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Figure 1. Correspondence in-the-wild. We introduce DIFF3F, a novel feature distiller that harnesses the expressive power of in-
painting diffusion features and distills them to points on 3D surfaces. Here, the proposed features are employed for point-to-point shape
correspondence between assets varying in shape, pose, species, and topology. We achieve this without any fine-tuning of the underlying
diffusion models, and demonstrate results on untextured meshes, point clouds, and raw scans. The leftmost mesh is the source, and all the
remaining 3D shapes are targets. Note that we show raw point-to-point correspondence, without any regularization or smoothing. Inputs are
point clouds, non-manifold meshes, or 2-manifold meshes. Corresponding points are similarly colored across the shapes.

Abstract

We present DIFF3F as a simple, robust, and class-
agnostic feature descriptor that can be computed for un-
textured input shapes (meshes or point clouds). Our method
distills diffusion features from image foundational models
onto input shapes. Specifically, we use the input shapes to
produce depth and normal maps as guidance for conditional
image synthesis. In the process, we produce (diffusion) fea-
tures in 2D that we subsequently lift and aggregate on the
original surface. Our key observation is that even if the
conditional image generations obtained from multi-view ren-
dering of the input shapes are inconsistent, the associated
image features are robust and, hence, can be directly aggre-
gated across views. This produces semantic features on the

input shapes, without requiring additional data or training.
We perform extensive experiments on multiple benchmarks
(SHREC’19, SHREC’20, FAUST, and TOSCA) and demon-
strate that our features, being semantic instead of geometric,
produce reliable correspondence across both isometric and
non-isometrically related shape families. Code is available
at https://github.com/niladridutt/Diffusion-3D-Features.

1. Introduction
Feature descriptors are crucial building blocks in most shape
analysis tasks. The ability to extract reliable features from
input meshes or point clouds paves the way for establish-
ing shape correspondence, extracting low-dimensional shape
spaces, and learning 3D generative models, to name a few
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applications. Classical geometry processing algorithms, ex-
tensively explored over recent decades [9, 18, 35, 41, 55, 60],
concentrate on identifying geometric invariants and, at best,
coincidentally align with semantic features. Recent learning-
based approaches [10, 14, 30], trained on a limited amount
of data, learn the correlation between geometric and seman-
tic features but struggle to generalize to unseen categories.
In contrast, in image analysis, a recent winner has emerged —
foundational models [11, 40, 45, 47] trained on massive im-
age datasets have been repurposed to yield general-purpose
feature descriptors [5, 36, 54, 65]. Remarkably, such large-
scale models have implicitly learned robust semantic fea-
tures that match and often surpass classical image feature
descriptors. For instance, DINO features [40] and diffusion
features [54] extract dense semantic image features from
photo-realistic images without additional training. In this
paper, we investigate the adaptation of this success to the
realm of 3D shapes.

A significant challenge is to address the absence of tex-
tures on most 3D models. This hinders immediate render-
ing to produce photo-realistic images required by image-
based feature detectors mentioned earlier. Additionally,
when shapes are represented as meshes, they may have non-
manifold faces, making it challenging to extract UV parame-
terizations; when shapes are represented as point clouds, they
lack connectivity information, making rendering ambiguous.
One potential solution for input meshes involves utilizing re-
cent approaches [12, 46] to first generate seamlessly textured
meshes through image-guided techniques and subsequently
extract image feature descriptors. For point cloud representa-
tion, one can first produce surface reconstructions [24], then
employ the aforementioned mesh-based approach. However,
these methods are cumbersome, optimization-based, and un-
suitable for seamless end-to-end workflows. We propose a
simple and robust solution.

