This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

SPOC: Imitating Shortest Paths in Simulation
Enables Effective Navigation and Manipulation in the Real World

Kiana Ehsani’ Tanmay Gupta’ Rose Hendrix'
Kunal Pratap Singh? Yejin Kim'
Ranjay Krishna Dustin Schwenk'

fAllen Institute for AI

“Navigate to a basketball”

“Locate a laptop”

SPOC’s manipulation camera view
while picking up the mug

¥University of Washington

Jordi Salvador  Luca Weihs!  Kuo-Hao Zeng'
Winson Han' Alvaro Herrasti'
Eli VanderBilt' Aniruddha Kembhavi'¥

'EPFL

d1doMm 1v3ad

SPOC picks
up the apple

while picking up the ar

Figure 1. We present SPOC, an embodied navigation and manipulation agent trained by imitating shortest-path experts in simulation.
Visualized paths in simulation are white in the beginning and red at the end; red circles and squares highlight target object locations only
for illustration. Top-Left: A variant of SPOC, trained only on shortest path episodes for object goal navigation demonstrates complex
behavior like exploration, obstacle avoidance, and back-tracking in novel environments; Top-Right: The same agent transfers to the real
world with no further adaptation and navigates to the house plant; Bottom-Left: SPOC exploring the house to navigate to the mug and then
picking it up; Bottom-Right: SPOC navigating and picking up objects in the real world, again with no change in weights.

Abstract

Reinforcement learning (RL) with dense rewards and
imitation learning (IL) with human-generated trajectories
are the most widely used approaches for training modern
embodied agents. RL requires extensive reward shaping
and auxiliary losses and is often too slow and ineffective
for long-horizon tasks. While IL with human supervision
is effective, collecting human trajectories at scale is ex-
tremely expensive. In this work, we show that imitating
shortest-path planners in simulation produces agents that,
given a language instruction, can proficiently navigate, ex-
plore, and manipulate objects in both simulation and in
the real world using only RGB sensors (no depth map or

GPS coordinates). This surprising result is enabled by our
end-to-end, transformer-based, SPOC architecture, power-
ful visual encoders paired with extensive image augmen-
tation, and the dramatic scale and diversity of our train-
ing data: millions of frames of shortest-path-expert tra-
Jjectories collected inside approximately 200,000 procedu-
rally generated houses containing 40,000 unique 3D as-
sets. QOur models, data, training code, and newly pro-
posed 10-task benchmarking suite CHORES are available
in spoc—-robot.github. io.

1. Introduction

The prevalent method to build embodied agents employs a
rich set of sensors such as RGB, depth maps, and GPS co-
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ordinates that feed into modular architectures with mapping
components [7-9, 27], off-the-shelf computer vision mod-
els [38, 46, 79], and even large language models (LLM)
that can be used for planning [32, 34, 44, 66, 70, 71].
These agents are either trained with on-policy reinforce-
ment learning (RL) using careful reward shaping and aux-
iliary losses [28, 29, 65, 84], which tends to be slow and
ineffective, or trained with imitation learning (IL) on large
corpora of human demonstrations, which is incredibly ex-
pensive. The transfer gap from simulators to real is often
mitigated by optimizing the photorealism of the simulator
or via sim-to-real image translation models. Finally, at test
time, it is common practice if navigation is required to pro-
vide the locations of objects or assume a map of the envi-
ronment is known [4, 34, 83].

In contrast to the above, in this paper, we surprisingly
find that imitating shortest path experts in simulation can
produce embodied agents effective at navigation, explo-
ration, and manipulation, in both simulation and the real
world. Our model, SPOC (Shortest Path Oracle Clone),
uses (a) only RGB observations with no depth and no GPS
sensors, (b) a transformer-based architecture with no map-
ping module and no LLM, and (c) imitation learning on
heuristic shortest path planners with no human demonstra-
tions and no RL. SPOC is trained in the AI2-THOR [39]
simulator transfers well into the real world with no adap-
tation or fine-tuning. This all without making any assump-
tions about scene layout or object appearance at test time.

Notably and unexpectedly SPOC, when trained to imitate
a shortest path expert for the singular task of object-goal
navigation, demonstrates the capability to explore its envi-
ronment comprehensively, peek into rooms, and backtrack
along its path as it searches for its target, despite never hav-
ing seen this behavior in its training data. Fig. 1 visualizes
paths that showcase the exploration capabilities of SPOC.
We hypothesize that SPOC’s ability to be an effective ex-
plorer is less hampered by the use of shortest path training
data and instead seems gated by its object perception. In-
deed, perception errors, not exploration failures, appear to
be the primary cause of failures: employing ground truth
target object detection alongside raw RGB results in a very
high success rate of 85% for OBINAV.

