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Figure 1. Illustration of the paired raw/denoised event datasets. The proposed real-world event denoising datasets contribute to addressing
the inevitable Background Activity (BA) noise encountered by event cameras application under varying camera settings and illumination.

Abstract

Event camera has significant advantages in capturing
dynamic scene information while being prone to noise in-
terference, particularly in challenging conditions like low
threshold and low illumination. However, most existing re-
search focuses on gentle situations, hindering event camera
applications in realistic complex scenarios. To tackle this
limitation and advance the field, we construct a new paired
real-world event denoising dataset (LED), including 3K se-
quences with 18K seconds of high-resolution (1200*680)
event streams and showing three notable distinctions com-
pared to others: diverse noise levels and scenes, larger-
scale with high-resolution, and high-quality GT. Specifi-
cally, it contains stepped parameters and varying illumi-
nation with diverse scenarios. Moreover, based on the
property of noise events inconsistency and signal events
consistency, we propose a novel effective denoising frame-
work(DED) using homogeneous dual events to generate the
GT with better separating noise from the raw. Further-
more, we design a bio-inspired baseline leveraging Leaky-
Integrate-and-Fire (LIF) neurons with dynamic thresholds
to realize accurate denoising. The experimental results
demonstrate that the remarkable performance of the pro-
posed approach on different datasets.The dataset and code
are at https://github.com/Yee-Sing/led.

1. Introduction

Event cameras possess unique imaging advantages and
are demonstrating tremendous potential for various applica-
tions [4, 11, 33, 37]. Unlike traditional frame cameras using
integration sampling [46], event camera is differential sam-
pling [29], evading the restriction of exposure period. How-
ever, due to this sampling mechanism, random fluctuations
in analog signals can easily form noise events. In contrast
to the dominance of signal components in images, the noise
and signal in event cameras are encoded with same mag-
nitude, easily disturbing inherent structural features, such
as lane lines shown in Fig. 1. BA noise detrimentally im-
pact on subsequent tasks like reconstruction [36, 39], mo-
tion estimation [40, 41]and event-based object detection [5].
Therefore, event denoising becomes a fundamental issue,
notably in the booming event-based vision community.

Paired data is a key issue for event denoising in the deep-
learning era, thus an intuitive idea is to construct paired data
through simulators [17, 22, 38]. However, the image-based
simulation cannot be equivalent to reality because of the do-
main gap. To obtain the ‘clean part’ from the real-world
event, multi-modal data was incorporated to help paired
event generation. APS images gradient combined with IMU
are used to indicate the event probability within frame pe-
riod [2]. By jointly estimating the motion parameters with
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Datasets Sequences Capture/s Source Noise level Illumination Resolution Paired

RGB-DAVIS [45] 20 122 Camera ✗ Daytime 180*190 ✗
EventNFS [10] 100 4238 Screen Recording ✗ Daytime 224*124 ✗
E-MLB [8] 1200 7300 Camera 4 Daytime to Nighttime 346*260 ✗

DVSNOISE20 [2] 48 807 Camera ✗ Daytime 346*260 ✓
ED-KoGTL [1] 4 15 Camera ✗ Daytime to Nighttime 346*260 ✓
DVSCLEAN [12] 144 55 Synthesis 2 Daytime 1280*720 ✓
LED 3000 18000 Camera 4 Daytime to Nighttime 1200*680 ✓

Table 1. Summary of existing event denoising datasets.

APS images and event streams [9, 45], the temporal mis-
match can be alleviated. Constructing a fixed-track setup
[1], the events under various illuminations can be referred
to APS images in good lighting. Essentially, these meth-
ods align with events via transformed multi-mode features.
Unfortunately, this heterogeneous aided information cannot
fully match with the event, and their effectiveness is un-
available in situations such as low light and motion blur.
Hence, few datasets have considered practical scenes where
BA noise is easily deteriorated by camera setting and illumi-
nation, appearing as complex and nonuniform distributions.