We present DIFFUSION 3D FEATURES (DIFF3F), a sim-
ple and practical framework for extracting semantic features
that eliminates the need for additional training or optimiza-
tion. DIFF3F renders input shapes from a sampling of cam-
era views to produce respective depth/normal maps. These
maps are used as guidance in ControlNet [66] to condition
Stable Diffusion [47] to produce photo-realistic images. We
directly use the features on these images produced during
diffusion and aggregate them back on the input surfaces. Our
main insight is that we do not require consistent mesh textur-
ing to produce reliable shape features as we ‘denoise’ smaller
inconsistencies in the feature aggregation step. Since we use
diffusion features, our approach reuses the intermediate in-
formation generated in the depth-guided image generation
step, thus avoiding any additional training. The extracted
features produce accurate semantic correspondence across
diverse input shapes (see Figure 1), even under significant
shape variations.

Table 1. Comparison of DIFFUSION 3D FEATURES to related
methods. Unlike traditional geometric feature detectors (e.g.,
WKS), modern learning-based approaches require training and
can struggle to generalize to novel settings. We leverage strong
image priors in the form of image diffusion models to directly dec-
orate input shapes with distilled semantic features.

3D-CODED
[20]

DPC
[30]

SE-ORNet
[14]

FM+WKS
[41] Ours

No 3D training data? ✗ ✗ ✗ ✓ ✓
Unsupervised? ✗ ✓ ✓ ✓ ✓

Class agnostic? ✗ ✗ ✗ ✓ ✓
Handles meshes? ✓ ✓ ✓ ✓ ✓

Handles point cloud? ✓ ✓ ✓ ✗ ✓

We evaluate our algorithm on a range of input shapes
(meshes and point clouds) and compare the quality of the
extracted features on a set of established correspondence
benchmarks. We study the importance of feature aggrega-
tion versus consistency of multi-view image generations,
choice of the (image) features used, and robustness to input
specification. We report comparable performance to state-
of-the-art algorithms on multiple benchmarks, containing
isometric and non-isometric variations, and outperform exist-
ing approaches in generalizability. Our main contribution is
a simple and surprisingly effective semantic feature detection
algorithm on 3D shapes that can be readily integrated into
existing shape analysis workflows without requiring extra
data or training. DIFF3F, being semantic, is complementary
to existing geometric features.

2. Related Work
Point-to-point based shape correspondence. These meth-
ods, either by formulation or by explicit supervision, train
algorithms to map points to points between surfaces. In
other words, they establish a discrete point-to-point map in-
stead of a continuous surface map. 3D-Coded [20] finds the
correspondence between shape pairs by estimating a trans-
formation between two point clouds. This transformation
is learned by deforming a template shape to learn its recon-
struction on different shapes. Elementary [15] extends this
concept further by trying to find an ideal set of primitives to
represent a shape collection. Many such algorithms require
ground truth for training such as DCP [58], RPMNet [62],
GeomFMap [16], 3D-Coded [20], Elementary [15], and/or
mesh connectivity such as GeomFMap [16] and SURFM-
Net [48], both of which are hard to acquire in the real world.

Recent efforts have focused on unsupervised methods for
learning on point clouds. CorrNet3D [64] first learns the
feature embeddings using a shared DGCNN [60] and then
utilizes a symmetry deformation module to learn the recon-
struction and compute correspondence. DGCNN [60] uses a
graph with multiple layers of EdgeConv [60] to learn feature
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embeddings by incorporating information from local neigh-
borhoods. DPC [30] employs self and cross-reconstruction
modules to learn discriminative and smooth representations
and uses DGCNN for learning the per-point feature em-
beddings. To improve predictions for symmetrical parts,
SE-ORNet [14] first aligns the source and target point clouds
with an orientation estimation module before using a teacher-
student model and a DGCNN backbone to find the corre-
spondence. These methods operate directly at the geometry
level and fail to understand semantic features that may not
be represented directly as geometric features.

