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Figure 1. We propose a method to stylize a 3D scene from multi-view 2D images using vectorized 3D strokes based on geometric primitives
and splines. The four scenes from left to right are drawn with axis-aligned box, oriented box, ellipsoid, and cubic Bézier curve, respectively.

Abstract
We present Neural 3D Strokes, a novel technique to gen-

erate stylized images of a 3D scene at arbitrary novel views
from multi-view 2D images. Different from existing methods
which apply stylization to trained neural radiance fields at
the voxel level, our approach draws inspiration from image-
to-painting methods, simulating the progressive painting
process of human artwork with vector strokes. We develop
a palette of stylized 3D strokes from basic primitives and
splines, and consider the 3D scene stylization task as a
multi-view reconstruction process based on these 3D stroke
primitives. Instead of directly searching for the parame-
ters of these 3D strokes, which would be too costly, we
introduce a differentiable renderer that allows optimizing
stroke parameters using gradient descent, and propose a
training scheme to alleviate the vanishing gradient issue.
The extensive evaluation demonstrates that our approach
effectively synthesizes 3D scenes with significant geomet-
ric and aesthetic stylization while maintaining a consis-
tent appearance across different views. Our method can
be further integrated with style loss and image-text con-
trastive models to extend its applications, including color
transfer and text-driven 3D scene drawing. Results and
code are available at http://buaavrcg.github.
io/Neural3DStrokes.

* Corresponding author.

1. Introduction

Artistic style image creation, historically a domain re-
quiring significant skill and time, has been revolutionized
by neural network-based Style Transfer techniques [7, 8].
These methods usually separate, manipulate, and merge the
content and style of images to create an artistic effect. Ex-
tending this to 3D scenes, however, is challenging due to
complex geometries and appearance traits [28], and tradi-
tional convolutional neural network (CNN) methods [25]
are not readily adaptable to 3D spaces. Recently, 3D im-
plicit scene representations, particularly Neural Radiance
Fields (NeRF), have become popular, since they are fully
differentiable and easy to optimize. Efforts to apply artistic
styles to NeRF [11, 15, 22] often involve separate NeRF
training and style transfer, followed by integration style
transfer loss from multiple views [3, 5, 32]. The funda-
mental approach continues to be the independent manipula-
tion of content and style. Nevertheless, existing NeRF styl-
ization techniques only alter the color aspects, leaving the
density-and consequently the geometry—unchanged, lead-
ing to stylizations that lack geometric changes.

Style transfer methods in 2D and 3D primarily manip-
ulate pixels or voxels to achieve artistic effects, differing
from traditional art where artists use brushstrokes and a de-
gree of randomness in brushes, materials, and colors. This
traditional approach is time-consuming and skill-intensive.
To automate it, research has explored image generation with
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vectorized strokes [10], defined by position, color, size, and
direction, and optimized to match target images. 3D paint-
ing tools like Google’s Tilt Brush [4] use VR/AR to create
art scenes with various brushes in virtual spaces. However,
the field of automated stroke-based 3D art generation re-
mains relatively unexplored.

In this work, we present a novel technique for transform-
ing 2D images with known poses into stylized 3D scenes
using vectorized 3D strokes. Our approach recreates 3D
scenes that exhibit distinct geometric and appearance styles,
emulating the stroke-by-stroke painting process employed
by human artists. The vector-based nature of our system
enables rendering at any desired resolution. It accommo-
dates a range of 3D stroke styles and supports more intricate
stylizations and generations through the use of style and se-
mantic losses. The core of our method is a differentiable,
vectorized 3D scene representation, which diverges from
NeRF by using parameterized 3D strokes to synthesize 2D
images at different viewpoints. This differentiable represen-
tation allows for the direct optimization of stroke parame-
ters via gradient descent, sidestepping the need for previous
greedy-search-based or reinforcement learning-based pre-
diction methods in stroke-based image synthesis. Further-
more, we analyze the gradient behaviors of our stroke-based
3D representation and introduce a stroke initialization and
update scheme that avoids sub-optimal initialization where
optimization is difficult due to local minima.