SPOC is a very effective multi-tasking agent. When
trained jointly on four tasks — Object-Goal Navigation
(OBINAV), Room Visitation (ROOMVISIT), PickUp Object
(P1ckUP), and Fetch Object (FETCH) — SPOC achieves an
impressive average success rate of 49.9% in unseen sim-
ulation environments at test time. These numbers easily
outperform carefully tuned agents trained with reinforce-
ment learning by a large margin of close to 30 points across
the task suite. The high success rates achieved by SPOC
translate to the real world where it achieves 56% success
across these tasks. We further train SPOC to follow open

vocabulary instructions via a suite of seven navigation tasks
where it achieves a high success rate of 51%. This bench-
mark is designed to evaluate a wide range of capabilities
such as recognizing objects, discerning affordances, identi-
fying scene elements, recognizing relative attributes of ob-
jects (e.g. bigger, lower), and understanding local refer-
ences (e.g. near, on).

We identify four key factors that enable effective imi-
tation learning from heuristic experts. First, diversity of
simulated worlds plays an important role — we used almost
3 orders of magnitude more unique houses to train with
IL than past work [58, 59, 75, 79]. Second, using pow-
erful visual encoders is critical — we moved from the de-
facto ResNet-50 CLIP encoder [57] employed in the litera-
ture [38] to DINOV2 [50] and SIGLIP [85] and found huge
gains. Third, moving to transformer architectures with long
context windows of up to 100 frames outperforms previ-
ously employed recurrent architectures [73]. Finally, scal-
ing up the size of the training data matters.

This work shows the promise of imitating heuristic ex-
perts in simulators as a means to develop capable robots for
the real world. Our experiments show that scale and diver-
sity play an important role in enabling this behavior, and we
posit that further scaling up this paradigm has huge merits
and can lead to large improvements on challenging tasks.

2. Related Work

Simulators, tasks, and benchmarks. Rapid progress in
Embodied Al has led to an explosion of simulators, tasks,
and benchmarks. Early simulators were built for naviga-
tion, often using 3D scans of the real world and supported
only basic, if any, object interaction [1, 16, 39, 53, 61, 77].
Recent simulators model realistic robotic agents but often
trade off physical fidelity to increase simulation speed [21,
22,24,41, 42, 54, 63, 68, 78]. We use the AI2-THOR en-
vironment [39] and ProcTHOR [18] to produce unbounded
numbers of procedurally generated households which sup-
port object manipulation with a Stretch RE-1 [37].

Many embodied AI benchmarks focus on navigation [1,
2, 10, 11, 16, 40, 56, 76, 89]. Beyond navigation,
many tasks (e.g., ALFRED [64], Visual Room Rearrange-
ment [74], ARMPOINTNAV / OBJDIS [21, 22], BEHAV-
IOR [42, 67], and others [25, 26]) require the agent to inter-
act directly with objects in the environment at various levels
of abstraction. Most similar to the tasks used in this work is
Open-Vocabulary Mobile Manipulation (OVMM) [82] task
in which an RE-2 Stretch robotic agent must transport an
object of a given type from an initial receptacle of a given
type to a goal receptacle of a different type. While OVMM
focuses on the core task of mobile manipulation, we bench-
mark our agent across a wide variety of tasks related to nav-
igation, manipulation, and language understanding.
Embodied architectures and training methods. A com-
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mon architecture for Embodied Al is based on an obser-
vation encoder implemented by means of a CNN, and an
RNN providing episode memory and producing the hidden
state upon which to condition the policy at each step. For
the visual backbone, common choices include ResNets [30]
or CLIP [38, 57], or trained from scratch [76]. [45] have
comprehensively studied the impact of visual backbones on
embodied performance.

Embodied agents are frequently trained with on-policy
actor-critic RL methods, e.g. A3C [49], A2C [62], or DD-
PPO [76]. Auxiliary losses co-trained with these RL have
also been proposed to improve sample efficiency [65, 81].
Transformer-based architectures have been proposed in
combination with IL and BC bypassing the need to use RL
for training. Decision transformer [12] and trajectory trans-
former [35] cast the sequential decision problem as a se-
quence modeling problem, thus enabling BC to replace RL.
Gato [60] trains an autoregressive transformer across tasks
and embodiments, towards extended generalization.

Imitation learning has recently gained popularity in
robotics, significantly impacting areas like autonomous
driving [14, 36, 43, 48, 52, 55]. With the effectiveness of
in-context learning, using LLMs as robotic planners has be-
come increasingly prominent [15, 33, 34]. RT-1 [4] scales
up model capacity and multi-task data focusing on manip-
ulation. RT-2 [3] encodes actions as text tokens to enable
large joint VL and decision-taking pretraining for further
generalization improvements in manipulation. DualMind
[72] is trained with self-supervised learning on state-action
interactions and imitation learning with prompts. The main
bottleneck of these approaches is the tremendously costly
human generated trajectories, frequently in the real-world.
Importantly, these works usually do not train navigation
and manipulation jointly, frequently assuming ground-truth
navigation knowledge or that the navigation can be solved
by SLAM-based systems. We train an end-to-end sys-
tem using cheap, shortest-path-planner generated data, and
show its effectiveness in the real-world.