Surface maps based shape correspondence. Surface map
methods learn a continuous map between two arbitrary 2-
manifold surfaces. The learned map can then be sampled for
point-to-point correspondence if needed. Classically, these
works map eigenfunctions defined on surfaces leading to
a functional mapping [16, 41] or they construct an atlas of
maps (charts) from R2 7→ Rn (n = 2, 3) [4, 37, 39]. Usually,
algorithms compute a specific type of surface map aiming to
preserve specific geometric properties - preservation of an-
gles [32, 34] for conformal maps, preservation of geodesic
distances [44, 52] for isometric maps, etc. The unifying
idea is to map both surfaces to a base domain, which can
be a mesh [28, 31, 49] or a planar region [2, 3] thus map-
ping via the shared domain. For example, SURFMNet [48]
extends FMNet [35] to an unsupervised setting by enforc-
ing pre-desired structural properties on estimated functional
maps. These methods require meshes, often 2-manifold; our
work by design can find correspondences between poorly
reconstructed meshes with artifacts or directly between point
clouds. Functional maps rely on geometric descriptors such
as WKS [6] to compute the mapping.

Multi-view rendering based learning. Projective anal-
ysis [59] encodes shapes as collections of 2D projections,
performs image space analysis, and projects the results back
to the 3D. This is a powerful idea. This family of multi-
view rendering-based methods has shown remarkable perfor-
mance on a variety of 3D tasks including shape/object recog-
nition [53, 56, 57, 61, 63, 63], human pose estimation [33],
part correspondence [23], reconstruction[43], segmentation
[27, 50, 56, 59] and many more. The approach involves
rendering a 3D shape from multiple views and extracting in-
formation by employing visual descriptors per view, usually
obtained by training a CNN in a supervised setting. Various
approaches have been suggested to aggregate the features
from different views like averaging, max pooling [23, 56],
concatenating the image features, using another CNN to fuse
the intermediate latent representations pooled from different
views [53], etc.

We are inspired by Huang et al. [23], who learn to aggre-
gate descriptors by fine-tuning AlexNet [29] on multi-scale

renders of shapes from different viewing directions. The
entire network is trained in a supervised setting using con-
trastive loss [22] to group semantically and geometrically
similar points close in the descriptor space. The method,
however, suffers from limited correspondence accuracy for
lower tolerance levels (due to its noisy dataset) compared to
state-of-the-art geometric methods available today.

A more recent work [1] explored the usage of founda-
tional image models for generating zero-shot correspon-
dence. They use LLMs and vision models to first generate
a set of segmentation maps for each object and a seman-
tic mapping between each set. This is followed by a 3D
semantic segmentation model based on SAM [25] to seg-
ment the shape according to the generated set. Based on
the segmented areas, geometric descriptors are initialized
to compute a functional map. Finally, they apply iterative
refinement to produce a final point-to-point correspondence.
Instead, we distill an image foundational model to produce
descriptors with rich semantic features that can be directly
used to compute correspondence.

Aggregating 3D features from 2D foundational models.
3D Highlighter [13] renders a mesh from multiple views
and calculates their CLIP [45] embedding. Distilled Feature
Field [26] distills CLIP or DINO embeddings to 3D feature
fields to enable zero-shot segmentation of Neural Radiance
Fields. NeRF Analogies [19] further shows that DINO fea-
tures on multi-view rendered images can be used to calculate
correspondence for semantically transferring the appearance
of a source NeRF to a target 3D geometry. We utilize Con-
trolNet [66] in-the-loop to generate multi-view inconsistent
textured renderings and, in that process, generate diffusion
features that are semantically coherent to compute accurate
correspondence.

3. Method
We aim to decorate 3D points of a given shape in any modal-
ity – point clouds or meshes – with rich semantic descriptors.
Given the scarcity of 3D geometry data from which to learn
these meaningful descriptors, we leverage foundational vi-
sion models trained on very large datasets to obtain these
features. This enables DIFF3F to produce semantic descrip-
tors in a zero-shot way. Our code can be found here.