Our method was evaluated using the multi-view datasets
of real-world and synthetic images. Our experiments
demonstrate that it effectively creates high-quality artistic
3D scene renderings by maintaining both global visual fi-
delity and local color accuracy while ensuring perspective
consistency. Our contribution is summarized as follows:
• We propose a novel method to translate multi-view 2D

images into stylized 3D scenes using 3D strokes based on
basic primitives and spline curves whose parameters can
be learned through gradient descent.

• We present a novel initialization scheme for the param-
eters in our stroke-based representation to address issues
of flat gradients during optimization.

• Our method supports various 3D stroke styles and can be
applied for sophisticated geometry and appearance styl-
izations similar to those created by human painters.

2. Related Work
2.1. Image Painting
Image painting, evolving over a long history, uses vec-
torized strokes in various colors and styles for 2D image
creation. Early methods like “Paint by Numbers” [9] in-
troduced brush parameters such as position, color, size,
and direction, optimized through techniques like stroke
zooming, noise adding, and color enhancement. Subse-
quently, more expressive forms emerged, employing slen-

der spline curves [10] and rectangular strokes [29] to bet-
ter capture source image details. The development of
brush libraries [26, 33] allowed for more diverse styles in
paintings, notably in oil painting effects. With the ad-
vent of deep learning, techniques like generative neural net-
works [21, 30] have further refined styled strokes. Ad-
vanced loss based on optimal transportation [34] and feed-
forward paint transformer [16] are used to improve fidelity
and speed up the painting process. While these techniques
are relatively mature, applying styles directly to 2D images
from 3D scenes lacks multi-view consistency, which moti-
vates our present work on using 3D strokes.

2.2. Stylization of 3D Scenes
The process of 3D scene stylization involves applying the
visual style of a chosen reference to a target 3D scene while
preserving its inherent 3D structure. Traditional meth-
ods [27] faced challenges like limited control over percep-
tual factors and the inability to selectively target stylization
effects. The advent of Neural Radiance Fields (NeRF) has
provided a more flexible representation for 3D scene styl-
ization. Techniques like ARF [32] transfer artistic features
from 2D style images to 3D scenes, treating stylization as
an optimization problem within the NeRF framework. Chi-
ang et al. [3] combines NeRF’s implicit representation with
a hypernetwork for style transfer. StylizedNeRF [11] jointly
learns 2D and 3D stylization, and StyleRF [15] learns high-
level features in 3D space for fast zero-shot style trans-
fer. Our approach diverges from existing methods, which
rely on additional style references and fundamentally con-
trast with the processes human artists use to create art-
works. We focus on generating artistic images through 3D
brush strokes, eliminating the need for style images. Our
method more closely resembles image painting techniques
than voxel-level manipulations.

3. Methodology
In this section, we introduce our 3D scene stylization frame-
work with stroke-based representation. Our framework
mainly consists of three parts: (1) a collection of 3D strokes
based on primitives and spline curves, (2) differentiable ren-
dering and composition of strokes, (3) a stroke initialization
and update scheme that stabilizes the training process.

3.1. Overview of Stroke Field
NeRF [19] represents the scene as the density σ(x) ∈ R+

and RGB radiance c(x,d), modeled by an MLP that takes
the spatial coordinates x ∈ R3 and view directions d ∈ R2

as input. Given a camera pose, rays r(t) = o + td are
sampled and cast from the camera’s center o ∈ R3 along the
direction d ∈ R3 passing through each pixel of the image.
The color of a ray is given by volume rendering:

C(r) =

∫ tf

tn

σ(r(t))c(r(t),d) exp(

∫ t

tn

σ(r(s))ds)dt (1)
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Figure 2. Our method learns a vectorized stroke field instead of
MLP-based implicit representation to represent a 3D scene.

As shown in Fig. 2, while NeRF models the scene at per-
voxel level with an implicit field, our method represents the
scene as a set of vectorized 3D strokes. Similar to NeRF, the
stroke field is defined by two spatially varying functions for
density σ(x) ∈ R+ and RGB color c(x,d) and rendered
into 2D images at a given camera pose, using the same dif-
ferentiable volume rendering formula as in NeRF.

