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Abstract

This paper addresses the challenge of object-centric lay-
out generation under spatial constraints, seen in multi-
ple domains including floorplan design process. The de-
sign process typically involves specifying a set of spa-
tial constraints that include object attributes like size and
inter-object relations such as relative positioning. Existing
works, which typically represent objects as single nodes,
lack the granularity to accurately model complex interac-
tions between objects. For instance, often only certain parts
of an object, like a room’s right wall, interact with adjacent
objects. To address this gap, we introduce a factor graph
based approach with four latent variable nodes for each
room, and a factor node for each constraint. The factor
nodes represent dependencies among the variables to which
they are connected, effectively capturing constraints that
are potentially of a higher order. We then develop message-
passing on the bipartite graph, forming a factor graph neu-
ral network that is trained to produce a floorplan that aligns
with the desired requirements. Our approach is simple and
generates layouts faithful to the user requirements, demon-
strated by a large improvement in IOU scores over existing
methods. Additionally, our approach, being inferential and
accurate, is well-suited to the practical human-in-the-loop
design process where specifications evolve iteratively, offer-
ing a practical and powerful tool for AI-guided design.

1. Introduction
The incorporation of AI into the layout design process rep-
resents a significant advancement in design methodologies.
Researchers have predominantly adopted a generative mod-
eling approach, enabling the generation of diverse designs
with limited user inputs [1, 15, 17, 20, 21]. Although very
useful, this approach faces practical challenges when we
have a fixed uneven boundary and users have several spe-
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Figure 1. Given a building boundary and a graph that encodes user
requirements and room constraints, we first transform the inputs
into a factor graph that can model higher-order constraints, and
then produce the floorplan based on the factor graph model.

cific requirements and seek active involvement in the design
process. In such instances, inferential models specifically
trained to produce layouts that align precisely with user re-
quirements are likely more beneficial.

The challenge of layout design generation with con-
straints is more prominently seen in the design of floorplan
layouts [1, 11, 14, 15, 17, 20, 21, 23, 31, 33], which can
include both user-defined and structural constraints. User-
defined constraints stem from individual preferences re-
garding room sizes, adjacencies, and other design consid-
erations. Structural constraints may require the layout to
remain within the boundary of a building or adhere to other
geometric restrictions. For example, given a boundary, a
user may want two rooms adjacent to each other in a partic-
ular corner of the house. A good inferential model would be
able to produce a layout satisfying these constraints. With
partial output available, users can append or update their
requirements and thereby, refine the design iteratively.

One common approach for producing floorplan layouts
is to use a two-stage method, where the first stage involves
predicting bounding boxes for individual objects/rooms,
followed by a refinement network that converts the bound-
ing boxes into an image [4, 11]. For the first stage, the
room-adjacency graph is taken as input, and a Graph Neu-
ral Network(GNN)-based model is often used to predict the
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bounding boxes of rooms [5, 11]. However, the represen-
tation of each object as a single node, while straightfor-
ward, falls short in terms of granularity and effectiveness.
It notably struggles to accurately reflect the intricate inter-
actions that occur between objects, as these interactions are
frequently localized to specific parts of an object. For ex-
ample, it is often the case that only one side of a room,
such as the right wall, is actively engaged with an adjacent
object. Therefore, we represent each room using four sepa-
rate latent variables to represent the four boundaries of the
bounding box: xmin, xmax, ymin, and ymax. This approach
effectively captures fine-grained interactions, yet it also in-
troduces the necessity to model higher-order dependencies.
For instance, determining the size of a room requires all four
variables. Modeling the potentially higher-order dependen-
cies, however, presents a non-trivial challenge.

