater improvement than that
of soft prompts, indicating that the hard prompts are more
intuitively effective in uncovering VLM’s reasoning capa-
bilities compared to the soft prompt.
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In the video, a man wearing a black mask first leans on the car window to observe the interior,
then retrieves a black package from the shattered rear window of a white car and places it in his
own car. He then drives up to a black car, exits the vehicle, shatters the driver's side window,
retrieves two black packages from inside, and drives away.

A man got out of the car and hit the
window of the parked car. After breaking
the window, the man got back in the car
and drove away.

In the video, a man is driving a car down the street and suddenly
stops in the middle of the road. The car is then seen driving away
from the scene. This event can be described as a traffic violation,
specifically a moving violation, as the driver has stopped in the
middle of the road without any apparent reason.

In the video, a man is seen taking something out of a car whose glass is
shattered. This is an unusual event as it is not common for someone to
take something out of a car with a shattered window. The man is seen
walking away from the car, and the video ends with the car driving away.

BLEU ROUGE BLEURT Mover UniEval

7.87 28.57 45.47 56.79 82.16

BLEU ROUGE BLEURT Mover UniEval

0.88 25.80 44.80 56.20 91.13

BLEU ROUGE BLEURT Mover UniEval

8.55 34.15 50.70 56.94 81.12

Score: 5/10. The model's answer is well-structured and provides a clear and 
accurate description of the events in the video. It falls short in accurately 
identifying the anomaly. The description aligns with the video events and is 
supported by evidence from the video. The clarity of the answer is excellent, as 
it provides a clear and concise description of the events in the video.

Score: 8/10. The model's answer is well-structured, providing a clear and accurate 
description of the events in the video. The model's use of specific details and the 
logical progression of the events make the answer stand out as a well-written and 
informative description of the anomaly in the video.

Score: 3/10. The model's answer is not entirely 
accurate, as it does not provide a complete 
description of the events in the video. The man 
is seen breaking the window of a white car and 
retrieving a package from the shattered window 
in the video. 

Figure 7. Case study. Comparisons with and without our proposed prompt-based method on the CUVA using MMEval.

5.6. Case Study

In Figure 7, we illustrate the performance of Otter, Video-
ChatGPT, and Video-ChatGPT with A-Guardian, showcas-
ing the different answers they provide for the anomaly cau-
sation task. In terms of the model’s response, it can be ob-
served that Video-ChatGPT provides descriptions that are
generally correct, but it does not focus on describing the
anomaly event. Instead, it pays attention to describing the
actions of the vehicles. However, with the addition of our
A-Guardian model, its descriptions become more accurate,
specifically highlighting the theft as an anomaly event and
providing detailed descriptions such as ”taking something
out of a car” and ”glass is shattered”. Otter and Video-
ChatGPT achieve similar scores based on traditional met-
rics, but their answers convey completely different mean-
ings. Otter’s description does not align with the video, while
Video-ChatGPT incorrectly describes the anomaly subject.
As MMEval possesses the ability to evaluate from the mul-
timodal perspective, it is able to identify the parts that per-
tain to the description of the anomaly in the videos, which
shows highly consistent conclusions with human beings.

5.7. Result Discussion

Through experiments, we have discovered and summarized
the following conclusions: 1) For free-text tasks, most
VLMs excel in the description of anomalies but perform
poorly on the task of causation analysis. This is because
the tasks of description only require the VLM to compre-
hend the content of the videos, but causation analysis re-
quires the VLM to possess a certain level of reasoning ca-
pability to build a logic chain of the cause-effect. 2) Times-
tamp localization task is the most challenging. Due to the
relatively simplistic temporal and spatial relationships be-
tween video frames, VLM performs poorly on fine-grained
tasks such as timestamp localization but excels relatively in
coarse-grained tasks such as anomaly detection and classi-

fication. 3) Traditional metrics are poor at evaluating rea-
soning tasks. As shown in Figure 7, they generate similar
evaluations for these answers, making it difficult to distin-
guish between them. However, MMEval is able to distin-
guish these answers’ inner differences and generate more
accurate evaluation results.

6. Conclusion
This paper presents CUVA, a novel benchmark for causa-
tion understanding of video anomaly. To the best of our
knowledge, our CUVA is the first benchmark in the field.
Compared with the existing datasets, CUVA is more com-
prehensive and more challenging with much higher-quality
annotations. We believe the proposed CUVA will en-
courage the exploration and development of various down-
stream tasks such as anomaly detection, anomaly predic-
tion, anomaly reasoning, etc. We also present MMEval,
a novel evaluation to measure the challenging CUVA in a
human-interpretable manner. Furthermore, we put forward
a prompt-based approach that can serve as a baseline ap-
proach for CUVA. Such an approach can capture the key
cues of anomalies and build a logic chain of the cause-
effect. Experimental results show that CUVA enables us to
develop and evaluate various VLM methods. In the future,
we plan to apply our CUVA to more practical scenarios for
anomaly understanding and other VLM-based tasks.
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