While the stroke field shares NeRF’s field definition,
their core formulations are fundamentally different. Each
point’s density and color in the stroke field are set by 3D
strokes, shaped and styled to resemble brush traces in hu-
man drawings. This is analogous to the difference be-
tween a rasterized image and a vectorized image but in 3D
space. Specifically, the geometry, appearance, and opacity
of 3D strokes are given by three parameters, including shape
θs ∈ RN×ds , color θc ∈ RN×dc and density θσ ∈ (R+)N ,
where N is the total number of strokes in the field, ds and
dc are the number of parameters of the specific stroke shape
and color, respectively. We combine these strokes in a dif-
ferentiable way to acquire the density and color field:

(σ, c) = StrokeF ield(x,d; θs, θc, θσ) (2)

3.2. 3D Strokes

We first define the shape of our 3D strokes to paint them
into the 3D space. The shape of a 3D stroke is essentially
a volume region formed by a closed two-dimensional sur-
face. To define such volume, we use the Signed Distance
Field (SDF), a scalar value function sdf(x) → s ∈ R
that gives the signed distance from a point to the closed
surface to describe the stroke shape in 3D. The sub-space
{p ∈ R3 | sdf(p) ≤ 0} enclosed by the zero level-set is the
stroke volume. We construct two types of strokes based on
basic geometric primitives and spline curves respectively.

3.2.1 Basic Primitives
Our first category of 3D strokes is based on common geo-
metric primitives such as spheres, cubes, etc. For simplic-
ity, we normalize these geometries at the origin of the unit
space, apply a transformation matrix to the unit geometries,

Primitive Params SDF formula

Sphere None ∥p∥2 − 1

Cube None min(max(qx,qy,qz), 0) +
∥max(q,0)∥2, where q = |p| − 1

Tetrahedron None (max(|px+py|−pz, |px+py|+pz)−
1)/
√
3

Octahedron None (∥p∥1 − 1)/
√
3

Round Cube r min(max(px,py,pz), 0) +
∥max(p,0)∥2 − r

Triprism h max(|py| − h,max(|px| ∗
√
3/2 +

pz/2,−pz)− 0.5)

Capsule Line h, rδ ∥p − [0,min(max(py,−h), h), 0]∥2 −
rδ min(max((0.5∗(py+h)/h, 0), 1)−1

Table 1. SDF formula for common unit geometry primitives.

and acquire their SDFs in the scene space. The unit geome-
try can optionally contain a shape parameter θbasic

s ∈ Rdbasic

describing its transformation-agnostic shape feature, where
dbasic is the number of basic shape parameters. The SDF of
unit primitive is defined as sdfunit : (p̂, θbasic

s ) → s ∈ R,
where p̂ is a 3D point in the unit space. We list the common
unit geometric primitives in Tab. 1.

We apply a transformation matrix T ∈ R4×4 to trans-
form primitives from the unit coordinates p̂ to the shared
scene coordinates p = Tp̂. The parameters of transforma-
tion are composed of a translation t ∈ R3, a rotation de-
scribed by Euler angle r ∈ R3, and a uniform or anisotropic
scale s ∈ R3. To acquire the SDF of primitives in the scene
space, we inversely transform the position to the unit space
and query the unit SDF:

sdf(p; θs) = sdfunit(T(t, r, s)−1p, θbasic
s ), (3)

where θs = {θbasic
s , t, r, s} is the final shape parameters for

primitive-based 3D strokes. In practice, we may use a sub-
set of translation, rotation, and scale to combine different
styles of primitive strokes. We list all the primitive-based
3D strokes in the supplementary. More primitive can be
easily added given a defined unit SDF.

3.2.2 Spline Curves
In addition to basic primitives, we use volumetric 3D curves
with a given radius to simulate the trace of strokes in human
paintings. The curves are defined by parametric 3D splines
in the scene space: C : (t, θcurve

s ) → x ∈ R3, where t ∈
[0, 1] is the interpolation parameter, and θcurve

s ∈ Rdc is the
parameter of the 3D spline. To simulate the brushstroke
effects, we define two different radii ra, rb ∈ R+ at the two
endpoints of the spline curve respectively, and interpolate
the radius at any position on the curve smoothly based on t
as r(t; ra, rb) = ra(1− t) + rbt.

We utilize common polynomial splines, including
quadratic and cubic Bézier and Catmull-Rom splines, to de-
fine 3D curves. To compute the SDF of a 3D curve, we need
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to solve for the value of t corresponding to the nearest point
on the spline curve for any point p ∈ R3 in space. While
there exists an analytic solution for quadratic splines, it is
difficult to directly solve for the nearest point’s t value for
cubic or more complex splines in a differentiable way.