To address this issue, we construct a large-scale, high-
quality paired dataset LED for event denoising. LED has
three distinct advantages. Firstly, it contains diverse noise
levels, covering complex situations under various camera
settings and illumination. Secondly, LED includes such as
outdoor and indoor scenarios, with abundant objects. Last
but not least, LED is collected with the current largest-
scale and high-resolution. Moreover, inspired by the multi-
sampling images denoising methods [21, 28, 31, 34], we
are the first to explore event multi-sampling for denoising.
Based on the homogeneous data, we proposed a dual-events
denoising framework that can generate higher-quality GT
by more accurately separating BA noise from the raw.

The contributions of this paper can be summarized as:
(1) We provide a large-scale real-world paired dataset for

event denoising. So far, LED is the largest paired real-
world event denoising dataset (3000 sequences) and high-
resolution (1200*680) with diverse noise levels and scenes.

(2) We propose a novel dual events denoising framework
DED based on noise inconsistency. We provide detailed
analysis to show that DED can better separate mixed sig-
nals and noisy event streams across various camera thresh-
old parameters, light conditions and motion patterns.

(3) We introduce a novel baseline DTSNN for event de-
noising based on the spiking neural network, which utilizes
the learnable dynamical spike threshold of the LIF neuron
to accurately denoising. Extensive experiments on different
real datasets verify the superiority of the proposed method.

2. Related work
Event Denoising Datasets. Currently, the datasets exclu-
sively designed for event denoising with less attention com-

pared to the task-specific ones in the event-based commu-
nity. In Table 1, we provide an all-sided summary of exist-
ing datasets, highlighting the scarcity of real paired datasets.

To address the lack of explicit labels, some paired
datasets can be conveniently generated via simulators such
as DVSCLEAN [12] and DND21 [20]. However, due to
the gap between simulation and real, these simulators fail
to fully reflect the actual situation. Other works focus on
real paired event denoising data. DVSNOISE20 [2] cap-
tures data in 16 pure background scenes. RGB-DAVIS [45]
provides 20 indoor/outdoor sequences under good lighting
conditions. ED-KoGTL [1] constructs indoor data with
four illumination levels under constant trajectory. These
paired datasets have achieved favorable results, primarily
attributable to the gradient cues extracted from APS images.
However, the heterogeneity between images and events lim-
its the availability of diverse lighting conditions, motion
patterns, and scenarios for constructing paired data.

Event-based Denoising. Research on event denoising can
be categorized into two approaches: filtering-based meth-
ods and deep learning methods. The former relies on man-
ual priors to design discriminative models for noise re-
moval, such as utilizing density distinction [15, 20, 30,
50]or motion continuity distinction [3, 44, 47] and motion
compensation [6, 45] with CM framework [16] in the spa-
tiotemporal domain. However, the validity of this prior
knowledge is sensitive to different signal/noise event dis-
tributions, limiting their denoising accuracy. For learning-
based methods, such as the CNN-based EDNCNN [2],
the PointNet-based AEDNet [12] and [1] GNN-transformer
were proposed successively. Additionally, the event denois-
ing and super-resolution tasks are combined in [10].

Multi-Sampling Image Denoising. The multi-sampling
principle for image denoising has been extensively studied.
Techniques like long exposure time or burst captures bene-
fit the direct acquisition of clear data with increased SNR in
static scenes. Further, the multi-sampling was explored to
the paradigm of indirectly recovering noise-free data. Not
only using paired noisy observations to learn the mapping
from different noisy samples to clear counterpart [27, 32],
but also employing spatial sub-sampling on a single noisy
image to learn the mapping from adjacent noisy samples to
GT [23, 25]. Evidently, these denoising approaches imply
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Figure 2. Illustration of the proposed dataset LED. (a) Distribution of noise level and scene of the proposed dataset. (b) Our proposed
LED outperforms others in terms of sequences, capture, and resolution (Circles with numbers to indicate). (c) LED collects diverse event
streams across various conditions of illumination, depth of field, and target scale.
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Figure 3. The substantial noise distinctions between frame/event
camera. (a) For a stationary grayscale chart, the frame camera
sequentially acquires noisy samples, fluctuating around a latent
value within a specific distribution. (b) In a horizontal moving
case, the event camera outputs binary signal serially, comprising
signal events from motion gradient edges and spurious BA noise.

that signal resampling could facilitate suppressing random
circuit noise and approximating the expectation value.