To handle the challenge, we propose a factor graph based
model to encode the dependencies. A factor graph is a bi-
partite graph consisting of factor nodes and variable nodes.
In our model, each room is represented by four variable
nodes, and each factor node is designed to represent the
dependencies among its connected variables. This enables
modeling arbitrary constraints including those of a higher-
order, a capability lacking in traditional GNNs which can
model only pairwise dependencies. This allows us to lever-
age domain knowledge more effectively than the adjacency-
graph approach typically used in existing works. For in-
stance, we impose a boundary constraint ensuring that all
rooms are contained within a predefined boundary by em-
ploying a factor that connects to all the relevant variables.
We associate an embedding with each factor graph node to
represent the latent information associated with the node
and design message passing operations on the factor graph,
leading to a Factor Graph Neural Network (FGNN) [8, 36].

As our objective is to produce floorplan layouts that sat-
isfy all input constraints, we evaluate our model’s perfor-
mance with a focus on fidelity to the ground-truth image
that is used to derive the constraints. Our model surpasses
other strong baselines, achieving a significant improvement
in both box-level IOUs and pixel-level metrics, indicating
the effectiveness of our approach. Furthermore, we demon-
strate our model’s usefulness in two distinct practically use-
ful scenarios. One, we show that our model is well-suited
to the iterative refinement of human requirements, enabling
the development of varied designs with user-interactions.
Two, we show that our model can form part of a generative
pipeline and generate diverse realistic layout designs for the
same given input boundary, validated both qualitatively and
quantitatively.

2. Related Work
The predominant approach taken by the researchers towards
addressing the automated design problem is through condi-

tional generative modeling [1, 11, 12, 14, 15, 17, 20, 21,
23, 31, 33]. Layout generative models with a focus on res-
idential floorplan layouts, aim to create room layouts that
satisfy limited user constraints of room types and adjacen-
cies, with or without building boundaries [2, 6, 33, 34, 38].
Previous works have used various strategies to achieve this,
such as training probabilistic methods [19, 27] or using evo-
lutionary strategies based on user specifications and con-
straints [25, 26], and designing constraint graphs [11, 23].

In[33], a two-stage approach learning network was pro-
posed for generating floorplans for residential buildings,
and the RPLAN dataset was released. Since then, follow-up
works have focused mainly on building GAN-based gen-
erative models. These models typically take in a room-
adjacency graph called bubble diagrams. Some of the popu-
lar models in this line of research include Housegan, House-
gan++, and other variants [3, 20–23, 29, 31, 32]. While
these approaches generate realistic floorplans, they have
limitations when users are seeking to actively vet most as-
pects of the layout. Recently, [9] have proposed a gener-
ative modeling approach which allows human-in-the-loop
mechanism. However, they do not exploit the relational
constraints that users are likely to provide. Furthermore,
in this work, we target the problem from an iterative design
perspective where users refine their requirements iteratively
upon seeing the results of their partial requirements. In such
cases, an inferential model which focuses on maximizing fi-
delity to the user requirements is likely more useful.

Research on floorplan layout generation, focused on cre-
ating layouts from input room-adjacency graphs that match
ground truth is found in Graph2Plan [11] and HPGM [5].
Our work builds upon Graph2Plan’s two-stage methodol-
ogy, initially predicting room bounding boxes and then uti-
lizing these predictions for layout creation. We propose
transforming input constraints into a factor graph and em-
ploying neuralized message passing for effective constraint
utilization and domain knowledge integration. Neural mes-
sage passing on factor graphs has recently shown impres-
sive results on some tasks like molecular prediction and
navigation [7, 8, 28, 30, 35, 36]. Our work mainly builds
on [8, 36, 37] with learnable bipartite message passing be-
tween variable and factor nodes.

3. Preliminaries

3.1. Factor Graphs

A factor graph is a bipartite graph G = (V, C, E) with two
disjoint sets of nodes, variable nodes V , and factor nodes
C. A variable node i ∈ V represents a variable xi ∈ x and
each factor node c ∈ C specifies that there are dependen-
cies among a set of variables xc; an edge (c, i) ∈ E exists
between variable node i and factor node c if xi ∈ xc.

Factor graphs are widely used to capture dependencies
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in probabilistic graphical models (PGM). In PGMs, ap-
proximation algorithms of inferring optimal values of vari-
ables x∗ often operate by running message passing on factor
graphs, for example, the belief propagation algorithms.