Therefore, we use a general approximation method to
compute the SDF: we uniformly sample K+1 positions on
the curve to get K line segments, and calculate the distance
from these segments to the query point respectively, thereby
obtaining an approximate nearest point. This algorithm can
be applied to any parametric curve spline and allows simple
control over the trade-off between computational complex-
ity and accuracy. With the found t value of the nearest point
on the 3D spline to query position p as t∗, the SDF of the
3D curve is defined as

sdf(p; θs) = ∥p− C(t∗, θcurve
s )∥2 − r(t∗; ra, rb) (4)

where θs = {θcurve
s , ra, rb} is the final shape parameters for

spline-based 3D strokes. We leave the details of the nearest
point finding algorithm in the supplementary.

3.3. Differentiable Rendering of 3D Strokes

With the SDF of 3D strokes defined in Sec. 3.2, we now
convert it into the density field σ(x) and color field c(x,d)
for differentiable rendering.

Deriving Density Field from SDF. Theoretically, we
consider the inner region of a 3D stroke with an SDF value
less than or equal to zero. Therefore, we can define an in-
dicator region function α(x) ∈ [0, 1] based on whether a
point is inside the SDF:

α(x) =

{
1, sdf(x) ≤ 0

0, otherwise
(5)

Assuming uniform density inside one stroke, we define the
density field of each 3D stroke as

σ(x) = θσα(x) (6)
where θσ ∈ R+ is the density parameter of a 3D stroke.
However, due to the discontinuity of the indicator function,
the gradient of the density field w.r.t. the shape parame-
ters of the SDF is zero, thus hindering the use of losses to
optimize the 3D stroke. To render the 3D stroke in a dif-
ferentiable way, we aim to derive a smooth approximation
of the region function to gain non-zero gradients regarding
the shape parameters. We use the Laplace cumulative dis-
tribution function (CDF) to approximate the discrete region
function, similar to VolSDF [31]:

α(x) =


1− 1

2
exp(sdf(x)/δ), sdf(x) ≤ 0

1

2
exp(−sdf(x)/δ), otherwise

(7)

where δ controls the width of the smooth transitional in-
terval, as shown in Fig. 3. This definition ensures that all

𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)
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𝛼𝛼(𝑥𝑥)
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Figure 3. Differential region function by approximating step func-
tion with the CDF of Laplace distribution. The parameter δ con-
trols the width of the transitional area with respect to the SDF of
3D strokes, where a larger δ leads to smoother gradient at the cost
of making the shape boundary blurrier.

points in space have non-zero derivatives w.r.t. the shape
parameters, although the gradient would be too small to
achieve meaningful optimization excluding the near region
besides the zero level-set boundary of the SDF. This approx-
imation approaches the discrete indicator function when
δ → 0, while larger δ allows smooth gradients flow in a
larger area near the boundary, at the cost of making the
shape boundary more blurred.

Adaptive Choice of δ based on Cone Tracing. Since the
pixel corresponding to each ray has a specific planner size
during rendering, the pinhole camera model casts a frus-
tum with non-zero volume instead of a ray. The frustum far
away from the camera will cover a large region of the scene,
while the near frustum will only affect a small region. Using
a uniform δ across the entire scene to render the 3D strokes
will make the near objects over-blurry, and far objects lack
enough gradients to optimize the stroke shape. To solve
this issue, we adopt a similar cone tracing strategy as in
MipNeRF [1], and adjust the δ value of the region function
adaptively based on the cone size. For simplicity, we use
isotropic spheres instead of anisotropic multivariate Gaus-
sians to approximate the volume of the cone. Specifically,
assuming the radius of each pixel is ṙ, we calculate the ra-
dius of a sphere at sample points as r = ṙtf−1, where t is
the un-normalized ray distance, and f is the focal length.
We then compute the adaptive δ as δ = (kδr)

−1, where kδ
is a hyper-parameter controlling how much to “dilate” the
boundary. Moreover, as the scale of δ is defined in scene
space, for basic primitives with a transformation, we further
adjust δ based on the scaling factor of the inverse transform.