Sim-to-Real. One way to reduce the sim-to-real gap is to
train in high-fidelity simulators. However, accurately mod-
eling the real world, including camera miscalibration, or
out-of-distribution lighting changes, is hard. An alterna-
tive is domain randomization [13, 69], where camera poses,
lighting, textures, or visual degradations can be randomly
sampled during training time, thus making the trained agent
resilient to such fluctuations. Another type of augmenta-
tion is Phone2Proc [19], where a scanned layout of the
real-world house is used to generate many simulated varia-
tions for agent fine-tuning. Finally, domain transfer as in
CycleGAN [88] allows adapting visual appearances dur-
ing training (sim-to-real) or inference (real-to-sim). Reti-
naGAN [31] additionally enforces object-detection consis-
tency and is employed in [34].
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Figure 2. Goal-conditioned Visual Encoder for extracting goal-
relevant visual information from the two cameras.
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Figure 3. Action Decoder for predicting action at the current time
step given the goal, current and past observations, and past actions.

3. Imitation in Procedural Houses

Embodied agents are commonly trained in simulation using
on-policy RL. The agent’s actions result in new observa-
tions and rewards from the environment, and the policy is
updated using the rewards that guide the agent towards de-
sirable behaviors. Practically, RL in complex visual worlds
is sample inefficient, especially when using large action
spaces and for long-horizon tasks. Such training is bottle-
necked by the simulator’s speed; the more physically and
visually realistic the simulation, the lower the frame-rate.
Finally, RL training, even relatively simple tasks such as
navigating to an object or picking it up, requires careful re-
ward shaping, auxiliary losses, and modular architectures.
IL is a compelling alternative to RL since learning from
expert trajectories can be cast as a supervised learning prob-
lem. However, IL’s big success stories have required a lot of
data. Data for IL has traditionally been collected from two
sources: (1) expert humans [4, 58] and (2) heuristic plan-
ners operating from ground-truth information not available

16240



Foo,
I o,

90y,
SCulpture.n, o1 Oring
pottery.n.01 Art and Craft Supplies

Figure 4. Diversity of assets in training environments.

during inference time (e.g. shortest paths computed using
navigation meshes in simulation). While human-collected
data is the gold standard, it is extremely expensive. Planner-
based approaches are cheap but have been found in prior
work to result in suboptimal learning; for instance, [58]
found that navigation agents trained to follow shortest paths
achieved success rates of only 4.4% on the OBJECTNAV
task on the MP3D [6] validation dataset versus ~35% suc-
cess rates when trained to imitate human trajectories. There
is also a healthy skepticism for the generalization ability of
shortest-path trained IL agents in novel environments where
the agent needs to balance exploration and exploitation to
achieve a goal while simultaneously building an implicit
map of the environment. Moreover, [75] mathematically
proves that learning such sub-optimal behavior is guaran-
teed in some settings due to an “imitation gap”.

In the following sections, we show that using trans-
former architectures with long context windows to imitate
heuristic planners at scale can help unlock the power of
IL and produce effective agents in simulation and the real
world. Sec. 4 details our agent, SPOC. In Sec. 5 we out-
line our large-scale data collection, made possible by re-
cent breakthroughs in procedurally generating home envi-
ronments [18], access to Objaverse 3D assets [17], and ef-
ficient heuristic planners that leverage rich ground truth in-
formation in the AI2-THOR simulator. We present a new
benchmark, CHORES in Sec. 6 and a comprehensive analy-
sis of SPOC in Sec. 7.

4. The Shortest Path Oracle Clone (SPOC)

We present SPOC ', an agent embodied in the Stretch RE-
1 [37] robot, trained in simulation to follow text instruc-
tions and complete long-horizon navigation and manipula-
tion tasks. SPOC takes as input the text instruction and vi-
sual observation at each time step ¢ and predicts an action
a'. The Stretch Robot’s axis of navigation is perpendicu-

lar to the axis of manipulation. This necessitates two RGB
cameras, one pointing in the direction of navigation and the
other pointing at the arm. We discretize the action space
into 20 actions: Move Base (£20 cm), Rotate Base (£6°,
+30°), Move Arm (z, 2) (&2 cm, =10 cm), Rotate Grasper
(£10°), pickup, dropoff, done with subtask, and terminate.

Our model consists of three main components: (1) a tex-
tual goal encoder, which processes open vocabulary lan-
guage instructions; (2) an instruction-conditioned visual en-
coder for encoding visual inputs at each time step; and (3)
a high-capacity causal transformer action decoder that pre-
dicts the action for the current time step given the goal, the
current and previous visual inputs, and previous actions.