3.1. Semantic Diffusion Features

Given a shape S with vertices V ∈ R3, we want to project it
to the image space to distill per-point semantic 3D features
from images. We define an image projector P as

P (·|Cj) := S 7→ ISj ∈ RH×W , (1)

where H,W denote the height and width of the image ren-
dered by P , with Cj representing the jth camera producing
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Figure 2. Method overview. DIFF3F is a feature distiller to map semantic diffusion features to 3D surface points. We render the given
shape without textures from multiple views, and the resulting renderings are in-painted by guiding ControlNet with geometric conditions;
the generative features from ControlNet are fused with features obtained from the textured rendering, followed by unprojecting to the 3D
surface. Note that the textured images obtained by conditioning ControlNet from different views can be inconsistent.

the image ISj . P can be a renderer with shading or simply a
rasterizer that returns the depth from the camera.

As an emergent behaviour, pre-trained foundational vi-
sion models have been found to assign distinctive semantic
features [54] to pixels in the input image, to be able to distin-
guish between nearby pixels to perform core tasks like object
detection or segmentation. Our core idea to get such features
is, therefore, to drive a pretrained foundational model to
perform a challenging task that requires generating semantic
per-pixel features during the process, so that we can extract
these features into 3D. Since we aim for per-point features,
instead of regional descriptors, we add textures to rendered
images conditioned on text prompts. Creating a realistic
textured image from an untextured image requires the model
to distinguish between nearby pixels in their semantic sense
such that the visual result satisfies the text prompt. For ex-
ample, a shading model may color a drawn cube completely
gray. Still, when conditioned on the text “iron box”, it would
be driven to add specific characteristics, such as metallic
textures that clearly allow it to be identified as “iron”.

Given a point cloud or raw mesh, projection P produces
an untextured image with silhouette or shading, respectively.
We drive a diffusion model [47] f to color textureless ISj
(from camera view Cj) realistically and take it to the RGB
space:

f(·|G,text) := ISj ∈ RH×W 7→ ITEX
j ∈ RH×W×3, (2)

where G is a set of functions describing geometric con-
straints that guide the texturing model and text defines the
text prompt defining the subjects. We guide the texturing
by providing constraints G to ControlNet [66]. In effect, f

projects shape S to an RGB image based on camera Cj .

3.2. Semantics through Painting

Realistically texturing a silhouette image is an open problem
and a challenging task. Given untextured images {ISj }, a
naive approach of assigning a constant color does not require
inferring the semantics of the given geometry. We, therefore,
condition our painting module f with geometric constraints
that describe the latent 3D object.

We define G as a set of geometric maps that can be ap-
plied as conditional image constraints,

G := {N (ISj ),D(ISj )}, (3)

where N is a normal map and D is a continuous depth map
from the camera describing the input shape. When combined
with a text prompt, we expand Equation 3 as

f(·|N (ISj ),D(ISj ),text) := ISj 7→ ITEX
j . (4)

During this texturing forward pass, we extract features
F t

L from an intermediate layer L of Stable Diffusion’s UNet
decoder at diffusion time step t with t ∈ [0, T ]. We use
DDIM [51] to accelerate the sampling process for Stable
Diffusion [47] and use 30 inference steps. For notational
simplicity, in the following, we drop the layer index L, i.e.,
we use F t

j to indicate F t
L,j . We thus directly get our feature

renderer as,

f(·|N (ISj ),D(ISj ),text, L, t) := ISj 7→ F t
j , (5)

These features are normalized to have unit norm:

F t
j := F t

j/∥F t
j∥2. (6)
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Figure 3. Results gallery. DIFF3F’s performance on various point correspondence challenges. Corresponding points are similarly colored.
Note that DIFF3F can successfully distinguish between symmetric parts and remains fairly robust under pose and shape variations. For each
shape pair, the source is on the left and the target is on the right.

We aggregate the normalized features using a weighted
approach starting from T/4 to the final denoising step 0. The
weights wt are linearly spaced from 0.1 to 1 depending on
the number of time steps (t) to assign higher weights to the
embeddings from less noisy images (i.e., higher t). Each
pixel gets a 1280 dimensional feature from the diffusion
UNet, aggregated over diffusion time steps. Specifically,

FDiff
j :=

T/4∑
t=0

wt · F t
j ∈ RH×W×1280. (7)

We further fuse the diffusion features Fj with DINOv2 [40]
features FDino

j extracted from the textured renderings ITEX
j .