Color Field. We mainly use constant color for each
stroke, which is irrelevant to the position and view direc-
tion and can be expressed as c(x,d) = θc, where θc ∈ R3

is the RGB color parameter. More diverse visual effects can
be achieved by spatially varying color fields and joint mod-
ification of the density and color. The color field can be
readily expanded to support view-dependent effects by re-
placing the RGB color with spherical harmonics, however,
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we have found that the view dependency does not contribute
much to the visual effect of stroke-based scenes in practice.

3.4. Composition of 3D Strokes

Given the density and color field of individual 3D strokes,
we now compose them into a stroke field for rendering the
full 3D scene. In the procedure of image painting, different
strokes are painted onto the canvas sequentially, and new
strokes are overlayed on the old strokes. This behavior is
simulated using the alpha composition. Similarly, we use
an “overlay” method to compose multiple 3D strokes.

Suppose we have the density fields {σi(x)} and color
fields {ci(x)} of N strokes, where i ∈ {1, 2, · · · , N}. We
use the region function defined in Sec. 3.3 as the blending
weight for overlay. Given {αi(x)} as the region function
of each 3D stroke, the density and color of the final stroke
field are expressed as

σ(x) =

n∑
i

σi(x)αi(x)Ti(x),

c(x) =

∑n
i ci(x)αi(x)Ti(x)

1− Tn(x)
,

(8)

where
Ti(x) =

i∏
j

(1− αj(x)). (9)

Note that we normalize c(x) using the total weight of all
region functions, making the final color unaffected by the
number of strokes.

The “overlay” composition is sensitive to the painting or-
der of multiple strokes, i.e., the 3D strokes painted later will
have larger blending weights than the previously painted
strokes. Normally this is the behavior we desire, however,
we sometimes would like the final outcome irrelevant to the
painting order. The simplest way is choosing the 3D stroke
with the maximum α(x) as: σ(x) = σi(x), c(x) = ci(x),
where i = argmaxj{αj(x)}. This “max” composition will
only attribute the gradient of the density field to the nearest
3D stroke. A smoother way is to use Softmax for comput-
ing weights as: σ(x) = σi(x)ωi(x), c(x) = ci(x)ωi(x),
where ωi(x) =

exp(αi(x)/τ)∑n
j exp(αj(x)/τ)

, and τ is a hyper-parameter
that controls the blending smoothness. We analyze the ef-
fect of different compositions in Sec. 4.3.

3.5. Training Strategy

Now we have completed our rendering framework for 3D
strokes. We can render 2D images with a given cam-
era pose from parameters of N strokes {θs, θc, θσ}i, i ∈
{1, 2, · · · , N}, and use gradient descent to optimize these
3D stroke parameters. However, in the previous analysis,
we mentioned that the magnitude of gradients vanishes for
faraway points from the existing boundary of strokes, thus

leaving shape parameters unable to gain enough optimiza-
tion. To this end, we propose a training scheme for better
stroke initialization and update.

Error Field. When adding 3D strokes to an existing
scene, we wish to initialize the new stroke at the loca-
tion where it is most needed. Therefore, during the train-
ing of the stroke field, we additionally train an error field
e(x) ∈ R+ to describe the “error rate” at each position
of the reconstructed scene, with the region of highest error
considered to be the locations most in need of additional 3D
strokes. The error value E(r) along each ray r is obtained
by the modified volume rendering formula:

E(r) =

∫ tf

tn

e(r(t)) exp(

∫ t

tn

e(r(s))ds)dt. (10)

We define the error as the squared difference in color be-
tween the stroke field rendering result and the ground truth.
Moreover, we prefer the error field to conservatively esti-
mate errors, therefore we use a coefficient k > 1 to amplify
the loss where the error is underestimated. Assuming the
rendering color of stroke field is C(r), and the GT color is
Cgt(r), then the training loss for the error field is

Lerr = |d|kmax(−sgn(d),0), d = E(r)−∥C(r)−Cgt(r)∥2,
(11)

where sgn(·) is the sign function. At the same time, for
views that are less trained, we apply a regularization loss
to the error values. For N total sampling points {xi} in a
batch, the regularization loss is Lerr reg =

∑N
i e(xi).