Goal Encoder. We use a pretrained text encoder Egqq that
maps the goal specification G into a sequence of contextual-
ized token representations g = Egou(G) € R7on X dgont ywhere
Ngoal and dgoq are the number of sub-word tokens in the goal
text and dimension of the token representation, respectively.
We experiment with T5 and SIGLIP text encoders.
Goal-Conditioned Visual Encoder. SPOC accepts visual
inputs from two RGB cameras pointing in perpendicular di-
rections. At any time step ¢, the goal-conditioned visual en-
coder &,qa extracts and integrates visual information from
the two RGB frames F/,, and Ff, .. € R"**>3 and repre-
sent it as a single vector vi = Eyisua (Fly, f,ﬁlanip, G). We
use a Transformer encoder to achieve this, shown in Fig. 2.
The frames are encoded into sequences of contextualized
patch embeddings £, and frfqanip € RrpnXdinse ysing a pre-
trained image encoder Eimage Where npach and dimage are the
number of image patches and output feature dimension of
the image encoder. These features are mapped to the trans-
former input dimension dyjsa using an MLP M, With
ReLU and LayerNorm. The goal representation g is also
mapped to the dyisuar dimension using another MLP M ggq1.
Next, we add learnable camera-type embeddings to differ-
entiate features from the two cameras. Finally, we concate-
nate the patch features, goal features, and a learnable [CLS]
token embedding along the patch dimension and input this
(2npatch + Ngoat + 1) X dyisual tensor through the transformer
encoder. The output at the position of the [CLS] token
serves as the goal-conditioned visual representation v?.
Action Decoder. We use an autoregressive Transformer
decoder D with causal masking to predict actions, see
Fig. 3. The input to the decoder is the sequence of previ-
ous and current visual representations {v% .- v'} addi-
tively combined with sinusoidal temporal position encod-
ings and learned previous time step action embeddings.
The decoder conditions on goal encoding Mo (g) using
cross-attention. At each time step, the output embedding
from the transformer decoder is fed through linear and soft-
max layers to predict an action distribution for that time
step m* = Softmax (Linear(D (v, a®%'~1; Mgou(g))[t]))-
Causal masking during training ensures the decoder only
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Task Description & Example

OBJINAV Locate an object category: “find a mug”

PickUP Pick up a specified object in agent line of sight: “pick up a mug”
FETCH Find and pick up an object: “locate a mug and pick up that mug”
RoOOMVISIT| Traverse the house. “Visit every room in this 5-room house. Indi-
cate when you have seen a new room and when you are done.”

Table 1. CHORES tasks.

Task Target Description & Example

OBJNAV Object’s category: “vase”

OBJNAVAFFORD Object’s possible uses: “a container that can best be
used for holding fresh flowers decoratively”

OBJNAVLOCALREF Object’s nearby objects: “a vase near a tennis racket
and a basketball”

OBINAVRELATTR Object category comparative attribute: “the smallest
vase in the bedroom”

OBINAVROOM Object’s room type: “vase in the living room”

OBINAVDESC Open vocab instance description: “the brown vase
painted orange with a bird on the side”

ROOMNAV Type of room: “bedroom”

Table 2. CHORESNAYV tasks. The full task specification also in-
cludes a navigation verb, such as “Search for a vase”.

attends over current and past inputs to predict the current
action. The model is optimized using the cross-entropy loss
in a teacher-forcing manner, i.e. we minimize the cross en-
tropy between 7! and the one-hot encoding of the expert
action for the current timestep. During inference, the agent
acts in the environment at time ¢ by sampling an action a®
from 7*; a® is then fed as an input to the model on the fol-
lowing timestep. For compute-efficient mini-batch training,
we train with a limited temporal context window (e.g. 100),
but the model uses all past observations during inference.
To enable using a larger context window during deploy-
ment, we randomly shift the time indices fed to the agent
during training; in particular, if we sample temporal context
window [s, s+ 99] from an expert trajectory during training,
then we input the corresponding actions and visual features
to the model as-is, but pair them with the shifted time in-
dices [s + ¢, s + 99 + ¢] where ¢ ~ Unif{0, . ..,900}.

5. Procedural Data

We now describe our large-scale dataset of diverse house-
hold environments and the planners we use to generate ex-
pert trajectories within these environments.