3.2. Factor Graph Neural Network

Message-passing operations on a graph can be represented
as a graph neural network. In a similar way, we can rep-
resent message passing on a factor graph as a factor graph
neural network (FGNN) [8, 28, 36]. By assuming tensor
decomposed factor potentials, both sum-product and max-
product belief propagation algorithms for PGMs can be rep-
resented with compact FGNNs [8, 36, 37]. With the use of
more powerful approximators within the FGNN, it may be
possible to learn even more powerful inference algorithms
specialized for the problem domain.

In FGNN, a bipartite factor graph is established with
variable and factor nodes, where each factor node connects
to its dependent variable subset. These nodes are repre-
sented by variable (vi) and factor (f c) embeddings, initial-
ized using respective features. The embeddings are then up-
dated iteratively through message-passing equations.

ṽi = AGGc∈N(i) ΨFV(f c,vi) (1)

f̃ c = AGGi∈N(c) ΨVF(vi, f c) (2)

where ΨFV and ΨVF are functions with learnable parame-
ters. Note that the factor graph is a bipartite graph. There-
fore, N(i) will contain only factor nodes c and N(c) will
contain only variable nodes i. This process can be iterated
multiple times, followed by a readout function for tasks like
regression or classification.

4. Proposed Method
4.1. Problem Setup

In our problem setup, we are given a room-adjacency graph
G and a boundary of the building B. The graph G is as
described in Graph2Plan [11] and contains a node for each
room with attributes including the size and position, and
edges are typed adjacencies describing the spatial relation-
ship between rooms. The boundary B is a 2D binary mask
describing the inside area of the building. The task is to
produce the floorplan layout image I which satisfies all the
constraints in the input. Our problem setup differs from
many GAN-based methods, as they often prioritize gener-
ation diversity. In contrast, our objective is to produce a
layout that satisfies the specified constraints. Therefore, in
addition to generating realistic layouts, we also aim to pro-
duce layouts that closely resemble the ground truth.

To address the task, we follow conventional methods in
adopting a two-stage approach [5, 11]. In the first stage, we
output the coordinates of bounding boxes for each room,

while in the second stage, we produce the floor plan layout
image using the predicted bounding boxes. Our primary fo-
cus is on enhancing the accuracy of the first stage by lever-
aging domain knowledge, such as higher-order relations. To
this end, we seek to effectively incorporate domain knowl-
edge, including higher-order relations, into the model.

4.2. Representation

For the first stage of predicting bounding boxes, conven-
tional methods leverage GNNs to process the input graph
and output bounding box coordinates, which are then used
to produce the layout image. However, representing each
object as a single node is a straightforward approach but
lacks in granularity and effectiveness. This method often
fails to capture the complex interactions between objects,
which are typically concentrated on certain parts of an ob-
ject. A common example is that only a specific side of a
room, like the right wall, might be actively interacting with
a neighboring object.

To capture the fine-grained interactions, we propose to
represent each room with four different variables. Con-
sider a floorplan image as a single-channel image of size
H×W with each room represented by an enclosing bound-
ing box. Let the room i’s bounding box be described
by four coordinates in the form (xi

min, x
i
max, y

i
min, y

i
max)

with xmin/max ∈ {1 . . .W} and ymin/max ∈ {1 . . . H}.
Then the set of variables x, describing the bounding boxes
of all the rooms, can be stated as

x =
{
xi
min, x

i
max, y

i
min, y

i
max| i ∈ {1 . . . N}

}
where N is the number of rooms in a given floorplan. Given
the boundary B and the input graph G, we aim to predict the
values of the configuration of variables x which optimally
satisfies all the constraints in B and G.