3. The High-quality Paired LED Dataset
3.1. Dataset Statistics and Features

The primary factors affecting BA noise in event cameras
can be categorized into intrinsic camera settings and extrin-
sic lighting conditions. By setting different camera thresh-
olds, we can selectively record events with varying noise
levels. Generally, a lower threshold means higher sensitiv-
ity but also increases the likelihood of BA noise. In con-
trast to fixed parameters in other datasets, we use four level
thresholds to collect events, starting from the default value
of 0% and gradually decreasing to -10%, -20%, and -30%,

as shown in Fig. 2 (a). To cope with the challenges posed
by complex lighting conditions, data collection is from day-
time to nighttime, encompassing a transition from high to
low illumination and a mixture of natural light with artifi-
cial light sources. Thus, the impact of external conditions
on the event stream distribution can also be controlled.

Due to the difficulty of constructing real paired datasets,
the development of existing datasets remains limited, as
shown in Table 1. In this work, we used a vehicle-mounted
or pan-tilt equipped with event cameras featuring a 16mm
lens. Totally, we collected approximately 5 hours of event
stream, including 3K sequences. The composition of noise
levels and scenes is depicted in Fig. 2 (a), with roughly
equal amounts collected during daytime and nighttime.
Nearly 20 typical scenes were captured, including urban
buildings, traffic roads, natural scenery, indoor exhibits, etc.

Our dataset goes beyond just the number of sequences
and data volume, primarily aiming to consider the intricate
influences of relevant factors on noise. Thus, we endow
LED with diversity to reflect the impact of objects and en-
vironments on the event, which helps cover the cases of
densely and non-uniformly distributed noisy situations in
reality both spatially and temporally. In Fig. 2 (c), we ex-
hibit that LED diversity is not only embodied in the rich-
ness of noise and illumination levels but also features such
as depth of field and scene semantics. Meanwhile, high-
resolution imaging aids the event cameras in capturing spa-
tial information more precisely. Unfortunately, most exist-
ing ones with low resolution may hinder advanced visual
tasks. Therefore, we collected data with 1200*680 resolu-
tion(after cropping), achieving high spatiotemporal resolu-
tion. Additionally, LED includes abundant objects of var-
ious scales, including aerial targets, pedestrians, and vehi-
cles, making it well-suited for downstream tasks.
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Figure 4. Illustration of event camera dual-sampling analysis: (a) Given an ideal intensity input, which includes varying and steady stages,
generates a series of signal events. (b) The twice samplings of the same input in the circuit model, both generate additional BA noise in
previously steady stages, resulting in consistency discrepancies between noise events and signal events. (c) The visualization results of the
actual dual-sampled events cumulative frame demonstrate the misalignment of inconsistent dual-sampled noise events and the alignment
of coexisting signal events (two color groups indicating the respective polarities of the dual events). (d) The statistical results of the two
tests also prove a low overlap rate between dual-sampled event pixels and a much higher one where signal events are present.
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Figure 5. Overview of the dual events denoising framework. (a)
Our collection device consists of two identical EVK4s forming
a co-axial system with a 1:1 beamsplitter. (b) We first perform
spatial similarity processing to retain the consistent parts, followed
by sequentially spatiotemporal correlation constraints to remove
the residual small amount of noise event from the previous step.

3.2. Dual Events Denoising Framework

Given a noisy event stream, the key lies in properly
obtaining paired GT. In this section, we explore utilizing
multi-sampling to achieve event stream denoising.
Background. Multi-sampling denoising methods are com-
monly used in image denoising. For frame images, aver-
aging the results of temporal multi-samples can approxi-
mate the true value for each pixel owing to multi-samples
smoothing effect on random noise components, as shown in
Fig. 3 (a). For event stream, due to their dynamic sampling
and the binary values, temporal multi-samples may contain
both signal events and BA noise, as illustrated in Fig. 3 (b),
directly taking the average of multi-samples cannot yield
true signal value. Although the noise forms differ between
the two modalities, they ultimately originate from the in-
herent noise in the circuitry analog signal, while resampling
fundamentally helps suppress the random noise source.
Analysis. This concept inspired us to utilize multi-sampling