5.1. Environments

To overcome the challenges of scale and diversity, we lever-
age recent advances in the AI2-THOR simulated environ-
ment [39] which allow for importing any of the 800k 3D as-
sets from the Objaverse dataset [17] into AI2-THOR scenes.
Of these 800k assets, we use a subset of =40k objects that
have received additional annotations certifying their rele-
vance to household environments and providing additional
metadata (e.g. object types grounded in the WordNet 2022
hierarchy [47], instance descriptions, and size in meters).
When paired with object instances already existing in AI2-

THOR (=2k instances), we are left with 41,133 unique 3D
assets corresponding to 863 unique object types (henceforth
synonymous with Wordnet synsets). The composition of
the resulting collection of assets, in terms of their assigned
synsets, is illustrated in Fig. 4."

However, importing many new 3D assets into the 120
AI2-THOR scenes is insufficient for required diversity in
scene layouts and may not result in meaningful object con-
figurations. Instead, we use ProcTHOR [18], a procedural
house generation framework built within AI2-THOR which
can, in principle, generate an unbounded number of unique
houses. We use ProcTHOR to generate a total of ~200k
houses (with between 1 and 8 rooms each), all contain-
ing Objaverse assets. Assets are partitioned into train and
eval instances, resulting in some object categories evalu-
ating zero-shot performance due to the long tail of small-
instance-count categories. For more details see the supp.

5.2. Expert Trajectories

In order to produce our expert trajectories for imitation
learning, we need planners capable of a range of skills
essential for navigating and manipulating within complex
multi-room settings. These planners must recognize and
interact with objects, navigate through cluttered environ-
ments, and adapt to various obstacles. Below, we offer a
high-level overview of our planners. We are able to write
these planners because of the wealth of ground truth infor-
mation available within the AI2-THOR environment (e.g.
3D coordinates of all objects); we stress that this ground-
truth information is not available to the agent at inference
time and is simply used to produce the expert trajectories
used for training. For further information, please refer to
the supplementary materials.

Navigation. Given a target object or GPS coordinate within
an environment, navigate to that target by following a short-
est path computed via a navigation mesh. If the target was
an object, rotate so that the object is approximately centered
in the agent’s navigation (or manipulation) camera. As our
agent takes discrete actions (e.g. “move ahead by 0.2m”),
the shortest path is followed approximately.
Manipulation. Given a target object instance, the agent
first uses the privileged information from the simulation to
navigate to a location from which the object is reachable by
the arm. Then, as the poses of the object and the agent are
known, we use iterative distance minimization to bring the
arm close to the target object and then grasp that object.
Room Visitation. For our ROOMVISIT task, the agent must
visit every room in the house and issue sub-task completion
signal. Since the layout of the house is known during tra-
jectory generation in simulation, we can obtain the center of

!For this visualization, synsets have been further classified by GPT-
3.5 [5, 51] as belonging to one of 36 possible semantic clusters, in turn
selected based on the whole collection of synsets.
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the rooms. For this task, we define a shortest-path planner
that navigates to each room center via depth-first-search.

6. Benchmark

We evaluate SPOC on a new benchmark, CHORES (Core
HOusehold Robot EvaluationS). CHORES consists of 4 task
types (Tab. 1) and is designed to evaluate how well the
model can handle multiple tasks at once, which require
skills including navigation, object recognition, object ma-
nipulation, and environment exploration.

We also evaluate models on CHORESNAV (Tab. 2), an
extension of our benchmark which assesses the agent’s abil-
ity to interpret and follow object navigation instructions
that specify target objects in different ways. In addition
to evaluating navigation and object recognition capabilities,
CHORESNAV evaluates open vocabulary instruction follow-
ing, object affordance understanding, scene understanding
(e.g., “on top of”’, “in the kitchen”), and relative object-
attributes comparison (e.g. “largest container”). For tasks
like OBINAVRELATTR where comparison is needed, each
environment has at least one other object of the same type
that doesn’t meet the condition. For instance, if the task is
to find the “smallest bowl”, there will be at least two bowls
of different sizes in the same room. OBJNAVAFFORD,
OBIJNAVRELATTR, and OBJNAVLOCALREF tasks may
also sample WordNet hypernyms of scene synsets, e.g.
“container” that would be satisfied by “vase” and “mug”
or “sports equipment” for “basketball”.

To analyze models we first present results on a subset of
15 object categories from the full 863 categories, called S.
Evaluations on the full category set are named L. Our train-
ing data contains an average of 90k episodes per task and
on average each task contains 195 episodes in the evalua-
tion benchmark. Please see supplementary material.

7. Experiments

Implementation details. SPOC uses SIGLIP image and
text encoders. We use 3-layer transformer encoder and de-
coder and a context window of 100. All models are trained
with batch size=224, AdamW and LR=0.0002. Single-task
models and multi-task models are trained for 20k and 50k
iterations, respectively. Using 16-bit mixed precision train-
ing SPOC trains at an FPS of ~3500, compared to an FPS
of ~175 for RL implemented using AllenAct [73]. We find
that data augmentation both during training and testing is
critical for model performance, both in simulation and real.
In simulation, the PickUp action succeeds if the object is
within 6¢cm of the gripper. In the real world, we leverage a
heuristic object grasping model which is called when SPOC
invokes PickUp. See supplementary for more details.