4.3. Floor-Plan Factor Graph Model

In layout design, we frequently encounter high-order con-
straints that traditional GNNs cannot capture due to their
limitation in modeling only pairwise dependencies. To ef-
fectively encode these constraints, we propose the adoption
of factor graphs. Factor graphs provide the needed model-
ing capacity to capture the information available from do-
main knowledge. With factor graphs, the mutual dependen-
cies between the variables can be easily encoded in the form
of factor nodes. Importantly, input constraints provide im-
portant clues regarding the variable dependencies. For ex-
ample, with our defined variables xmin, xmax, ymin, ymax

per each box, when two rooms are adjacent with a left-right
relationship, it is likely that the xmax and xmin values of
the two rooms are correlated. By recognizing these corre-
lations, we can leverage domain knowledge to enhance the
model’s accuracy in predicting bounding box coordinates.
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Figure 2. Illustration of the proposed factor graph model for floorplan design. Each room is represented with four bounding-box variables.
Factors connect the variables based on input constraints and domain knowledge.f i

box connects four variables of room i. fs,o
rel connects only

relevant subset of variables between rooms s and o. fk
boundary represents kth corner-point and connects to all the variables. Message

passing on this factor graph helps learn better room coordinates which are then used to produce the layout image.

Relation left-of right-of above below

Factors {xs
max, xo

min} {xs
min, xo

max} {ysmax, yomin} {ysmin, yomax}

Relation left-above right-above left-below right-below

Factors {xs
max, xo

min} {xs
min, xo

max} {xs
max, xo

min} {xs
min, xo

max}
{ysmax, yomin} {ysmax, yomin} {ysmin, yomax} {ysmin, yomax}

Relation inside surrounding

Factors

{xs
min, xo

min} {xs
min, xo

min}
{ysmin, yomin} {ysmin, yomin}
{xs

max, xo
max} {xs

max, xo
max}

{ ysmin, yomax} {ysmin, yomax}

Table 1. Full set of relation types and their corresponding factors frel defined in our factor graph model.

Overall, we model four kinds of factors: box factors, re-
lational factors, boundary factors, and a complete factor.
Except relational factors, the rest are higher-order factors
that capture dependencies between multiple variables. An
illustration of the model is shown in Fig. 2.

4.3.1 Bounding Box Factors

We have four variables per bounding box, and these vari-
ables are likely to be highly correlated. For example, if the
room size is 100 sqft, the four variables of the room must
satisfy the constraint that (xmax−xmin)∗(ymax−ymin) =
100. This constraint is a higher-order factor that can pro-
vide a useful inductive bias for learning the values of the
x and y variables. To encode this information, we intro-
duce a box factor for each room i, denoted as f i

Box =
{xi

max, x
i
min, y

i
max, y

i
min}, into the factor graph model.

4.3.2 Relation factors

The spatial room adjacencies available in the input graph
provide rich information about the relative locations of the
rooms and need to be effectively exploited. We work on
the typed adjacencies defined in Graph2Plan [11], which
are based on the spatial relation type of the pair of adja-
cent rooms. The spatial relation types are: left-of, right-
of, above, below, left-above, left-below, right-above, right-
below, inside, and surrounding.

Our factor-graph-based modeling with 4 variables per
room, allows us to only link the variables which are likely to

have direct dependencies. We introduce factors connecting
specific variables in rooms s and o depending on the rela-
tion type p of the typed adjacency < s, p, o >. For instance,
if the relation is < rooms, left-of, roomo >, it is proba-
ble that the xmax coordinate of room s is almost equal to
the xmin coordinate of room o. Therefore, we add a factor
fs,o
rel = {xs

max, x
o
min} to capture this relation.

Similarly, we introduce factors based on the relation
types which imply specific coordinate relationships be-
tween the subject and the object rooms. Table 1 describes
the full set of relational factors in our model for each of the
relation types. Overall, we have 20 distinct relational factor
types for the 10 types of defined relations.