Stroke Initialization and Update. When training a scene
with N strokes, we randomly initialize Nstart strokes and
then incrementally add the remaining strokes step by step
to the scene. We also decay the initial size of strokes based
on the current number of strokes, i.e., we progressively use
smaller strokes as the number of existing strokes increases.
When initializing the i-th stroke, we uniformly sample M
coordinates {pi} within the bounding box of the scene, cal-
culate the error values {ei} in the error field, and select the
sampling point with the highest error as the initial position
for the 3D stroke. For primitives, we set their translation
vector to this initial position. For spline curves, we set their
control points to this initial position plus a random offset
vector sampled within the current stroke size volume. This
initialization scheme, guided by the error field, effectively
mitigates optimization issues caused by flat gradients. Ad-
ditionally, we reinitialize strokes with near-zero density by
resampling the current error field. This simple technique
recycles some of the brush strokes that might have been
trapped in local minima due to poor initialization.

Training Objective. Similar to NeRF, we use multi-view
images as the primary supervision. We randomly sample
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Figure 4. Novel view synthesis results of various 3D strokes on the synthetic scenes. Each scene contains 500 strokes. Our vectorized
stroke representation is able to recover the 3D scenes with high fidelity while maintaining a strong geometric style defined by the strokes.

rays from images in the training set and optimize the er-
ror between the rendering result of each ray and the ground
truth. We use the Charbonnier distance for color loss:

Lcolor =
√
∥C(r)− Cgt(r)∥22 + ϵ (12)

For scenes with a ground truth mask, we also impose
mask supervision based on the ray’s opacity O(r) =

exp(
∫ tf
tn

σ(r(t))dt) and the ground truth M(r) ∈ {0, 1},

Lmask =
√
∥O(r)−Mgt(r)∥22 + ϵ (13)

Additionally, we regularize the density parameter of N
strokes as Lden reg =

∑N
i |θiσ|. Combining the above

losses, our total loss is given by:

L = λcolorLcolor + λmaskLmask

+ λden regLden reg + λerrLerr + λerr regLerr reg

(14)

4. Experiments
We test our method on both synthetic objects from
Blender [19] and face-forwarding scenes from LLFF [18].
Each dataset comprises dozens to hundreds of multi-view
images with given camera poses. We show our reconstruc-
tion results based on various types of vectorized 3D strokes,
compare the stylization results of our method with other
image-to-painting methods, and conduct an ablation study.

4.1. Stroke-based scene reconstruction

Fig. 4 shows a sample of the stylized 3D synthetic scenes re-
constructed by our method with several types of 3D strokes.
Our method is able to synthesize 3D scenes based on vector-
ized 3D strokes, providing strong geometry and appearance

stylization while maintaining the abstracted shapes and col-
ors of the original scenes. Fig. 5 compares reconstruction
results of different types of 3D strokes on the same scene.
Cubic Bézier and Ellipsoid generally have the best recon-
struction fidelity compared to other types of strokes. We
list the quantitative metrics of different strokes in the sup-
plementary material. Fig. 6 demonstrates the abstract-to-
detail painting results by varying the number of total 3D
strokes that are used to reconstruct the scene. We can ob-
serve that the lower number of strokes approximates the
original scene with a strong shape-related geometric style,
while the higher number of strokes leads to reconstruction
results with higher fidelity.

4.2. Comparison with other methods

Our method lies in a different category of stylization com-
pared to the common NeRF-based stylization works, which
usually take a reference image as input, and transfer the tex-
tural style onto the appearance of a trained radiance field.
Our method does not require extra reference images, in-
stead, the style of our method is intrinsic and contained in
the specification of various 3D strokes.

We compare our method with 2D image-to-painting
methods. Fig. 7 shows the vectorized reconstruction re-
sults of our method and other 2D vectorized image repre-
sentation methods, including diffvg [14] and Stylized Neu-
ral Painting [34]. We use multi-view images to train our 3D
stroke representation, while for 2D methods we select im-
ages of the specific viewpoints and apply the vectorization
tracing. It can be observed that all these vectorized methods
are able to reconstruct original images with obvious stroke
styles. Nevertheless, our method can recover more details
and strictly maintain the multi-view consistency across dif-
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Figure 5. Results of different types of 3D strokes on the face-forwarding scenes. Each scene contains 1000 strokes.