7.1. Quantitative Analysis

We compare single and multitask versions of SPOC against
single-task RL baselines based on EmbCLIP [38] on
CHORES-S and SPOC’s ability to handle large object vo-
cabulary on CHORES-L (Tab. 3). We thoroughly investigate
design decisions like architecture choices (Tab. 4), image
encoders (Tab. 5), context window size (Tab. 6), choice of
experts (Tab. 7c), and demonstrate the importance of scale
(Tab. 7a) and diversity of environments (Tab. 7b). To assess
the instruction following capabilities of SPOC, we evaluate
on CHORESNAV (Tab. 8). We report Success rate, Episode-
length weighted Success (SEL? [20]), and percentage rooms
visited (%Rooms) for each task and the average Success
across all tasks. We now discuss our findings.

IL on shortest-path episodes at scale produces highly
capable agents. Comparing rows 1 and 2 of Tab. 3, we
see that our IL-trained SPOC dramatically outperforms the
popular RL-trained EmbCLIP architecture [38] across all
CHORES tasks. Note that the RL baselines were upgraded to
use the SIGLIP visual backbone to be comparable to SPOC,
required extensive reward shaping, were run on the same
hardware as SPOC, but for 2x the number of hours. Indeed,
despite extensive efforts, we were unable to obtain non-zero
performance on the FETCH task using RL.

SPOC can multitask. Comparing Tab. 3 rows 2-3,
CHORES-S multitask IL performance (49.9%) matches
single-task IL (50%). This suggests an absence of per-
formance degradation due to task-competition traditionally
seen during multitask training.

Detection brings huge gains. Our RGB-only SPOC agent
learns to navigate well, and an error analysis reveals that
the majority of failures arise from perception problems.
As seen in Tab. 3, compare rows 3-4 and 5-6, SPOC with
ground truth detection (provided by the simulator) shows
15% absolute average success rate gain across all tasks
on CHORES-S and an even larger 24.5% absolute gain on
CHORES-L where the detection problem is harder due to
the larger object vocabulary. The gains are more prominent
for OBINAV, which obtains an impressive 85%, and FETCH
which both require localizing the target object. Tasks like
P1ckUP (where the agent begins facing the object) and
ROOMVISIT (no target object) show little gains as expected.
These results indicate that IL trained agents can continue to
improve significantly with better object perception.
Transformers provide gains at encoding and decoding.
In Tab. 4, we compare SPOC with other commonly used ar-
chitectural choices for Embodied agents. First, we adapted
EmbCLIP’s goal-conditioned visual encoder [38] to input 2
RGB frames and upgraded its image encoder to SigLIP to
create a non-Transformer visual encoder (nonTxEnc). Re-

2We report SEL instead of the prevalent SPL metric due to the known
limitations of SPL, see [20], and because weighting by episode length is
more informative than path length for tasks that include manipulation.
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Benchmark | Model Training OBINAV PickUP FETCH RoOMVISIT Avg
Success SEL  %Rooms | Success SEL %Rooms | Success SEL %Rooms | Success SEL %Rooms Success
EmbSigLIP* [38] | Single-task RL 36.5 245 422 71.9 52.9 30.3 0.0 0.0 50.5 16.5 11.9 44.6 312
CHORES -S Spoc-1-task Single-task IL 57.0 46.2 51.5 84.2 81.0 30.3 15.1 12.6 48.1 43.7 40.4 81.2 50.0
SpPoC Multi-task IL 55.0 422 56.3 90.1 86.9 30.3 14.0 10.5 49.3 40.5 35.7 81.1 49.9
SpoC w/ GT Det | Multi-task IL 85.0 61.4 58.7 91.2 87.9 30.3 473 35.6 61.6 36.7 33.7 79.3 65.0
CHORES -IL SpocC Multi-task IL 33.7 25.1 53.7 75.1 69.1 315 10.6 8.1 429 35.0 33.2 77.8 38.6
SpoC w/ GT Det | Multi-task IL 83.9 58.0 64.0 78.0 75.7 31.5 48.6 38.3 60.0 42.0 39.1 83.1 63.1

Table 3. Training on single tasks, IL outperforms RL even with meticulous reward shaping. EmbSigLIP refers to using the Emb-
CLIP [38] model with an upgrade to use the SIGLIP backbone since that hugely outperforms the ResNet-50 CLIP backbone (See Tab 5).
Further, IL easily extends to multitask training without any performance degradation. Equipping the agent with detection massively boosts
the success rate across all tasks except ROOMVISIT which does not require navigating to or manipulating objects.