4.3.3 Boundary factors

In practice, the outer boundary of a floorplan is one of the
most important constraints as it directly affects the place-
ment of each room and the way in which different rooms
should be aligned within the floorplan boundary. However,
incorporating such boundary information is not trivial. Pre-
vious methods like RPLAN and Graph2Plan [11, 33] use a
CNN encoder with a 2-dimensional binary boundary mask
to output a boundary embedding, which is then used to pro-
duce the floorplan. However, this process is less effective
because only the outer wall structure contains important in-
formation, not the whole binary mask.

To address this, we introduce a highly effective method
to incorporate boundary information. We observe that the
most influential information contained in the boundary is
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the corner points of the boundary. The corner points can
be described by the (x, y) coordinates and hence provide
better inductive bias than a plain binary mask. Therefore,
we first extract the set of corner points from the boundary
mask. Then, for each corner point, we introduce a higher-
order boundary factor that connects to all the variable nodes
within the factor graph model. Specifically, let the boundary
b = {(x, y)kb | k ∈ {1, 2, . . . nb}} where nb is the number
of corner points extracted from the given boundary mask.
Then for kth corner point, we define a higher-order factor
fk
b = {xi

min, x
i
max, y

i
min, y

i
max|i ∈ {1 . . . N}} which con-

nects to all variables in the factor graph.
We encode the information describing the location and

surroundings of the corner point as an input feature fkb of
the corner-point factor fk

b . Specifically, for each corner
point bk, a feature vector is formed and initialized with three
types of information: the (x, y) coordinates of the corner
point, the distance d of the corner point from the bounding
box enclosing the boundary, and the binary boundary mask
values surrounding the corner point at a small offset of ϵ.
The surrounding values indicate the direction of the corner
point enclosing the inside of the house. This vector is used
as an input feature for each higher-order corner-point factor.

fkb =
[
x, y, dleft, dright, dtop, dbottom, mask(x+ϵ,y+ϵ),

mask(x+ϵ,y−ϵ), mask(x−ϵ,y+ϵ), mask(x−ϵ,y−ϵ)

]k
b

4.3.4 Complete Factor

In addition to the variable dependencies described above,
there can be other dependencies present in the data that are
not apparent. In order to enable variables to learn from
such hidden dependencies, we introduce an additional fac-
tor called the complete factor. This factor connects all the
variables without any restriction with a factor feature indi-
cating the type of the factor.

4.4. FloorPlan Factor Graph Neural Network

We turn our factor graph model into a neural network with
learnable potential functions. Specifically, we initialize our
factor graph model with variable node features [vi]i∈V and
factor node features [f c]c∈C . The variable node feature con-
tains room-type, location, size and a 4-dim one-hot vector
indicating the variable type i.e. xmin, xmax, ymin or ymax.
Note that the location here is not the (x, y) coordinate but
the approximate relative placement indicating north, south,
north-west etc., as discussed in Graph2Plan [11]. The factor
features are initialized with the factor type (i.e. box factor,
relation-type, boundary or complete) and additional specific
attributes for some factors (i.e. The bounding box factors
f i
box contain room-type, location, and size, and the bound-

ary factors fk
b additionally contain the boundary feature

Algorithm 1 FloorPlan-FGNN (FP-FGNN) Algorithm

Input: G = (V, C, E), [vi]i∈V , [f c]c∈C , [eci](c,i)∈E

Output: [vi]i∈V , I // Box coordinates and Layout image

1: for l = 1, 2, . . . , L do
2: Variable-to-Factor Message Passing:
3: f̃

l

ci = MLPVF
(
Concat[f lc,v

l
i, eci]

)
4: f l+1

c = softmax
i∈N(c)

(
f̃
l

ci|θlVF
)

5: Factor-to-Variable Message Passing:
6: ṽl

ic = MLPFV
(
Concat[f lc,v

l
i, ec,i]

)
7: vl+1

i = softmax
c∈N(i)

(
ṽl
ic|θFV

)
8: end for
9: vi = MLP(vL

i ) // Train with L1-Loss

10: I = CRN-Network
(
[vi]i∈V

)
// Pixel-wise cross-entropy

vector as defined in Section 4.3.3.
Algorithm 1 details our Factor Graph Neural Network

(FP-FGNN) for floorplan design. It takes a Factor graph
G = (V, C, E) as input, with variables V and factors C ini-
tialized using variable features [vi]i ∈ V and factor features
[f c]c ∈ C. The edge set E contains edges between variable
and factor nodes. The edge feature eci contains the features
of factor c.