We also normalize these image features as in Equation 6. It
has been noted that DINO features contain strong comple-
mentary semantic signals but are weaker regarding spatial
understanding [65]. Hence, combining the two features gives
stronger semantic descriptors while retaining spatial informa-
tion. We employ a feature fusion strategy proposed by [65],
where we first normalize the features and then concatenate
them as,

FFUSE
j := (αFDiff

j , (1− α)FDino
j ) (8)

where α is a tunable parameter; we use α = 0.5 in all our
experiments. FFUSE

j is also unit-normalized as in Equation 6.

3.3. Distilling 2D Features to 3D

We leverage known camera parameters to unproject features
from the image space back to the points on the 3D input,

i.e., FFUSE
j

P−1

−−−→ F3D
j , where P is the projection function

from equation 1. We also employ a ball query Br(x), in-
troduced in [42], to facilitate feature sharing within local
neighborhoods of radius r around any surface point x ∈ S
and promote local consensus. We use r = 1% of the object’s
bounding box diagonal length. This is particularly useful for
shape correspondence where points in a local neighborhood
of the source should match with points in a local neighbor-
hood of the target.

To aggregate features from multiple views per point, we
compute the mean of the normalized feature vectors. We

also experimented with max pooling, but the results were
inferior. Our rendering setup and unprojection with ball
querying make the per-point accumulated features coherent,
enabling a simple aggregation. Moreover, we render the 3D
shape from several views (n = 100), which further stabilizes
the aggregation, resulting in descriptors that mostly capture
semantic meaning:

F :=
1

n

n∑
j=1

F3D
j . (9)

The above step aggregates descriptors per vertex across n
views, spread uniformly around a sphere around the object,
to compute our final semantic 3D point descriptors. Next,
we describe how to use these descriptors to compute corre-
spondences between pairs of shapes.

3.4. Computing Correspondence

Given a source point cloud S and a target point cloud T , we
want to find a mapping m : S 7→ T , such that we compute
a corresponding point Tk ∈ T for each point Si ∈ S where
1 ≤ i, k ≤ N .
Point-to-Point: To find correspondence between points of
two shapes, we compute their point descriptors indepen-
dently and match them by cosine similarity in the shared
feature space. We calculate similarity as the cosine of the
angle between the source (S) and target (T ) feature vectors,
FS and FT , respectively. Specifically,

sik :=
⟨FSi ,FTk

⟩
∥FSi

∥2∥FTk
∥2

(10)

where F i
S and F j

T are the ith and kth rows of FS and FT re-
spectively, ⟨·⟩ denotes the dot product operation. We choose
a corresponding point Tk in T for every point Si in S where
sik is highest. Note that, in order to assess the quality of
our decorated features, we assign correspondence based on
the highest per-vertex similarity and do not regularize the
solution with any other energy terms.
Surface-to-Surface: While point-to-point correspondence is
important for certain applications like non-rigid registration,
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Table 2. Comparison. We report correspondence accuracy within 1% error tolerance, with our method against competing works. The
Laplace Beltrami Operator (LBO) computation for Functional Maps is unstable on TOSCA since the inputs contain non-manifold meshes.
By ‘*’ we denote results reported by SE-ORNet [14].

Method 7→ DPC [30] SE-ORNet [14] 3DCODED [20] FM [41]+WKS [6] DIFF3F (ours) DIFF3F (ours)+FM [41]
↓ Dataset acc ↑ err ↓ acc ↑ err ↓ acc ↑ err ↓ acc ↑ err ↓ acc ↑ err ↓ acc ↑ err ↓
TOSCA 30.79 3.74 33.25 4.32 0.5* 19.2* ✗ ✗ 20.27 5.69 ✗ ✗

SHREC’19 17.40 6.26 21.41 4.56 2.10 8.10 4.37 3.26 26.41 1.69 21.55 1.49
SHREC’20 31.08 2.13 31.70 1.00 ✗ ✗ 4.13 7.29 72.60 0.93 62.34 0.71

we note that it might also be desirable in certain cases to
compute a continuous surface-to-surface map, rather than
matching discrete points. To enable this, we pass our com-
puted descriptors to a vanilla Functional Map [41] implemen-
tation, which returns a continuous surface-to-surface map
that can then be used for direct correspondences.