Models OBJNAV \ PickUp FETCH ROOMVISIT Avg
Success SEL  %Rooms Success SEL  %Rooms | Success SEL %Rooms | Success SEL %Rooms | Success
TxEnc + GRU 44.7 33.8 477 848 81.4 30.3 10.5 9.0 41.8 34.5 31.8 72.6 43.6
nonTxEnc + TxDec 425 36.8 49.2 81.9 77.8 30.3 14.5 12.9 46.3 41.5 36.7 82.4 45.1
TxEnc + TxDec (SPOC) 55.0 422 56.3 90.1 86.9 30.3 14.0 10.5 49.3 40.5 35.7 81.1 49.9

Table 4. Swapping transformer encoder and decoder with alternative architectures. GRU performs much worse than TxDec for long
horizon Fetch and ROOMVISIT tasks. TxEnc also has a clear advantage over EmbodiedCLIP [38]-style goal-conditioned visual feature
extraction. All models use SIGLIP image and text encoders.

Image Encoder OBINAV PickUP \ FETCH ROOMVISIT Avg
Success SEL  %Rooms | Success SEL  %Rooms Success SEL %Rooms | Success SEL %Rooms | Success
CLIP-RN50 19.6 12.1 44.1 64.1 60.2 30.5 1.8 0.8 434 21.0 19.5 62.6 26.6
DINOV2-ViT-S/14 47.5 32.7 53.1 87.7 84.2 30.3 9.9 7.8 44.7 34.0 31.3 71.5 44.8
SIGLIP-ViT-B/16 (SroC) 55.0 422 56.3 90.1 86.9 30.3 14.0 10.5 49.3 40.5 35.7 81.1 49.9

Table 5. Comparing different image encoders. SIGLIP [85] significantly outperforms CLIP-RN50 [38] and DINOV 2 [50].

Window Size OBINAV PickUPp FETCH RoomMVisIT Avg
Success SEL  %Rooms | Success SEL %Rooms | Success SEL %Rooms | Success SEL %Rooms | Success
10 34.0 27.5 46.3 56.7 53.1 30.3 2.3 2.1 50.6 18.0 16.0 56.1 27.8
50 40.5 30.6 48.4 87.1 83.5 30.3 4.1 3.8 37.7 28.0 252 70.3 39.9
100 (SpoC) 55.0 422 56.3 90.1 86.9 30.3 14.0 10.5 49.3 40.5 35.7 81.1 49.9

Table 6. Effect of context window. L

OBINAV

onger context is essential particular for long-horizon tasks like FETCH and ROOMVISIT.

Training Eps. . OBJNAV I OBINAV
T Sl;cgc(e)ss ?f']; %l:;)oﬁms Houses Success SEL  %Rooms Expert Success SEL  %Rooms
10K 39'0 31 .l 52'9 100 435 35.2 53.6 Explore OBINAV 46.5 27.9 47.7
. : : SPOC-1-task OBINAV (SPOC-1-task) 570 462 515
100K (SPOC-1-task) 570 462 Sis 10k (Spoc-1-task) 57.0 46.2 51.5 BINAV (SPOC-I-task)
C
@ (b) (©)

Table 7. Effect of scale, house diversity, and choice of experts. (a) Performance increases with more training episodes; (b) With the
same number of episodes (100k), increasing diversity of houses boosts performance; (c) Training with experts that explore until the object

becomes visible provides no gains.

placing SPOC’s Transformer-based visual encoder (TxEnc)
with nonTxEnc resulted in a performance drop of 4.8 points
showing the superiority of TxEnc architecture for extract-
ing relevant visual information. Swapping the action de-
coder (TxDec) with GRU showed an even larger drop of 6.3
points. We hypothesize TxDec outperforms GRU because
of the ability to attend over observations and actions several
100 steps in the past while GRUs struggle with compressing
history in a single history embedding.

Strong image encoders produce strong agents. Re-
cent advances in image representations such as DINOV2
and SIGLIP directly translate to gains in Embodied tasks.
SIGLIP particularly nearly doubles the average success rate
of CLIP on CHORES-S (Tab. 5). Interestingly, while self-
supervised DINOV?2 significantly outperforms CLIP, it lags
behind SIGLIP which is trained for image-text matching.

Long horizon tasks require long context windows. Trans-
former based embodied agents in the literature often rely on
short context lengths to encode history due to compute con-
straints (e.g. RT-1 [4] uses 6 previous frames). We find that
short context windows are detrimental to performance on
longer horizon tasks like FETCH and ROOMVISIT (Tab. 6).
Note that we train SPOC with limited context length but use
all past observations for inference.