for event denoising, particularly when considering the bi-
nary state of events (presence or absence) where just two
samplings are required to potentially identify noise. Thus,
we initially investigated the noise inconsistency at the pixel
level. Based on the DVS working principle [29], we build
a circuit model in the Cadence [42] platform to simulate
the dual-sampling with twice identical intensity input. The
noisy analog signal converted from input generates BA
noise at the originally steady stage compared to the ideal
case in Fig. 4 (a). Clearly, the two sets of noise exhibit
inconsistency, while the signals demonstrate high consis-
tency, causing distinct alignment differences between the
two cases as shown in the close-up of Fig. 4 (b).

To further explore the inter-class differences between
noise and signal events in real-world dual-sampled events
stream, we established a collection device as shown in Fig. 5
(a), to construct genuinely spatiotemporal dual-sampling.
Two experimental conditions to validate the aforesaid cir-
cuit simulation phenomenon are a stationary camera and
a moving one respectively. In the former, pure BA noise
events was obtained, while the latter captured mixed events
containing both noise and signal. In static tests, although
at the highest noise level (-30% threshold), both two sets
of events exhibit significant spatiotemporal disparity. As
observed in the right zoomed-in patches at the upper row in
Fig. 4 (c), the global spatial misalignment of dual BA noises
events was evident. The overlap rate of the pixels triggering
event is also to be less than 1%, as shown in the upper-
row histogram of Fig. 4 (d). Not unexpectedly, in dynamic
tests, regions with BA noise events remain inconsistency,
while the coexistent signal events showing spatiotemporal
alignment as depicted in lower-row counterpart, leading to
a dramatic increase in overlap rate compared to the pure BA
noise cases, as shown in the bottom histogram of Fig. 4 (d).
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Formulation. These results support the insight that the con-
sistency discrepancies between dual-sampled events could
naturally help distinguish noise. Therefore, we develop a
denoising framework with the dual events stream, called
DED. In DED framework, given the spatiotemporal syn-
chronized dual event streams Y1 and Y2, they are composed
of common latent signal X and respective noise streams N1

and N2. The noise model can be defined as follows:
Y1 = X +N1 , Y2 = X +N2. (1)

Because of the consistency of signal events and the incon-
sistency of noise events in Y1 and Y2, after binary grid oper-
ation of event stream according to certain temporal window
∆t, we can perform spatial similarity to process them:

X∗ = ∥∥X +N1∥ ◦ ∥X +N2∥∥1 , (2)
where ◦ denotes the Hadamard product used to obtain the
similar part X∗ of two groups of raw event binary frames.
Due to the probability of a few noises occurring simultane-
ously in dual-sampling, X∗ may still contain some much-
isolated noise compared to the raw. As shown in Fig. 5
(b), for finer denoising, we further utilize the spatiotem-
poral correlation of the signal event stream to remove the
residual noise from the previous step. Specifically, we ac-
cumulate the events from the relevant spatiotemporal range
in corresponding X∗ within several consecutive ∆t to form
a spatiotemporal relationship set. The presence of these few
isolated noise events, which are randomly triggered in the
spatiotemporal domain, disrupts the inherent spatiotempo-
ral correlation of signal reflecting a certain motion model.
Therefore, to leverage this spatiotemporal continuity, we
transform it into the following minimization problem:

min
1

N − 1

N∑
i=1

∣∣eti+1
x − etix

∣∣ , ti∈n∆t,
x∈Ω,Ω∈X∗, (3)

where etix denotes the ith occurring event according to the
sorted timestamp, x means the event spatial coordinates, n
is the number of selected consecutive time windows, Ω rep-
resents the candidate spatial neighborhood, and N is total
events number in Ω. Additionally, the aforesaid processing
is all performed on the two channels of event polarity.

3.3. Evaluation and Discussion

The quality of GT is critical for a real paired event
dataset. However, it is challenging to objectively evaluate
the denoising results since directly obtaining clean data is
unpractical. To fairly assess the denoising effects of differ-
ent methods, we conducted a comprehensive evaluation.