4. Evaluation

4.1. Datasets and Benchmarks

We evaluate our method on datasets involving both human
and animal subjects to showcase the efficacy and applicabil-
ity of our approach. To make a fair comparison with existing
works, we follow a similar experiment setup described in
DPC [30] and SE-ORNet [14].

Human shapes: We test our method on SHREC’19 [38]
comprising of 44 actual human scans, which are organized
into 430 annotated test pairs with considerable variation. We
choose the more challenging remeshed version from [16].
We also evaluate our method on the FAUST benchmark [8].

Animal shapes: For testing our method on animal
shapes, we evaluate our method on the SHREC’20 [17] and
TOSCA [9] datasets. SHREC’20 contains various animals in
different poses with non-isometric correspondence annotated
by experts. We compute correspondence on the annotated
correspondences per pair (approximately 50). TOSCA com-
prises of 80 objects representing a mixture of animals and
humans, formed by deforming template meshes. We ignore
the human figures and select all the 41 animal figures within

Table 3. Generalization. We compare generalization capabilities
of DIFF3F vs others by training on one dataset and testing on a
different set. For DPC and SE-ORNet, we choose SURREAL and
SMAL as the training sets for human and animal shapes, respec-
tively – these larger datasets lead to improved generalization scores.
By ‘*’ we denote results reported by SE-ORNet [14].

Train Method TOSCA SHREC’19 SHREC’20
acc ↑ err ↓ acc ↑ err ↓ acc ↑ err ↓

SURREAL DPC [30] 29.30 5.25 17.40 6.26 31.08 2.13
SE-ORNET [14] 16.71 9.19 21.41 4.56 31.70 1.00

SMAL DPC [30] 30.28 6.43 12.34 8.01 24.5* 7.5*
SE-ORNET [14] 31.59 4.76 12.49 9.87 25.4* 2.9*

Pretrained DIFF3F (ours) 20.27 5.69 26.41 1.69 72.60 0.93

the test set and pair shapes from the same category to create
a testing set of 286 paired samples.

4.2. Evaluation Metrics

We use the average correspondence error and the correspon-
dence accuracy as our evaluation criteria. Since our method
operates in the domain of point clouds, we use a Euclidean-
based measure, as used in previous works [14, 30, 64].

The average correspondence error for a pair of shapes,
source S and target T is defined as:

err =
1

n

∑
Si∈S

∥f(Si)− tgt∥2 (11)

where f(Si) is the computed correspondence for Si ∈ S in
T and tgt ∈ T is the ground truth correspondence for a set
of n samples.

The correspondence accuracy is measured as the frac-
tion of correct correspondences within a threshold tolerance
distance:

acc(ϵ) =
1

n

∑
Si∈S

I(∥f(Si)− tgt∥2 < γd) (12)

where I(·) is the indicator function , γ ∈ [0, 1] is the error
tolerance, and d is the maximal Euclidean distance between
points in T .

4.3. Baseline Methods

We present our results on input pairs of meshes and pairs of
pointclouds. We compare our method to recent state-of-the-
art methods in shape correspondence namely DPC [30], SE-
ORNet [14], and 3D-CODED [20]. While 3D-CODED re-
quires an extensively annotated dataset for training, DPC and
SE-ORNet are unsupervised methods and have been trained
on human datasets- SURREAL [21] and SHREC’19 [38],
as well as animal datasets- SMAL [67] and TOSCA [9].
Note that we do not have access to pretrained 3D-CODED
models for animal models. In comparison, our method re-
quires no training, enabling zero-shot feature extraction. Our
method computes semantic descriptors, therefore, for a com-
plete comparison, we also evaluate against the Wave Kernel
Signature (WKS) [7] geometric descriptors combined with
Functional Maps [41].
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4.4. Evaluation on Human Shapes

We present results on the SHREC’19 dataset. Table 2 shows
correspondence accuracy at 1% error tolerance which repre-
sents a near-perfect hit. Our method achieves a state-of-the-
art correspondence accuracy of 26.41% at 1% error tolerance,
an improvement of 5%.