25 Strokes 100 Strokes 250 Strokes 500 Strokes 1000 Strokes 2000 Strokes
Figure 6. Results with different stroke numbers. By changing the total number of strokes, our stroke-based representation can capture both
the abstraction and fine-grained details of the original scenes.

Input Oursdiffvg SNP

Figure 7. Comparison with 2D image-to-painting methods.

ferent views, which is guaranteed by its 3D representation.
The results are best viewed in our supplementary video.

4.3. Ablation studies
Use of adaptive δ in region function. We investigate the
effects of employing an adaptive δ in differentiable render-
ing. The results in Tab. 2 show that omitting adaptive δ leads
to reduced performance in novel view synthesis. Addition-
ally, Fig. 8 demonstrates that constant δ values, whether low
or high, result in sub-optimal or overly blurry scenes.

Use of error field. In Sec. 3.3, we note that loss gradi-
ents are concentrated near the 3D stroke boundary, creat-
ing many local minima that heavily influence optimization
based on shape initialization. Tab. 2 demonstrates that us-
ing the error field for stroke shape initialization significantly
improves scene reconstruction fidelity.

Choice of composition function. We compare different
composition approaches in Sec. 3.4. We can observe in
Fig. 9 that the ‘overlay’ composition leads to the best re-
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Method PSNR↑ SSIM↑ LPIPS↓
Ours (constant low δ) 21.30 0.793 0.177
Ours (constant high δ) 21.86 0.796 0.235
Ours (w/o adaptive δ) 22.50 0.815 0.179
Ours (w/o error field) 21.79 0.811 0.192
Ours (full) 23.13 0.825 0.171

Table 2. Novel view synthesis metrics of ablation studies.

Ours

Constant low 𝛿𝛿 Constant high 𝛿𝛿

w/o adaptive 𝛿𝛿 w/o error field

Input

Figure 8. Comparison of ablation study results.

Overlay Max Softmax (𝜏𝜏 = 0.05)

Figure 9. Comparison of stroke composition methods.

construction quality, while the ‘softmax’ composition also
reconstructs the scene well. The latter can be chosen if or-
der invariant painting is required.

4.4. Applications
We explore various applications based on our vectorized
3D scene representations, including color transfer and text-
driven zero-shot scene drawing.

Color Transfer. As the 3D stroke representation has sep-
arate shape and appearance parameters, we can fix the ge-
ometry and only fine-tune the color parameter to achieve
color transfer effects. We adopt the style loss in common
style transfer works, which matches the gram matrix of the
feature map outputs from the 4-th and 9-th layers of a pre-
trained VGG network. The reference style images and color
transfer results are demonstrated in Fig. 10.

Text-driven Scene Drawing. We also explore using the
vectorized 3D stroke representation to achieve scene cre-
ation tasks under a text-guided zero-shot generation frame-
work. We use CLIP [24], a vision-language model that em-
beds the 2D images and text prompts into the same embed-
ding space. Following DreamField [12] and CLIPDraw [6],

Figure 10. Color transfer results. The left column is the input and
style target images respectively.

a green plant a tomato a sandwich

Figure 11. Text-driven 3D drawings of common objects with 300
strokes of cubic Bézier curve.

we sample camera poses following a circular path around
the scene and render an image patch, then optimize the dis-
tance between CLIP embeddings of the patch and the text
prompt. Fig. 11 shows the generated 3D drawings of differ-
ent objects. More details are provided in the supplementary.

5. Discussion
We present a novel method to stylize a 3D scene from
multi-view 2D images. Different from NeRF-based repre-
sentations, our method represents the scene as vectorized
3D strokes, mimicking human painting during scene recon-
struction process. We demonstrate that this stroke-based
representation can successfully stylize 3D scenes with large
geometry and appearance transformations, which was not
achieved with previous NeRF stylization approaches.

Limitations and future works. Our method uses a stroke
setting that demands manual effort to design stroke shapes
and appearances. The 3D strokes can be further learned
with a generative framework to create a variety of stroke
types, like ink and oil brushes, with generated and more de-
tailed SDFs. Moreover, our method may require numerous
strokes to represent very complex scenes, partly due to the
existence of many local minima during the optimization. In-
corporating a globally aware loss, like the optimal transport
loss in [34] into 3D space, may enhance the convergence
efficiency of our method, which we leave as future work.
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