In each iteration, the variable nodes receive and aggre-
gate messages from the factor nodes and vice versa. The
message function is an MLP acting on the concatenated
variable and factor embeddings from the previous iteration
along with the edge feature. Furthermore, our message ag-
gregation allows weighted aggregation of messages with the
help of a learnable softmax-based aggregator defined as

softmax(v |θ) =
∑
vi∈v

exp(θ · vi)∑
vj∈v exp(θ · vj)

· vi (3)

This enables variables to learn from factors most relevant to
them and vice versa. After a fixed number of iterations, we
use an MLP to output the coordinate value of each variable.

4.5. Bounding boxes to floorplan image

To translate the box coordinates to the floorplan image, we
feed the predicted bounding box coordinates to a cascaded
refinement network (CRN)[4] based network in the form of
multi-channel input. We borrow this part of the network
from Graph2Plan [11], which can produce the floorplan im-
age given the predicted bounding boxes.

4.6. Training

Our network is trained with only two loss functions.
The bounding box coordinate variables are trained with
mean absolute loss (L1-Loss) against the ground-truth box-
coordinate values and the final layout image is trained with
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Figure 3. Visualization of layout predictions of Graph2Plan and FP-FGNN without postprocessing. FP-FGNN is able to produce more
accurate predictions of room dimensions and the shape of walls, resulting in layouts that are more visually coherent and well-defined.

Method Box-level Pixel-level Constraints-level

IOU-Macro IOU-Micro Accuracy IOU-Macro IOU-Micro Relation Acc Location Acc

HPGM [5] 0.4701 0.5424 0.6464 0.4812 0.5179 - -
Graph2Plan [11] 0.6796 0.7402 0.8683 0.4476 0.7575 0.9358 0.9805

FP-FGNN 0.8685 0.9165 0.8901 0.5954 0.8019 0.9680 0.9913

Table 2. Box-level,Pixel-level and Constraints-level comparisons. We train and evaluate all three models on the same dataset.

the pixel-wise cross-entropy loss with room categories as
class variables. Note that out model does not rely on addi-
tional losses, such as interior-loss, coverage-loss or mutex-
loss etc., as used in Graph2Plan [11].

5. Experiments
5.1. Experiments Setup

Dataset. We conduct experiments on the large-scale
RPLAN dataset [33], which consists of more than 80729
vectorized floorplan layouts. Since our model is based on
graph-constrained layout design, we use its updated version
released by Graph2Plan [11]. This version contains a cor-
responding room-adjacency graph for each floorplan. Over-
all, there are 15 room-types including ‘LivingRoom, Mas-
terRoom, Kitchen, Bathroom, DiningRoom, ChildRoom,
StudyRoom, SecondRoom, GuestRoom, Balcony, Entrance,
Storage, Wall-in, External, ExteriorWall’ and the room-
adjacency types are shown in Tab 1. Each room node comes
with attributes of position and size. The method of generat-
ing room positions and size is as described in [11] and [5].
Specifically, the floorplan is divided into even-sized grids
and the position of the room is the grid where its centroid
belongs to. The size of rooms is represented by the normal-
ized area of the room’s bounding box. For validation, we
use the splits released by [11], which contains 56511 sam-

ples for training and 12108 for validation/testing.

Evaluation. Unlike other floorplan design methods that
build generative models and evaluate based on Diversity
and Compatibility [18, 18, 20, 21, 31], our method fo-
cuses on accurately predicting room bounding box coordi-
nates. We primarily use Intersection Over Union (IOU),
both Macro/Micro, for box-level predictions, and pixel
IOUs with Accuracy for pixel-level assessment. While our
main emphasis is on box-level metrics for the initial stage
of bounding box prediction, pixel-level metrics also offer
insights into layout quality. Furthermore, we assess the
preservation of constraints against ground truth, particularly
focusing on the accuracy of Relations and Locations, which
is central to our model’s motivation.