Many tasks, including alignment and texture transfer, re-
quire a certain number of precise correspondences rather
than average correspondence quality to work well. We
choose baseline methods trained on SURREAL as it is a
significantly larger dataset (consisting of human shapes) than
SHREC’19, leading to improved performance. Our method
achieves the highest correspondence accuracy compared to
existing works and the lowest average correspondence er-
ror compared to baseline methods, as seen in Table 2. We
show qualitative results for comparison in Figure 5 using
our method with point cloud rendering. While DPC and
SE-ORNet both get confused by the different alignments of
the human pair resulting in a flipped prediction, ours, being
a multi-view rendering-based method, it is robust to rotation.
Hence, it can reliably solve the correspondence. We show
additional visual results from a human source to multiple
targets spanning modality, class and pose in Figure 1. Most

Figure 4. Comparisons. We compare our DIFF3F (bottom) against
SOTA methods (i.e., DPC [30] and SE-ORNet [14]) for the task
of point-to-point shape correspondence. Corresponding points,
computed as described in Section 3.4, are similarly colored. We
show results using point cloud rendering of our method for the
human pair (left) and results with mesh rendering for the animal
pair (right). Table 2 shows qualitative evaluation on benchmarks.

correspondences including highly non-isometric deforma-
tions are accurate but we see misaligned correspondence
for the human to alien pair as the legs get flipped. This is
because the front and back sides are less clear as the mesh
has no dominant front feature. Moreover, we do not perform
any processing on the raw meshes and use random coordi-
nate system. Please refer to the supplemental for similarity
heatmaps for selected points on examples.
Evaluation on FAUST scans. We further evaluate DIFF3F
on the FAUST [8] intra-subject challenge, which consists
of high-resolution human scans (100k+ vertices). DIFF3F
achieves an average geodesic error of 5.29cm. Error profiles
and visual results can be found on the FAUST website.

4.5. Evaluation on Animal Shapes
We evaluate baseline methods trained on TOSCA and SMAL,
and select the best performing configuration- for DPC and
SE-ORNet, we choose TOSCA, whereas for 3D-CODED we
choose SMAL. Our method achieves comparable accuracy
and error to the baseline methods on the TOSCA dataset, as
seen in Table 2, and generalizes better than baseline methods
trained on human shapes, as seen in Table 3. Results using
3D-CODED are particularly poor on TOSCA mainly for
two reasons: (i) It needs a much larger dataset with ground
truth annotations, which is not available for animal shapes;
and (ii) it computes correspondence through template de-
formation, which fails on TOSCA due to the varied shapes
and poses of different animals. TOSCA consists of highly
isomteric shapes, therefore we also evaluate our method on
SHREC’20, which consists of highly non-isometric pairs of
animals. We outperform baseline methods by a large margin
for non-isometric shapes thanks to the semantic nature of
DIFF3F. While the evaluation is on a subset of only about
50 points as the number of annotated points is very limited,
we show dense correspondence in Figure 5. The visual re-
sults showing dense correspondence for non-isometric pairs
highlight the efficacy of our semantic descriptors compared
to competing methods. DPC can get confused by the radical
change in structure, while SE-ORNet has largely misaligned
correspondences. We present additional visual results of
animal pairs and a guitar pair in Figure 3.