Fig. 6 presents comparative results of representative
event denoising methods could be used for GT generation:
spatiotemporal density filter-based (DWF[20], STDF[15]),
smoothness optimization-based (TimeSurface[26]), and
motion estimation-based (EvFlow[44]). The first and sec-
ond rows display the denoised and residual noise visual-
ization, respectively. It can be observed that DED effec-
tively eliminates almost all the scattered BA noise with
good preservation of the inherent structured feature, while
the others exhibit residual noise and varying degrees of sig-
nal event damage. Statistical analysis on the global dis-
tribution of the denoised event is shown in the third row.
Compared to others, DED demonstrates a higher number of
blank patches while maintaining a high event preservation
rate, which better reflects the overall sparsity and local con-
centration of the ideal event stream. Moreover, better de-
noising often leads to higher-quality reconstruction. In the
last row, the intensity images reconstructed by E2VID [39]
indicate that DED accurately restores nighttime scene in-
formation, such as leaves, building contours, and road signs
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with lower NIQE [35], which further indirectly validates the
accuracy of denoised results and also confirms the superior
effect of the processed data on reconstruction.

4. DTSNN for Event Denoising

Compared to artificial neural networks(ANN), spiking
neural network (SNN) have lower precision but are inher-
ently suited for processing event-driven data due to their and
information transfer mode temporal dynamics, gradually
gaining prominence in event-based tasks [48, 49, 51, 52].

Dynamic Threshold Mechanism. Adjustable spiking neu-
ron offers enhanced biological plausibility [7, 13, 43]. In-
deed, the neuron firing threshold, similar to the event cam-
era threshold parameter, functions as controlling the out-
put. Intuitively, the dynamic threshold (DT) mechanism can
adapt to more complicated situations since a high threshold
could suppress noisy input when noise dominates, while a
low one helps to sensitively preserve the expected signals.
Inspired by this, we transformed the fixed threshold into dy-
namic ones based on the LIF neuron model [19] to mimic
this anisotropic biomechanism. The tendency of decreasing
spike quantity of the postsynaptic neurons responses with
an increasing threshold as illustrated in Fig. 7(a).

DTSNN Model. Therefore, we propose a fully SNN (all
synaptic operations are SNN-based) incorporating learnable
DT for event denoising, namely DTSNN. As illustrated in
Fig. 7 (b), DTSNN consists of a dynamic threshold branch
(DTB) and event denoising branch (EDB). The former dy-
namically generates a threshold map based on the succes-
sive event input, indicating the approximate spatial regions
of signal or noise. This map is then passed to the latter, con-
trolling the spiking process of LIF neurons in the last layer,

which is depicted in Fig. 7 (b) and can be formulated as:
Hn,t = V n,t−1 + Un,t

Sn,t = Hea(Hn,t −F(V t
th))

V n,t = VresetS
n,t +

1

τ
Hn,t ⊙ (1− Sn,t)

(4)

where n and t denote the layer number and time step respec-
tively. Hn,t is the membrane potential which is produced
by coupling the spatial feature Un,t and the temporal input
V n,t−1. The DT map F(V t

th) determines whether the output
spiking matrix Sn,t should be fired or stay as zero, formu-
lating the final denoised event matrix X . Hea(x) = 1 rep-
resents the Heaviside step function when x ≥ 0, otherwise
Hea(x) = 0, and ⊙ means a element-wise multiplication.

Notably, both two branches receive the same consecutive
data as input, which is a binary event frame within a certain
time window of Δt. The denoising branch is supervised
by the GT of signal events within Δt, while the threshold
map label of the dynamic threshold branch comes from the
signal events over a longer temporal period.