Comparisons. Our main baseline methods for compari-
son are Graph2Plan [11] and HPGM [5]. These models
run GNN on the adjacency graph to predict bounding boxes
before generating the layout. To best of our knowledge,
these models are the only published methods that are pre-
dictive models and take in a graph as input and output the
room bounding boxes along with the floorplan layout. Note
that Graph2Plan is made generative with a separate retrieval
process. Unlike Graph2Plan, HPGM does not take in in-
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Figure 4. Illustration of iterative design with user iteration. Starting from the same arbitrary partial layout, the interaction process results
in three different final layout. The room sizes are automatically adjusted for alignment with boundaries and adjacent rooms.

put boundary. Therefore, for a fair comparison, we in-
clude boundary mask into HPGM model the same way as
in Graph2Plan. Overall, we make sure to train and test all
models with the same input data.

5.2. Results

5.2.1 Comparisons with Baselines

The results, as presented in Tab. 2, demonstrate that our
model outperforms the baselines in terms of both box-level
and pixel-level metrics, with an impressive 20% improve-
ment observed in box-level IOU metrics. However, we no-
tice that the pixel-level IOU-Macro score is lower for all
models, as some classes (wall-in, Entrance) have small ar-
eas that are hard to be represented with bounding boxes
which pull down the macro average since it treats all classes
equally. This is supported by class-specific IOU scores pro-
vided in Appendix 1.1. Box-level improvements are more
pronounced than at pixel-level which further supports our
methods effectiveness. The constraints-level scores further
validate our model where the location of rooms in predic-
tions matches to ground truth for almost all rooms and pre-
serves relations with high accuracy as well.

5.2.2 Qualitative Results

The benefit of FP-FGNN is equally clear in the visual-
ized qualitative results. We first compare the direct out-
put images of the Graph2Plan and FP-FGNN models with
the ground truth images. As shown in Fig. 3, Graph2Plan
images visibly contain uneven boundaries for most of the
rooms. In contrast, FP-FGNN’s output closely resembles
the ground truth images with sharper internal boundaries
between rooms. We believe the uneven room-boundaries in

Graph2Plan is because of the higher overlap in the predicted
bounding boxes compared to FP-FGNN, which translates to
poor room-boundaries. We show supporting evidence for
this by measuring the overlap areas in Appendix 1.2 and
additional qualitative results in Appendix 1.4.

5.2.3 Iterative Design with Partial Constraints

In the real world, the layout design process is typically it-
erative. Users often begin with a vague idea of their de-
sired layout, which then evolves and becomes more refined
through an iterative feedback loop. Success in this itera-
tive design process hinges on consistently adhering to the
requirements at each step. Our inferential model, character-
ized by its high fidelity and low inference time, is particu-
larly helpful in such scenarios.

Qualitative analysis Figure 4 illustrates the iterative de-
sign process enabled by our model, demonstrating how
varying user specifications lead to distinct final layouts. In
practical floorplan design, the process often starts with a
predetermined boundary. Our model aids users by initially
setting up the layout within this boundary, starting with ba-
sic elements like the Living Room, Master Room, Kitchen,
and Bathroom. These are placed at arbitrary locations in
standard sizes (mean size of the room type with an aspect
ratio of 1x1) and an aspect ratio of 2x1 for the Living Room.
A notable feature of our model is its ability to automati-
cally align walls with the boundary seamlessly, without ex-
plicit user input. As users modify or add constraints, our
model consistently meets these evolving requirements. This
consistent alignment with user inputs enables a productive
feedback loop, providing users with the necessary clarity for
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further refinement of their requirements. Moreover, with a
rapid average inference time of 0.023 seconds, our model is
highly efficient for real-time user interaction.