4.6. Ablations

We ablate different components of our method and report
their performance. Table 4 shows our findings. We find
that adding realistic texture, as opposed to only shading,
results in a significant improvement in terms of accuracy
and reducing errors. We also explore a baseline method
using DINO features on consistent textures obtained using
TEXTure [46]. Ours is better, particularly at an accuracy
of 1% err tolerance, as diffusion features capture more geo-
metric information than DINO. Additionally, varied textured
renderings enable a more robust feature aggregation due to
the implicit denoising of unnecessary feature dimensions
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Table 4. Ablation. We ablate different components of our
method and compare accuracy at 1% tolerance on SHREC’19 and
SHREC’20, against our full method (last row).

Ablation SHREC’19 SHREC’20
acc ↑ err ↓ acc ↑ err ↓

w/o ControlNet
(untextured) 17.20 2.04 65.48 0.69

TEXTure[46]+DINO 17.20 2.04 65.48 0.69
w/o Fusion with DINO 26.53 2.06 64.89 1.60

w/o Normal Maps 25.68 1.67 69.71 1.17
w/o Time Aggregation 25.73 1.71 68.95 0.87

w/o Ball query 25.72 1.73 74.10 0.99
DIFF3F (full method) 26.41 1.69 72.60 0.93

such as color. We note that TEXTure yielded poor results
for humans. As meshes are not aligned and rely on iterative
inpainting, if the first texture is poor, subsequent textures are
poor, too. In contrast, ours aggregates over multiple views.
Although our complete approach produces the second-best
score in every category, incorporating all of our parts to-
gether (including fusion with DINO) resulted in the best
overall balance of high accuracy and low average error.

Figure 5. Regularizing point-2-point maps. We compare the effec-
tiveness of vanilla functional maps with the Wave Kernel Signature
as descriptors (top) vs our descriptors DIFF3F (bottom). Ours be-
ing semantic enables Functional Maps to work with non-isometric
deformations even though FMs typically struggle with such cases
when using traditional geometric descriptors. Our descriptors yield
accurate correspondence in most cases, thus eliminating the need
for further refinement algorithms typically used in related works.

5. Part Segmentation
We directly apply k-means clustering to our features to ex-
tract part segments. Interestingly, we discover that the k-
means centroids, extracted from one shape (e.g., human),
can be used to segment another (e.g., cat), thanks to the

Figure 6. Segmentation. We apply k-means on DIFF3F features
with k = 6 on human and elephant; and k = 3 on chair and dolphin.
The cat is segmented using k-means centroids of the human leading
to corresponding part segmentation (arms map to front legs, etc.).

semantic nature of our descriptors. This leads to correspond-
ing part segmentation (arms of the human map to the front
legs of the cat, head maps to head, etc.) as seen in Figure 6.
One possible method to automatically identify the number
of segments (k) is to query an LLM, as explored in [1].

6. Conclusion
We introduced DIFF3F as a robust semantic descriptor for
textureless input shapes like meshes or point clouds. Dis-
tilled through image diffusion models, these descriptors,
without the need for extra data or training, complement exist-
ing geometric features and generalize well across diverse in-
puts. Our thorough evaluation on benchmark datasets, includ-
ing isometric and non-isometric shapes, positions DIFF3F as
a state-of-the-art performer. We outperform recent learning-
based methods on multiple datasets, demonstrating superior
performance even on shapes beyond the training sets.

Limitations. Since our method relies on multi-view im-
ages, DIFF3F fails to produce features on parts of the shapes
that are invisible from all the sampled views (self-occlusion).
Further, since we aggregate (diffusion) features from image
diffusion models, we inherit their limitations in terms of suf-
fering from bias in the dataset and/or view bias for objects.
For example, the features aggregated on a horse model are
worse in less seen regions, like the underneath of its belly.

Future work. The next step involves combining semantic
features with geometric ones, aiming for enhanced perfor-
mance. Addressing potential noise in less visible areas of
the distilled features is crucial, and we plan to explore the
impact of refining features through geometric smoothness en-
ergies, such as local conformality or isometry. Overcoming
challenges related to point clouds and non-manifold meshes
is essential, given that many traditional geometry processing
approaches assume manifold meshes. Additionally, there is
an intriguing prospect of extending these descriptors to ac-
commodate volumetric inputs like NeRFs or distance fields.
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