5. Experiments
5.1. Experiments Setup

Implementation Details. We use a combined loss consist-
ing of the L1-norm and BCE to train the proposed network.
Our models are implemented with the open-source frame-
work SpikingJelly [14], using NVIDIA A100 GPU. The
Adam optimizer is employed with a batch size of 8 and a
learning rate of 0.002. A fixed threshold of 0.5 is chosen for
the rest of the neurons except at the last membrane potential
layer. Besides, the reset value Vreset and the membrane time
constant τ of all LIF neurons are set to 0 and 2, respectively.
Datesets. We conduct quantitative experiments on exist-
ing paired datasets. Due to the enormous scale of billions
of events in LED, training them all would be extremely
time-consuming and resource-intensive. Therefore, 600 se-
quences were randomly selected for training with each con-
sisting of consecutive 10 segments, and 60 sequences were
randomly chosen for testing. To further evaluate the perfor-
mance of the discrepancy of different datasets, we qualita-
tively test on typical public datasets DSEC [18] and E-MLB
[8]. For event-based denoising methods, besides the meth-
ods in Sec.3.3 we select the representative supervised de-
noising methods including EDnCNN [2] and AEDNet[12].
Evaluation Methods. We use an index of event denois-
ing accuracy DA = 1

2 (
TP
GP + TN

GN ) to measures the denois-
ing performance on LED, where TP, TN, GP and GN are
the number of true signal, true noise, total signal, and total
noise respectively, forming two parts: signal retain (SR) and
noise removal (NR). The metrics on other paired datasets
are adopted from their proposed ones. Moreover, visualiza-
tion results was qualitatively evaluated on other datasets.
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AEDNet DTSNNEDnCNN EvFlowRaw Event

Figure 8. Visual comparisons on LED. Comparing with state-of-the-arts, DTSNN achieves excellent denoising results and it is capable of
removing noise events scattered around in sky, ground, and structural contours, simultaneously better preserve scene details.

Datasets LED
DVS

CLEAN
DVS

NOISE20
Average

Metrics SR↑ NR↑ DA↑ SNR↑ RPMD↓ Runtime↓

Knoise[24] 16.4 98.9 57.6 25.21 17.64 1.33 ms
DWF[20] 42.6 83.9 63.3 26.96 31.39 3.67 ms
STDF[15] 37.4 99.1 68.3 19.30 30.23 2.04 ms
TS[26] 30.6 98.3 64.5 13.98 15.25 5.76 ms
EvFlow[44] 52.3 96.4 74.4 23.74 22.50 150.5 ms

EDnCNN[2] 80.0 82.0 81.0 20.29 22.25 251.4 ms
AEDNet[12] 81.2 83.6 82.4 25.58 18.51 708.1 ms
DTSNN 86.0 86.5 86.2 29.26 16.13 8.20 ms

Table 2. Quantitative results comparison on different datasets.We
mark the best and second best.

5.2. Quantitative Evaluation

The main quantitative results are presented in Table 2.
In summary, the proposed method achieves the best over-
all results on three datasets, followed by AEDNet. Particu-
larly, DTSNN balances signal retention and noise removal
effectively, demonstrating the highest denoising accuracy.
Meanwhile, our model also achieved faster inference speed
on average among them. Notably, the runtime from 120 *
120 events indicates that the efficiency of grid-based event
representation and processing is significantly higher than
the manner based on a single-event level, although the latter
better preserves the asynchronous property of the event.

5.3. Qualitative Evaluation

Evaluation on LED Dataset. To further evaluate the de-
noising performance, we compare with the qualitative re-
sults of typical methods on LED. As shown in Fig. 8,
DTSNN outperforms other methods by achieving visually
pleasing results, which not only effectively removes noise
events in areas such as the sky, ground and building con-
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Figure 9. Illustration of the LED diversity. We train DTSNN on
different datasets: DVSCLEAN, DVSNOISE20 and LED, and test
on real unpaired datasets (from left to right: DSEC→E-MLB).
The model trained on LED has achieved better denoising results.

tours, but also preserve the structural features of the scene
and objects well. For example, the zoomed region of first
row in Fig. 8 highlights that our method is the only one suc-
cessfully preserving the information of small airborne target
after denoising. Similarly, our method also stands out in re-
tain lane marking located in the bottom-left of second row.
Evaluation on Public Datasets. To evaluate the general-
ization across different datasets, we also train DTSNN on
synthetic event denoising dataset DVSCLEAN [12] and real
one DVSNOISE20 [2] respectively, testing on DSEC [18]
and E-MLB [8], the former is resolution of 640*480 and
the latter is resolution of 346*260. As shown in Fig. 9, the
model trained on DVSCLEAN performs poorly due to the
huge domain gap between. DVSNOISE20 excels at remov-
ing noise effectively but inevitably loses some details. The
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Raw Event w/o spatial similarity w/ospt correlation w/ both