Quantitative analysis We carry out a quantitative evalu-
ation of our model in realistic scenarios, where users have
a clear idea of the number and types of rooms but lack a
detailed plan for room placement and sizes. This evalua-
tion involves scenarios with different degrees of incomplete
information. To emulate this, we randomly select certain
number of rooms, and then drop their properties and rela-
tional constraints, retaining only the room type information.
Note that the dropped rooms are isolated nodes in the graph.
In this process, all rooms, except the Living Room, Mas-
ter Room, and Kitchen, are subject to potential information
omission. We train the model with different levels of partial
information, and evaluate its effectiveness by measuring its
ability to satisfy the constraints: those explicitly defined by
the user as well as the complete set of original constraints,
including those that were omitted.

Constraints Number of Rooms with Omitted Information (K)

K = 0 K = 1 K = 2 K = 3

O
ur

s Relation(ours) 96.80 96.57/94.00 95.46/87.75 94.69/80.40
Location(ours) 99.13 99.23/98.26 99.07/95.47 99.05/91.79

G
2P Relation(G2P) 93.58 77.35/74.72 78.79/75.86 78.10/70.44

Location(G2P) 98.05 94.58/81.04 91.26/76.34 91.80/75.79

Table 3. Accuracy of constraints preserved under partial inputs.
We measure Relations and Locations, correctly captured in the
output layout, both for specified constraints (first term) and com-
plete set of constraints including omitted ones (second term)

Figure 5. Macro IOU on specified
rooms under partial information.

Tab. 3 shows that
the preservation of
both relation and lo-
cation constraints for
specified rooms is
highly effective. It
also reveals that the
overall accuracy, ac-
counting for dropped
constraints, remains
stable, despite an in-
crease in the number of dropped rooms. This contrasts
sharply with the baseline Graph2Plan model, which exhibits
a significant decline in constraint accuracy under similar
conditions.

This pattern is also reflected in macro IOU scores
(Fig. 5). Notably, our model sustains robust performance,
even when information for half of the rooms in the dataset
(with an average of 6.79 rooms) is dropped.

Figure 6. FP-FGNN’s diverse generations with same input boundary.

Method Graph2Plan RPLAN Constr-LGen FP-FGNN

FID 29.26 21.29 21.47 12.87

Table 4. FID score comparison of FP-FGNN’s generation

5.2.4 Generative Model

In another practical scenario, users find it helpful if they
are given with a choice of multiple floorplans to choose
from. This use case requires a generative model which can
generate diverse floorplans given the same input boundary.
Although FP-FGNN is a predictive model, it can be eas-
ily used as part of a generative pipeline for generating di-
verse layouts. To demonstrate this, we use Graph2Plan [11]
methodology for the generative mechanism. In Graph2Plan
approach, given an input boundary, we first retrieve its
k nearest neighbour boundaries from the training dataset.
Then we extract the layout graphs from those examples and
use it along with the given input boundary as input to the
predictive FP-FGNN model. Fig. 6 shows the diversity in
generations of our model given the same input boundary.
Furthermore, we quantitatively measure the generated im-
ages with the FID [10] score and compare with baselines
Graph2Plan [11], RPLAN [33], Constr-LGen [23]. Table 4
shows that FP-FGNN generation significantly outperforms
the baselines.

6. Conclusion
In this paper, we address the problem of generating layouts
under spatial constraints, particularly in the context of floor-
plan design. We propose a novel approach that employs fac-
tor graphs to capture the pairwise and higher-order depen-
dencies between the latent variables representing the rooms’
bounding boxes and spatial attributes. Our method employs
message-passing on the bipartite factor graph, forming a
factor graph neural network that effectively leverages the
available domain knowledge to produce floorplans that meet
the desired specification. Our results demonstrate a signifi-
cant improvement in IOU scores over existing methods. In
future work, we aim to extend FP-FGNN to learn to gener-
ate floorplan layouts from language descriptions [16].
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