Scale and diversity of training data matters. In Tab. 7a,
we show that performance on OBJNAV steadily increases
with number of training episodes. This raises a question,
is it sufficient to collect a large number of samples from a
limited number of houses? To answer this, we create two
training sets with different numbers of houses - 100 houses
with 1000 episodes each, and 10k houses with 10 episodes
each. SPOC trained on the latter shows an absolute gain of

16244



Navigate to the highest fruit in the kitchen

Locate a computer on a sofa

Find a Chair in the kitchen Go to a headset and grab that headset

Figure 5. SPOC’s Behavior. L to R: the first image depicts the agent navigating to all possible fruits in the kitchen and then going back to
the highest located fruit; the second shows the agent scanning a sofa, then moving to another sofa and finally ending the episode when it
sees the laptop; the third illustrates the agent skipping chairs in the living room to reach one in the kitchen; and the fourth demonstrates the
agent visiting the headset, but then repositioning itself around the table to access a location where the headset is reachable.

Benchmark \ OBINAV OBINAVROOM OBIJNAVRELATTR OBINAVAFFORD OBIJNAVLOCALREF OBINAVDESC \ ROOMNAV Avg
Success  %Rooms | Success %Rooms | Success %Rooms | Success %Rooms | Success %Rooms | Success %Rooms Success %Rooms | Success

CHORESNAV -S 57.5 55.7 50.3 54.6 54.6 62.2 53.0 45.1 51.5 30.6 49.9 74.5 48.1 53.6

CHORESNAV -L 38.7 534 54.2 55.7 38.5 56.0 43.5 48.0 44.5 58.7 30.5 56.8 67.5 49.9 453

Table 8. CHORESNAV results to evaluate SPOC’s ability to handle diverse target specifications for navigation.

13.5% (Tab. 7b). We believe that lack of house diversity
in prior studies like PIRLNav [59] (which used 120 scenes)
may have contributed to the inefficacy of IL on shortest-path
trajectories for tasks like OBJNAV.

Exploration based planners provide no gain. Prior
work [59] found that IL with frontier exploration trajecto-
ries outperformed shortest-path trajectories. In Tab. 7c we
compare 1-task SPOC to a variant trained with episodes gen-
erated by an exploration-based planner (see supplement for
details) and find no gains using the latter. This reinforces the
finding in Tab. 7b that the diversity of training environments
is critical to the success of IL on shortest path trajectories.
Sroc follows open vocabulary instructions. Tab. 8 shows
the performance of SPOC on several navigation tasks that
require it to follow long instructions, disambiguate at-
tributes, and understand relative distances. High perfor-
mance on OBJNAVAFFORD shows the ability of SPOC to
understand instructions such as locate an edible fruit that
can best be used as a guacamole ingredient or find a tool
that can best be used for cutting fruits and vegetables, when
there are multiple tools and edible fruits in the house. A
high Success rate on OBINAVROOM for CHORES-L com-
pared to OBINAV show that locating a large vocabulary of
objects is indeed easier when the agent is told which room
the object lies in, and the high performance on ROOMNAV
confirms that the agent has learned to identify rooms.

Sproc transfers effectively to the real world. To assess
real-world generalization with no visual adaptation and no
real world finetuning, we evaluate two of our best models
in physical environments. These models were tested across
88 trials in two different real-world settings. Table 9, row 1
shows the performance of the RGB only SPOC. Row 2 is the
performance of SPOC trained with GT Detection but eval-
uated in the real world with a DETIC object detector [87].

Comparing Table 9 with rows 3 and 4 from Table 3 shows
that the performance drop between simulation and real is
small overall and minimal for the navigation tasks. For ma-
nipulation tasks, note that the numbers in parentheses mea-
sure Soft Success, i.e. the model is rewarded if the gripper is
within 6cm of the object, regardless of whether the heuristic
grasping is successful. The Soft Success numbers are very
similar to the simulation results indicating that the transfer
of the learned policy from sim to real is very effective.

Model OBJNAV PickUp  FETCH ROOMVISIT | Average
Spoc 50.0 46.7 (66.7) 11.1(33.3) 50.0 39.5
SpoC w/ DETIC 83.3 46.7 (86.7) 44.4(44.4) 50.0 56.1

Table 9. Real world results. Parenthetical numbers on manip.
tasks indicate Soft Success: SPOC called PickUp sufficiently near
the target, ignores heuristic grasping success/failure.

7.2. Agent Behavior

Figure 5 presents our qualitative examples, highlighting
several intriguing behaviors exhibited by Spoc. Figure 1 il-
lustrates additional qualitative trajectories in both simulated
and real-world environments. These examples emphasize
the model’s capabilities in exploration, backtracking, scene
and spatial comprehension, and instruction following. For
more examples, please refer to the supplementary material.

8. Conclusion

In this work, we explore the potential of imitation learning
for learning Embodied policies. Using shortest path expert
planners in procedurally generated environments, it is now
finally possible to generate training data at the scale and
diversity needed to make techniques like Behavior Cloning
work. More importantly, we show that agents learned by
cloning experts in simulation not only generalize to novel
environments but also to the real world.
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