Figure 10. Ablation study of the dual events denoising framework.
The first column represents the noisy raw and the remaining three
columns represent the flow without spatial similarity, without spa-
tiotemporal correlation constraint and complete DED

Architecture Denoising Accuracy Energy Ratio

ANN 84.5 18×
SNN 86.0 1×

Table 3. Comparison between ANN and SNN.

model trained on LED achieves satisfactory results across
various scenes in these datasets which simultaneously re-
moves noise without apparent signal loss, strongly support-
ing the great generalization of the proposed LED dataset.

5.4. Ablation Study and Discussion

Effectiveness of DED Framework. The DED framework
aims to fully exploit the property of noise inconsistency
/signal consistency in dual events and the self-correlation
in a single event stream. As shown in Fig. 10, the small tar-
get signal is overwhelmed by noise events, utilizing solely
spatiotemporal correlation constraints can only remove par-
tial noise events because some of them also satisfy this re-
lationship. Relying on the spatial similarity of dual event
streams effectively disassembles the mutual relationship in
the dense noise event group. Therefore, combining both
procedures can achieve a more refined denoising result.
Effectiveness of Spiking Neuron. Intuitively, the inherent
spatiotemporal sparsity of event streams seamlessly aligns
with SNN because of the temporal information ability of
spiking neurons. To compare the performance differences
between SNN and ANN architectures in the event denois-
ing tasks, the evaluation was conducted on the same struc-
ture. As shown in Table 3, the SNN based on LIF neuron
achieves better denoising accuracy while maintaining 18×
lower power consumption advantage compared to its ANN
version (the spiking neurons replaced with ReLU).
Effectiveness of DT Module. To evaluate the effects of
the proposed learnable threshold mechanism of DTSNN,
we train the network with various fixed threshold neurons
and dynamic threshold neurons, respectively. As can be ob-
served from Table 4 and Fig. 11 (a), the denoising accu-
racy improves after introducing the DT module due to the
network has the tendency to increasing spiking probability
for signal pixels according to threshold prediction, and the
Fig. 11 (b) illustrates DT module could assist in locating
the approximate signal or noise region to retain more signal
events from structural area compared to the FT model.
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Figure 11. Illustration of the DT model Effectiveness. (a) Infer-
ence accuracy of SNN with various fixed thresholds and with DT.
(b) Denoised results without DT and with DT, respectively.

Type
FTSNN
(0.3 th)

FTSNN
(0.5 th)

FTSNN
(0.8 th)

DTSNN

Accuracy 85.5 86.0 85.7 86.2

Table 4. Inference accuracy with proposed methods implemented.

Discussion. Essentially, true events comes from intensity
changes. When artificial light source variations exist, the
light source itself, its coverage area and reflection from
ground texture would result in relevant events. These signal
events exhibit noise-like features with discontinuous struc-
ture, while the proposed DED framework considers them as
signal event that should be preserved. Thus, with the super-
vision of such signal labels, the proposed model also tend
to retain such events arise from lamp as shown in left two
columns of Fig. 9 despite their visually unappealing effect.
Limitation. The DED framework may fail in extreme cases
where similar part are dominated by noise events. How-
ever, such globally anomalous high-frequency noise is rare
in practice. Moreover, the proposed model struggles to cap-
ture those insignificant signals attaching to structural pe-
riphery, limiting signal retain performance in metrics.

6. Conclusion
In this paper, we construct a new large-scale high-quality

paired real event denoising dataset LED, which provides di-
verse noise levels and scenes which aims to cover various
internal and external conditions. Based on the consistency
difference of noise and signal events, the proposed DED
framework could effectively generate high-quality GT and
detailed analysis confirms our better results than others. In
addition, we propose a novel baseline DTSNN for event
denoising featuring with dynamic threshold mechanism of
LIF neuron. The experimental results demonstrate the su-
periority of the proposed dataset and denoising method.
Acknowledgments. The computation is completed in the
HPC Platform of Huazhong University of Science and
Technology. This work was supported by the National Nat-
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